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ABSTRACT

This paper proposes low-complexity robust adaptive beam-
forming (RAB) techniques based on shrinkage methods. We
firstly briefly review a Low-Complexity Shrinkage-Based
Mismatch Estimation (LOCSME) batch algorithm to esti-
mate the desired signal steering vector mismatch, in which
the interference-plus-noise covariance (INC) matrix is also
estimated with a recursive matrix shrinkage method. Then
we develop low complexity adaptive robust version of the
conjugate gradient (CG) algorithm to both estimate the steer-
ing vector mismatch and update the beamforming weights. A
computational complexity study of the proposed and exist-
ing algorithms is carried out. Simulations are conducted in
local scattering scenarios and comparisons to existing RAB
techniques are provided.

Index Terms— robust adaptive beamforming, shrinkage
methods, low complexity methods.

1. INTRODUCTION

Sensor array signal processing techniques and their appli-
cations to wireless communications, sensor networks and
radar have been widely investigated in recent years. Adaptive
beamforming is one of the most important topics in sensor ar-
ray signal processing which has applications in many fields.
However, adaptive beamformers may suffer performance
degradation due to small sample data size or the presence of
the desired signal in the training data. In practical environ-
ments, desired signal steering vector mismatch problems like
signal pointing errors [13], imprecise knowledge of the an-
tenna array, look-direction mismatch or local scattering may
even lead to more significant performance loss [2].

1.1. Prior and Related Work

In order to address these problems, robust adaptive beam-
forming (RAB) techniques have been developed in recent
years. Popular approaches include worst-case optimiza-
tion [2], diagonal loading [3, 4], and eigen-decomposition
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[12, 13]. However, general RAB designs have some limita-
tions such as their ad hoc nature, high probability of subspace
swap at low SNR and high computational cost [5].

Further recent works have looked at approaches based on
combined estimation procedures for both the steering vec-
tor mismatch and interference-plus-noise covariance (INC)
matrix to improve RAB performance. The worst-case opti-
mization methods in [2] solve an online semi-definite pro-
gramming (SDP) while using a matrix inversion to estimate
the INC matrix. The method in [8] estimates the steering
vector mismatch by solving an online Sequential Quadratic
Program (SQP) [6], while estimating the INC matrix using a
shrinkage method [8]. Another similar method which jointly
estimates the steering vector using SQP and the INC matrix
using a covariance reconstruction method [9] has outstanding
performance compared to other RAB techniques. However,
their main disadvantages include the high computational cost
associated with online optimization programming, the matrix
inversion or reconstruction process, and slow convergence.
In [11] and [15] we have introduced a Low-Complexity
Shrinkage-Based Mismatch Estimation (LOCSME) method
and a reduced-cost adaptive version [15] for robust beam-
forming, which estimate the steering vector mismatch by
exploiting the cross-correlation vector between the sensor
array data and the beamformer output.

1.2. Contributions

In this work, we develop an adaptive version of the LOCSME
technique in [11] based on a conjugate gradient (CG) adaptive
algorithm, resulting in the proposed LOCSME-CG algorithm.
Different from the approach of LOCSME-SG, the LOCSME-
CG algorithm not only updates the beamforming weights
using a subspace approach [16]-[67], but can also estimates
the mismatched steering vector, which sequentially performs
the estimation of the mismatched vector by LOCSME in
every snapshot for large systems [68]-[93],[94]-[110]. An
analysis shows that LOCSME-CG requires lower complexity
than the original LOCSME and has comparable complexity
to LOCSME-SG. Simulations also show an excellent per-
formance which benefits from the precise estimation of the
steering vector.



The paper is organized as follows. The system model and
problem statement are described in Section II. A review of the
LOCSME method is provided in Section III whereas Section
IV presents the proposed LOCSME-CG algorithm. Section V
presents the simulation results. Section VI gives the conclu-
sion.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a linear antenna array of M sensors and K narrow-
band signals which impinge on the array. The data received
at the ith snapshot can be modeled as

x(i) = A(θ)s(i) + n(i), (1)

where s(i) ∈ CK×1 are uncorrelated source signals, θ =
[θ1, · · · , θK ]T ∈ RK is a vector containing the directions of
arrival (DoAs), A(θ) = [a(θ1) + e, · · · ,a(θK)] ∈ CM×K

is the matrix which contains the steering vector for each DoA
and e is the steering vector mismatch of the desired signal,
n(i) ∈ CM×1 is assumed to be complex Gaussian noise with
zero mean and variance σ2

n. The beamformer output is

y(i) = wHx(i), (2)

where w = [w1, · · · , wM ]T ∈ CM×1 is the beamformer
weight vector, where (·)H denotes the Hermitian transpose.
The optimum beamformer is computed by maximizing the
SINR given by

SINR =
σ2
1 |wHa|2

wHRi+nw
. (3)

where σ2
1 is the desired signal power, Ri+n is the INC ma-

trix. Assuming that the steering vector a is known precisely
(a = a(θ1)), then problem (3) can be cast as an optimization
problem

minimize
w

wHRi+nw

subject to wHa = 1,
(4)

which is known as the MVDR beamformer or Capon beam-
former [1]. The optimum weight vector is given by wopt =
R−1

i+na

aHR−1
i+na

. Since Ri+n is usually unknown in practice, it can

be estimated by the sample covariance matrix (SCM) of the
received data as

R̂(i) =
1

i

i∑
k=1

x(k)xH(k), (5)

which results in the Sample Matrix Inversion (SMI) beam-
former wSMI = R̂−1a

aHR̂−1a
. However, the SMI beamformer

requires a large number of snapshots to converge and is sensi-
tive to steering vector mismatches [8, 9]. The problem we are
interested in solving is how to design low-complexity robust
adaptive beamforming algorithms that can preserve the SINR
performance in the presence of uncertainties in the steering
vector of a desired signal.

3. LOCSME ROBUST BEAMFORMING
ALGORITHM

The basic idea of LOCSME [11] is to obtain a precise esti-
mate of the desired signal steering vector by exploiting cross-
correlation vector between the beamformer output and the ar-
ray observation data and then computing the beamforming
weights.

3.1. Steering Vector Estimation

The cross-correlation between the array observation data and
the beamformer output can be expressed as d = E{xy∗}.
With assumptions that |amw| ≪ |a1w| for m = 2, · · · ,K
and that the signal sources and that the system noise have
zero mean while the desired signal is independent from
the interferers and the noise, d can be rewritten as d =
E{σ1

2aH1 wa1 + nnHw}. By projecting d onto a predefined
subspace [7], which collects all possible information from
the desired signal, the unwanted part of d can be eliminated.
LOCSME also exploits prior knowledge which amounts to
choosing an angular sector in which the desired signal is lo-
cated, say [θ1 − θe, θ1 + θe]. The subspace projection matrix
P is given by

P = [c1, c2, · · · , cp][c1, c2, · · · , cp]H , (6)

where c1, · · · , cp are the p principal eigenvectors of the ma-
trix C, which is defined by [6]

C =

θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ. (7)

In order to achieve a better estimation of the steering vector,
an extension of the oracle approximating shrinkage (OAS)
([10]) technique is employed to obtain a more accurate es-
timate of the vector d. Let us define the sample correlation
vector (SCV) in snapshot i as

l̂(i) =
1

i

i∑
k=1

x(k)y∗(k), (8)

and its mean value as

ν̂(i) =
∑

l̂(i)/M. (9)

Then we aim to shrink the SCV towards its mean value ν̂(i),
which yields

d̂(i) = ρ̂(i)ν̂(i) + (1− ρ̂(i))̂l(i), (10)

where ρ̂(i) represents the shrinkage cofficient (ρ̂(i) ∈ (0, 1)).
To find out the optimum ρ̂(i), we minimize the mean square



error (MSE) of E[∥d̂(i)− d̂(i− 1)∥
2
], which leads to

ρ̂(i) =

(1− 2
M )d̂H(i− 1)̂l(i− 1) +

∑
d̂(i− 1)

∑∗
d̂(i− 1)

(i− 2
M )d̂H(i− 1)̂l(i− 1) + (1− i

M )
∑

d̂(i− 1)
∑∗

d̂(i− 1)
.

(11)

Once the correlation vector d̂ is obtained, the steering vector
is estimated by

â1(i) =
Pd̂(i)

∥Pd̂(i)∥2
. (12)

3.2. Signal Power Estimation and Beamforming Weights

Following the description in [11], the desired signal power σ2
1

is estimated by

σ̂2
1(i) =

|âH1 (i)x(i)|2 − |âH1 (i)â1(i)|σ2
n

|âH1 (i)â1(i)|2
, (13)

which has a linear complexity O(M).
Once the steering vector and power of the desired signal

are obtained, the INC matrix is also estimated by a matrix
shrinkage method [11] and the weight vector is computed by

ŵ(i) =
R̂−1

i+n(i)â1(i)

âH1 (i)R̂−1
i+n(i)â1(i)

, (14)

which has a computationally costly matrix inversion R̂−1
i+n(i).

4. PROPOSED LOCSME-CG ALGORITHM

In this section, we develop a CG adaptive strategy based
on LOCSME. We employ the same recursions as in LOC-
SME to estimate the steering vector and the desired signal
power, whereas the estimation procedure of the beamforming
weights is different. In order to avoid costly inner recursions,
we let only one iteration be performed per snapshot[14]. Here
we denote the CG-based weights and steering vector updated
by snapshots as

â1(i) = â1(i− 1) + αâ1
(i)pâ1

(i), (15)

v(i) = v(i− 1) + αv(i)pv(i). (16)

As can be seen, the subscripts of all the quantities for inner
iterations are eliminated. Then, we employ the degenerated
scheme to ensure αâ1

(i) and αv(i) satisfy the convergence
bound [14] given by

0 ≤ pH
â1
(i)gâ1

(i) ≤ 0.5pH
â1
(i)gâ1

(i− 1), (17)

0 ≤ pH
v (i)gv(i) ≤ 0.5pH

v (i)gv(i− 1). (18)

Instead of updating the negative gradient vectors gâ1
(i) and

gv(i) in iterations, now we utilize the forgetting factor to re-
express them in one snapshot as

gâ1
(i) = (1− λ)v(i) + λgâ1

(i− 1)

+ σ̂2
1(i)αâ1

(i)v(i)vH(i)pâ1
(i)− x(i)xH(i)â1(i), (19)

gv(i) = (1− λ)â1(i) + λgv(i− 1)− αv(i)(R̂(i)

− σ̂2
1(i)â1(i)â

H
1 (i))pv(i)− x(i)xH(i)v(i− 1). (20)

Pre-multiplying (19) and (20) by pH
â1
(i) and pH

v (i), respec-
tively, and taking expectations we obtain

E[pH
â1
(i)gâ1

(i)] = E[pH
â1
(i)(v(i)− x(i)xH(i)â1)(i)]

+ λE[pH
â1
(i)gâ1

(i− 1)]− λE[pH
â1
(i)v(i)]

+ E[αâ1
(i)pH

â1
(i)σ̂2

1(i)v(i)v
H(i)pâ1

(i)], (21)

E[pH
v (i)gv(i)] = λE[pH

v (i)gv(i− 1)]−λE[pH
v (i)â1(i)]

− E[αv(i)p
H
v (i)(R̂(i)− σ̂2

1(i)â1(i)â
H
1 (i))pv(i)], (22)

where in (22) we have E[R̂(i)v(i − 1)] = E[â1(i)]. Af-
ter substituting (22) back into (18) we obtain the bounds for
αv(i) as follows

(λ− 0.5)E[pH
v (i)gv(i− 1)]− λE[pH

v (i)â1(i)]

E[pH
v (i)(R̂(i)− σ̂2

1(i)â1(i)â
H
1 (i))pv(i)]

≤E[αv(i)]

≤ λE[pH
v (i)gv(i− 1)]− λE[pH

v (i)â1(i)]

E[pH
v (i)(R̂(i)− σ̂2

1(i)â1(i)â
H
1 (i))pv(i)]

. (23)

Then we can introduce a constant parameter ηv ∈ [0, 0.5] to
restrict αv(i) within the bounds in (23) as

αv(i) =

λ(pH
v (i)gv(i− 1)− pH

v (i)â1(i))− ηvp
H
v (i)gv(i− 1)

pH
v (i)(R̂(i)− σ̂2

1(i)â1(i)â
H
1 (i))pv(i)

.

(24)

Similarly, we can also obtain the bounds for αâ1
(i). For sim-

plicity let us define E[pH
â1
(i)gâ1

(i−1)] = A, E[pH
â1
(i)v(i)] =

B, E[pH
â1
(i)x(i)xH(i)â1(i)] = C and E[pH

â1
(i)σ̂2

1(i)v(i)

vH(i)pâ1
(i)] = D. Substituting equation (21) into (17) gives

λ(B −A)−B + C

D
≤E[αâ1

(i)]

≤λ(B −A)−B + C + 0.5A

D
, (25)

in which we can introduce another constant parameter ηâ1
∈

[0, 0.5] to restrict αâ1
(i) within the bounds in (25) as

E[αâ1
(i)] =

λ(B −A)−B + C + ηâ1
A

D
, (26)



Table 1. Complexity Comparison
RAB Algorithms Flops
LOCSME [11] 4M3 + 3M2 + 20M

LOCSME-SG 15M2 + 30M

Algorithm of [8] M3.5 + 7M3 + 5M2 + 3M

LOCME [7] 2M3 + 4M2 + 5M

LCWC [12] 100M2 + 350M

LOCSME-CG 13M2 + 77M

or

αâ1
(i) = [λ(pH

â1
(i)v(i)−pH

â1
(i)gâ1

(i− 1))−pH
â1
(i)v(i)

+ pH
â1
(i)x(i)xH(i)â1(i) + ηâ1

pH
â1
(i)gâ1

(i− 1)]

/[σ̂2
1(i)p

H
â1
(i)v(i)vH(i)pâ1

(i)]. (27)

Then we can update the direction vectors pâ1
(i) and pv(i) by

pâ1
(i+ 1) = gâ1

(i) + βâ1
(i)pâ1

(i), (28)

pv(i+ 1) = gv(i) + βv(i)pv(i), (29)

where βâ1
(i) and βv(i) are updated by

βâ1
(i) =

[gâ1
(i)− gâ1

(i− 1)]Hgâ1
(i)

gH
â1
(i− 1)gâ1

(i− 1)
, (30)

βv(i) =
[gv(i)− gv(i− 1)]Hgv(i)

gH
v (i− 1)gv(i− 1)

. (31)

Finally we can update the beamforming weights by

w(i) =
v(i)

âH1 (i)v(i)
, (32)

To reproduce the proposed LOCSME-CG algorithm,
equations (9)-(12),(13),(15),(16),(19),(20),(24),(27)-(32) are
required. The forgetting factor λ and constant η for estimating
α(i) need to be adjusted to give its best performance.

A complexity analysis in terms of flops (total number
of additions and multiplications) required by the proposed
LOCSME-CG algorithm and the existing ones is compared
in Table 1. The proposed LOCSME-CG algorithm avoids
costly matrix inversion and multiplication procedures, which
are unavoidable in the existing RAB algorithms. The LCWC
algorithm of [12] requires N inner iterations per snapshot,
which significantly varies in different snapshots (here we
take N = 50 as an averagely evaluated value). It is clear that
LOCSME-CG has lower complexity in terms of the num-
ber of sensors M , dominated by O(M2), resulting in great
advantages when M is large.

5. SIMULATION RESULTS

The simulations are carried out under both coherent and in-
coherent local scattering mismatch [4] scenarios. A uniform

linear array (ULA) of M = 12 omnidirectional sensors with
half wavelength spacing is considered. 100 repetitions are
executed to obtain each point of the curves and a maximum
of i = 300 snapshots are observed. The desired signal is
assumed to arrive at θ1 = 10◦ while there are other two
interferers impinging on the antenna array from directions
θ2 = 30◦ and θ3 = 50◦. The signal-to-interference ratio
(SIR) is fixed at 0dB. For our proposed algorithm, the angular
sector in which the desired signal is assumed to be located is
chosen as [θ1 − 5◦, θ1 + 5◦] and the number of eigenvectors
of the subspace projection matrix p is selected manually with
the help of simulations. The results focus on the beamformer
output SINR performance versus the number of snapshots, or
a variation of input SNR (−10dB to 30dB).

5.1. Mismatch due to Coherent Local Scattering

The steering vector of the desired signal affected by a time-
invariant coherent local scattering effect is modeled as

a1 = p+
4∑

k=1

ejφkb(θk), (33)

where p corresponds to the direct path while b(θk)(k =
1, 2, 3, 4) corresponds to the scattered paths. The angles
θk(k = 1, 2, 3, 4) are randomly and independently drawn in
each simulation run from a uniform generator with mean 10◦

and standard deviation 2◦. The angles φk(k = 1, 2, 3, 4) are
independently and uniformly taken from the interval [0, 2π]
in each simulation run. Notice that θk and φk change from
trials while remaining constant over snapshots.

Fig. 1 illustrate the performance comparisons of SINR
versus snapshots and SINR versus SNR regarding the men-
tioned RAB algorithms in the last section under coherent scat-
tering case. Specifically to obtain the SINR versus snapshots
results, we select λ = 0.95, η = 0.2 for LOCSME-CG.
However, selection of these parameters may vary according
to different input SNR as in the SINR versus SNR results.
LOCSME-CG outperforms the other algorithms and is very
close to the standard LOCSME.

5.2. Mismatch due to Incoherent Local Scattering

In the incoherent local scattering case, the desired signal has a
time-varying signature and the steering vector is modeled by

a1(i) = s0(i)p+
4∑

k=1

sk(i)b(θk), (34)

where sk(i)(k = 0, 1, 2, 3, 4) are i.i.d zero mean complex
Gaussian random variables independently drawn from a ran-
dom generator. The angles θk(k = 0, 1, 2, 3, 4) are drawn
independently in each simulation run from a uniform genera-
tor with mean 10◦ and standard deviation 2◦. This time, sk(i)
changes both from run to run and from snapshot to snapshot.



0 100 200 300
−15

−10

−5

0

5

10

15

snapshot

S
IN

R
 (

dB
)

 

 

Optimum
LOCSME [11]
Shrinkage of [8]
LCWC [12]
LOCME [7]
LOCSME−SG [15]
LOCSME−CG

−10 0 10 20 30
−15

−10

−5

0

5

10

15

20

25

30

SNR (dB)

S
IN

R
 (

dB
)

 

 

Optimum
LOCSME [11]
Shrinkage of [8]
LCWC [12]
LOCME [7]
LOCSME−SG [15]
LOCSME−CG

Fig. 1. coherent local scattering

Fig. 2 illustrate the performance comparisons of SINR
versus snapshots and SINR versus SNR regarding the men-
tioned RAB algorithms in the last section under incoherent
scattering case. To obtain the SINR versus snapshots results,
we select λ = 0.95, η = 0.3 for LOCSME-CG. However,
we have optimized the parameters to give the best possible
performance at different input SNRs.
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Fig. 2. incoherent local scattering

Different from the coherent scattering results, all the al-
gorithms have a certain level of performance degradation due
to the effect of incoherent local scattering model, in which
case we have the extra system dynamics with the time varia-
tion, contributing to more environmental uncertainties in the
system. However, over a wide range of input SNR values,
LOCSME-CG still outperforms the other RAB algorithms.
One point that needs to be emphasized is, most of the existing
RAB algorithms experience significant performance degrada-
tion when the input SNR is high (i.e. around or more than
20dB), which is explained in [9] that the desired signal always

presents in any kind of diagonal loading technique. However,
LOCSME-CG improves the estimation accuracy, so that the
high SNR degradation is successfully avoided as can be seen
in Fig. 1 and Fig. 2.

6. CONCLUSION

This work proposed a low-complexity adaptive RAB algo-
rithm, LOCSME-CG, developed from the LOCSME RAB
method. We have derived recursions for the weight vector up-
date with low complexity. We also have enabled the estima-
tion for the mismatch steering vector inside the CG recursions
to enhance the robustness. Simulation results have shown that
LOCSME-CG achieves excellent output SINR performance
and is suitable for operation in high input SNR.
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