
Distributed Conjugate Gradient Strategies for Distributed
Estimation Over Sensor Networks

Songcen Xu 1, Rodrigo C. de Lamare 2

Communications Research Group, Department of Electronics, University of York, U.K.
1
sx520@ohm.york.ac.uk

2
rcdl500@ohm.york.ac.uk

Abstract—This paper presents distributed adaptive algorithms
based on the conjugate gradient (CG) method for distributed
networks. Both incremental and diffusion adaptive solutions are
all considered. The distributed conventional CG (CCG) and
modified CG (MCG) algorithms have an improved performance
in terms of mean square error as compared with least-mean
square (LMS)-based algorithms and a performance that is
close to recursive least-squares (RLS) algorithms. The resulting
algorithms are distributed, cooperative and able to respond in
real time to changes in the environment.

I. INTRODUCTION

In recent years, distributed processing has become popular
in wireless communication networks. This kind of processing
can collect data at each node in a given area and convey the
information to the whole network in a distributed way. For
instance, each node can get the information from its neighbors,
and then combine it with the use of distributed adaptive
algorithms; each node has the ability to estimate the nearby
environment itself [1]. When compared with the centralized
solution, the distributed solution has significant advantages.
The centralized solution needs a central processor, where each
node sends its information to the central processor and gets
the information back after the processor completes the task.
This type of communication needs the central processor to be
powerful and reliable. With distributed solutions, each node
only requires the local information and its neighbors to process
the information. This kind of processing can significantly
reduce the amount of processing and the communications
bandwidth requirements.

There are three main cooperation modes: the incremental,
the diffusion, and the probabilistic diffusion modes [1]. For
the incremental mode, we can interpret it as a cycle in which
the information goes through the nodes in one direction, which
means each node passes the information to its adjacent node
in a pre-determined direction. Because of its simple method,
the need for communication and power is the least [1]. For
the diffusion mode, each node transfers information to all
its neighbors. This kind of processing costs a huge amount
of communication resources, but each node will get more
information. To avoid the high communication cost, another
kind of diffusion termed probabilistic diffusion is used. Instead
of transferring information to all its neighbors, each node
transfers data to a selected group of its neighbors, which can
be chosen randomly.

Several algorithms have already been developed and report-
ed in the literature for distributed networks. Steepest-descent,
least mean square (LMS) [1] and affine projection (AP) [3]
solutions have been considered with incremental adaptive
strategies over distributed networks [1], while the LMS and
recursive least squares (RLS) algorithms have been reported
using diffusion adaptive strategies [2], [4], [5]. Although the
LMS-based algorithms have their own advantages, when com-
pared with conjugate gradient (CG) algorithms, their shortages
are obvious. First, for the LMS- based algorithms, the adapta-
tion speed is often slow, especially for the conventional LMS
algorithm. Second, when we are trying to increase the adapta-
tion speed, the system stability may decrease significantly[11].

Furthermore, the RLS-based algorithms usually have a high
complexity. In order to develop a set of distributed solutions
with a more attractive tradeoff between performance and com-
plexity, we focus on the CG algorithm. The CG algorithm has
a faster convergence rate [6] than the LMS-type algorithms and
a lower computational complexity than RLS-type techniques.
In this paper, the main contribution is to develop distributed
CG algorithms for both incremental and diffusion adaptive
strategies. In particular, we develop distributed versions of the
conventional CG algorithm and of the modified CG algorithm
for use in distributed estimation over sensor networks. These
algorithms can be widely used in defence applications, such
as battlefield information identification, movement estimation
and detection and distributed spectrum estimation.

This paper is organized as follows. Section II describes the
system model and states the problem. Section III presents the
incremental distributed CG algorithms, whereas Section IV
considers the diffusion distributed CG algorithms. Section V
presents and discusses the simulation results, whereas Section
VI gives the conclusions.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this part, we describe a system model of the distributed
estimation scheme over sensor networks and introduce the
problem statement.

A. System model

The basic idea of this system model is that for each node in
a sensor network a designer deals with a system identification
problem. Each node is equipped with an adaptive filter. We
focus on the processing of an adaptive filter for adjusting the
weight vector ωo with coefficients ωk (k = 1, . . . ,M), where
M is the length of the filter. The desired signal of each node
at time instant i is

d(i) = ωH
0 x

(i) + n(i), i = 1, 2, . . . , N, (1)

where d(i) is the received signal sample, x(i) is the M × 1
input signal vector, ω0 is the M×1 system weight vector, n(i)

is the noise sample at each receiver, (·)H denotes Hermitian
transpose and N is the number of time instants. At the same
time, the output of the adaptive filter for each node is given
by

y(i) = ω(i)Hx(i), i = 1, 2, . . . , N, (2)

where ω(i) is the local estimator ω for each node at time
instant i.

B. Problem Statement

To compute the optimum solution of the weight vector,
we need to solve a problem expressed in the form of a
minimization of a cost function. Consider a network which
has N nodes, each node k has access to time realizations

{d
(i)
k ,u

(i)
k } of zero- mean spatial data {dk,uk}, k=1,2, . . . ,

N, where each dk is a scalar measurement and each uk is
a row regression vector [1]. After that, two global matrices

are built which are used to collect the measurement data and
regression data that are expressed in the form of the matrices:

X = [x1,x2, ...xN], (N ×M) (3)

d = [d1, d2, . . . dN]T , (N × 1) (4)

The data associated with these two equations correspond to
data collected across all nodes. In order to design an algorithm
to compute the optimum estimation value, we need to first
define a cost function:

J(ω) = E[||d−Xω||2], (5)

where the J(ω) is used to calculate the MSE and our aim
is to minimize the cost function. The optimal solution should
satisfy [1]:

E[XH(d−Xωo)] = 0. (6)

Meanwhile, the ωo is also the solution to:

b = Rωo, (7)

where the M ×M autocorrelation matrix is given by R =
E[XHX] and b = E[XHd] is an M × 1 cross-correlation
matrix. In this work, we focus on incremental and diffusion
CG-based algorithms to solve the equation and perform esti-
mation in a distributed fashion.

III. PROPOSED INCREMENTAL DISTRIBUTED CG - BASED

ALGORITHMS

For distributed estimation over sensor networks, we develop
two CG- based algorithms which are the CCG and MCG with
incremental distributed solution (IDCG). We derive the CG-
based algorithms first, then we devise distributed versions of
these algorithm for use in the network in an incremental and
distributed way.

A. Derivation of the CG- Based Algorithms

When a CG algorithm is used in adaptive signal processing,
it solves the following equation[8]:

R
(i)
k ω

(i)
k = b

(i)
k , (8)

where R
(i)
k is the M×M correlation matrix for the input data

vector and b
(i)
k is the M × 1 cross-correlation vector between

the input data vector and d is the desired response. To solve
this equation, we need to obtain:

ω
(i)
k (j) = [R

(i)
k]−1b

(i)
k . (9)

In the CG- based algorithm, the iteration procedure is intro-
duced. For the jth iteration, we choose the negative direction
as:

g
(i)
k (j) = b

(i)
k −R

(i)
k ω. (10)

The CG-based weight vector ω
(i)
k (j) is defined as:

ω
(i)
k (j) = ω

(i)
k−1(j) + α

(i)
k (j)p

(i)
k (j), (11)

where p(j) is the direction vector with conjugacy and α(j)
is calculated by replacing (11) in (9), then taking the gradient
with respect to α(j) and using (11), we get:

α
(i)
k (j) =

ρ
(i)
k (j − 1)

p
(i)
k (j)

H
c
(i)
k (j)

, (12)

where

ρ
(i)
k (j) = g

(i)
k (j)

H
g
(i)
k (j)

and
c
(i)
k (j) = R

(i)
k p

(i)
k (j).

The direction vector p
(i)
k (j) in (11) is defined as:

p
(i)
k (j + 1) = g

(i)
k (j) + β

(i)
k (j)p

(i)
k (j), (13)

where β
(i)
k (j) is calculated by the Gram-Schmidt orthogonal-

ization procedure[7] for the conjugacy:

β
(i)
k (j) =

ρ
(i)
k (j)

ρ
(i)
k (j − 1)

(14)

with

ρ
(i)
k (j) = g

(i)
k (j)

H
g
(i)
k (j).

Besides the basic CG algorithm, there are two ways to define
the correlation and cross-correlation matrices which are the
’finite sliding data window’ and the ’exponentially decaying
data window’[8]. In this paper, we mainly focus on the
’exponentially decaying data window’ because this approach
employs the same correlation matrix as the RLS algorithm.
The recursions are given by:

R
(i)
k = λfR

(i)
k−1 + x

(i)
k [x

(i)
k]H (15)

b
(i)
k = λfb

(i)
k−1 + d

(i)∗
k x

(i)
k (16)

where λf is the forgetting factor.

B. Incremental Distributed CG - Based Solutions

In the incremental distributed model of our algorithm, each
node is only allowed to communicate with its direct neighbor
at each time instant. To describe the whole process, we define
a cycle where each node in this network could only access

its immediate neighbor in this cycle [1]. The quantity ψ
(i)
k is

defined as a local estimate of ωo at time i. As a result, we
assume that node k has access to an estimate of ωo at its
immediate neighbor node k− 1 which is ψ

(i)
k−1 in the defined

cycle. Fig.1 shows its processing.

!

!"#$%&'&

(!"
#$%)&!"

#$%*&

!"#$%&!&

(!&
#$%)&!&

#$%*&

!"#$%&+&

(!'
#$%)&!'

#$%*&

!"#$%&+,'&

(!'("
#$%)&!'("

#$%*&

!"#$%&+-'&

(!')"
#$%)&!')"

#$%*&

!"#$&+)&./0$&/&

&

1234$0$2567&8/954/:;5$#&<=,&>69$#&

?7@"4/5A0&

!
!!!

!!!
! 12B;5&CD4"0&2"#$&+,'E!

(!'
#$%)*'

#$%*& &

F"367&/2B;5!

!
!

!!!
! !

."&2$/@A:"4&2"#$&+-'!
!"#$&";5B;5!

Fig. 1. Incremental distributed CG-based network processing

Based on the main steps of the CG algorithm, we propose
two distributed adaptive filtering algorithms, namely, the CCG
and the MCG for distributed estimating over sensor networks.
The difference between these two strategies is that the CCG
needs to run k iterations while the MCG only needs one
iteration. The implementation of incremental distributed CCG
solution (IDCCG) is shown in Table I. Similarly to the CCG
algorithm,the incremental distributed MCG solution (IDMCG)

TABLE I
IDCG SOLUTIONS

IDCCG Solution IDMCG Solution
Initialization: Initialization:
ω0 = 0, g(0) = b,p(1) = g(0) ω0 = 0, g0 = b,p1 = g0
For each time instant i=1,2, . . . , n For each time instant i=1,2, . . . , n
For each node k=1,2, . . . , N For each node k=1,2, . . . , N

ψ
(i)
0 (1) = ωi−1 R

(i)
k

= λfR
(i)
k−1 + x

(i)
k
x

(i)
k

H

R
(i)
k

= λfR
(i)
k−1 + x

(i)
k
x

(i)
k

H
b
(i)
k

= λfb
(i)
k−1 + d

(i)
k
x

(i)
k

b
(i)
k

= λfb
(i)
k−1 + d

(i)
k
x

(i)
k

ψ
(i)
0 = ωi−1

For iterations j=1,2, . . . , J α
(i)
k

= η[p
(i)
k

H
R

(i)
k
p
(i)
k

]−1[p
(i)
k

H
g
(i)
k−1]

α
(i)
k

(j) = η[p
(i)
k

(j)HR
(i)
k
p
(i)
k

(j)]−1[p
(i)
k

(j)Hg
(i)
k−1(j)] where (λf − 0.5) ≤ η ≤ λf

where (λf − 0.5) ≤ η ≤ λf ψ
(i)
k

= ψ
(i)
k−1 + α

(i)
k
p
(i)
k

ψ
(i)
k

(j) = ψ
(i)
k−1(j) + α

(i)
k

(j)p
(i)
k

(j) g
(i)
k

= λfg
(i)
k−1 − α

(i)
k
R

(i)
k
p
(i)
k

g
(i)
k

(j) = g
(i)
k

(j − 1)− α
(i)
k

(j)R
(i)
k
p
(i)
k

(j) β
(i)
k

= [g
(i)
k−1

H
g
(i)
k−1]

−1[(g
(i)
k
− g

(i)
k−1)

Hg
(i)
k

]

β
(i)
k

(j) = [g
(i)
k

(j − 1)
H
g
(i)
k

(j − 1)]−1[(g
(i)
k

(j))Hg
(i)
k

(j)] p
(i)
k+1 = g

(i)
k

+ β
(i)
k
p
(i)
k

+ x
(i)
k

[d
(i)
k
− x

(i)
k

H
ψ

(i)
k−1]

p
(i)
k

(j + 1) = g
(i)
k

(j) + β
(i)
k

(j)p
(i)
k

(j) ωi = ψ
(i)
N

j = j + 1 k = k + 1
After J iterations After N iterations
k = k + 1 i = i + 1
After N iterations

ωi = ψ
(i)
N

, i = i + 1

only needs one iteration per time instant and the details are
shown in Table I. These two incremental distributed CG- based
solutions can be summarized as:

1) assess local error
2) update its weight vector

3) pass the updated weight estimate ψ
(i)
k to its neighbor

node
The idea of the MCG algorithm comes from the CCG algorith-
m. Instead of equation (10), we redefine the negative gradient
vector with a recursive expression [9]:

g
(i)
k = b

(i)
k −R

(i)
k ω

(i)
k

= λfg
(i)
k−1 − α

(i)
k R

(i)
k p

(i)
k

+ x
(i)
k [d

(i)
k − x

(i)
k

H
ω

(i)
k−1].

(17)

Premultiplying (17) by pHk and considering pk uncorrelated
with xk, dk and ωk−1 and then taking the expectation, we
get:

E[p
(i)
k

H
g
(i)
k] = λfE[p

(i)
k

H
g
(i)
k−1]

− E[α
(i)
k]E[p

(i)
k

H
R

(i)
k pk

(i)]

+ E[p
(i)
k

H
x
(i)
k [d

(i)
k − x

(i)
k

H
ω

(i)
k−1]].

(18)

Assuming the algorithm converges, then the last term of (18)
could be neglected and we will get:

E[αk
(i)] =

E[p
(i)
k

H
gk

(i)]− λfE[p
(i)
k

H
g
(i)
k−1]

E[p
(i)
k

H
R

(i)
k p

(i)
k]

and

(λf − 0.5)
E[p

(i)
k

H
g
(i)
k−1]

E[p
(i)
k

H
R

(i)
k p

(i)
k]

≤ E[α
(i)
k] ≤

E[p
(i)
k

H
g
(i)
k−1]

E[p
(i)
k

H
R

(i)
k p

(i)
k]
(19)

The inequalities in (19) are satisfied if we define:

α
(i)
k = η

p
(i)
k

H
g
(i)
k−1

p
(i)
k

H
R

(i)
k p

(i)
k

, (20)

TABLE II
COMPUTATIONAL COMPLEXITY OF ALGORITHMS.

Algorithm Additions Multiplications

IDCCG m2 + m 2m2 + 2m
+J(m2 + 6m− 4) J(m2 + 7m + 3)

IDMCG 2m2 + 10m− 4 3m2 + 12m + 3
IDLMS [1] 4m− 1 3m + 1
IDRLS[3] 4m2 + 12m + 1 4m2 + 12m− 1

where (λf−0.5) ≤ η ≤ λf . The direction vector pk is defined
by:

p
(i)
k+1 = g

(i)
k + β

(i)
k p

(i)
k (21)

where βk is computed to avoid the residue produced by using
the Polak-Ribiere approach [8] which is given by:

β
(i)
k =

(g
(i)
k − g

(i)
k−1)

Hg
(i)
k

g
(i)
k−1

H
g
(i)
k−1

. (22)

C. Computational Complexity

To analyse the proposed incremental distributed CG algo-
rithms, we detail the computational complexity. Additions and
multiplications are used to measure the complexity and listed
in Table II. It is obvious that the complexity of the incremental
distributed CCG algorithm depends on the iteration number j.

IV. PROPOSED DIFFUSION DISTRIBUTED CG - BASED

ALGORITHMS

A. Network Structure

For the diffusion distributed CG- based strategy, we con-
sider a network structure where each node from the same
neighborhood could exchange information with each other at
every iteration. For each node in the network, it can collect
information from all its neighbors and itself, and then convey
all the information to its local adaptive filter and update
the estimation of the weight vector through our algorithms.
Specifically, at any time instant i − 1, we define that node

k has access to a set of unbiased estimates {ψ
(i−1)
k }k∈Nk

from its neighborhood Nk including itself. Then, these local
estimates are combined at node k as

φ
(i−1)
k =

∑

l∈Nk,i−1

cklψ
(i−1)
l (23)

TABLE IV
COMPUTATIONAL COMPLEXITY OF ALGORITHMS

Algorithm Additions Multiplications

DDCCG m2 + m 2m2 + 2m
+J(m2 + 6m +J(m2 + 7m
+Lm− 4) +Lm + 3)

DDMCG 2m2 + 10m− 4 3m2 + 12m + 3
+Lm +Lm

DDLMS [2] 4m− 1 + Lm 3m + 1 + Lm
DDRLS [4] 4m2 + 16m + 1 + Lm 4m2 + 12m− 1 + Lm

where ckl should be satisfied

∑

l

ckl = 1, l ∈ Nk,i−1∀k (24)

Among the strategies to choose the combiner C are the
Metropolis, the Laplacian and the nearest neighbor rules [2].
For our proposed diffusion distributed CG- based algorithm,
we choose the Metropolis whose processing is shown in Fig.
2 and operates as follows:

ckl =
1

max(nk,nl)
, if k 6= l are linked

ckl = 0, for k and l not linked
ckk = 1−

∑

l∈Nk/k
ckl, for k = l

(25)

!

!"#$%&'%()*$%)%

%

!"
#$%&'!

+),,-.)"/%+).01)2-0$#%345%67.$#%

89:"1)0;*%

!(
#$%&'!

")"#$'#*"#$'$! !

!

!"+&
#$%&'!

!"
#$'!

!

!&
#$%&'!

!"%&
#$%&'!

, , -"
#$%&'!

Fig. 2. Diffusion Distributed CG- Based Network Processing

B. Diffusion Distributed CG-Based Solutions

The CCG and MCG algorithms are also developed for the
diffusion distributed CG - based solutions, the details for these
two algorithms are shown in Table III. To derive these two
algorithms, we first use equation (23) to get the unbiased

estimates φ
(i−1)
k and substitute them into equation (11), which

results in:

ψ
(i)
k (j) = φ

(i−1)
k (j) + α

(i)
k (j)p

(i)
k (j) (26)

The rest of the derivation is similar to the incremental CG-
based solutions.

C. Computational Complexity

The computational complexity is used to analyse the pro-
posed diffusion distributed CG - based algorithms where addi-
tions and multiplications are measured. The details are listed
in Table IV. Similarly to incremental distributed CG - based
algorithms, it is clear that the complexity of the incremental
distributed CCG algorithm depends on the iteration number j
and the number of linked nodes l.

V. SIMULATION RESULTS

In this part, we test the proposed incremental and diffusion
distributed CG - based algorithms in a sensor network and
compare the results with LMS, RLS and AP [3] algorithms
based on the performance of excess MSE (EMSE). For each
test, the number of repetitions is set to 1000, and we assume
there are 20 nodes in the network. The number of taps of the
adaptive filter is 10, the variance for the input signal and the
noise are 1 and 0.001, respectively. Besides, the noise samples
are modeled as complex Gaussian noise.

A. Performance of Proposed IDCG Algorithms

First, we give out the definitions of the parameters of our
test for each algorithms and the network. After 1000 iterations,
the performance of each algorithm has been shown in Fig. 3.
We can see that, the performance of the IDMCG and IDCCG
algorithm is better than IDLMS, while IDMCG is very close
to the IDRLS algorithm’s curve. The reason why the proposed
IDMCG algorithm has a better performance is IDMCG defined
the negative gradient vector gk with a recursive expression and
the βk is computed using the Polak-Ribiere approach. Compar-
ing with the IDCCG algorithm, the IDMCG is a non-reset and
low complexity algorithm with one iteration per time instant.
Since the frequency which the algorithm resets influences the
performance, the IDMCG algorithm introduces the non-reset
method together with the Polak- Ribiere approach which are
used to improve the performance [8].

0 2 4 6 8 10 12 14 16 18 20
−35

−30

−25

−20

−15

−10

−5

0

iterations

E
M

S
E

 (
d
B

)

IDLMS

IDRLS

IDCCG

IDMCG

IDAP

Fig. 3. Output EMSE against the number of iterations for the incremental
strategy with αIDLMS=0.005, λ=0.2, λf−IDCCG=0.3,λf−IDMCG=0.25,
ηf−IDCCG=ηf−IDMCG=0.15, j=5, αIDAP =0.06, K=2

B. Performance of Proposed DDCG Algorithms

In order to assess the proposed DDCG algorithms, we
use some similar definitions of parameters as in the last
part. For the diffusion strategy, we build the link between
each node randomly, and for the combiner C, we calculate
it following the Metropolis rule. Fig. 4 shows the network
structure. After 1000 iterations, the results are shown in Fig.
5. We can see that, the proposed DDMCG and DDCCG still
have a better performance than the DDLMS algorithm and
DDMCG is closer to the DDRLS’s curve. For the diffusion
strategy, the network structure has a significant influence on
the performance of our proposed DDCG Algorithms.

TABLE III
DDCG SOLUTIONS

DDCCG Solution DDMCG Solution
Initialization: Initialization:
ω0 = 0, g(0) = b,p(1) = g(0) ω0 = 0, g0 = b,p1 = g0
For each time instant i=1,2, . . . , n For each time instant i=1,2, . . . , n
For each node k=1,2, . . . , N For each node k=1,2, . . . , N

φ
(−1)
k

(1) = 0 R
(i)
k

= λfR
(i)
k−1 + x

(i)
k
x

(i)
k

H

R
(i)
k

= λfR
(i)
k−1 + x

(i)
k
x

(i)
k

H
b
(i)
k

= λfb
(i)
k−1 + d

(i)
k
x

(i)
k

b
(i)
k

= λfb
(i)
k−1 + d

(i)
k
x

(i)
k

φ
(−1)
k

(1) = 0

For iterations j=1,2, . . . , J α
(i)
k

= η[p
(i)
k

H
R

(i)
k
p
(i)
k

]−1[p
(i)
k

H
g
(i)
k−1]

α
(i)
k

(j) = η[p
(i)
k

(j)HR
(i)
k
p
(i)
k

(j)]−1[p
(i)
k

(j)Hg
(i)
k

(j − 1)] where (λf − 0.5) ≤ η ≤ λf

where (λf − 0.5) ≤ η ≤ λf φ
(i−1)
k

=
∑

l∈Nk,i−1
cklψ

(i−1)
l

φ
(i−1)
k

(j) =
∑

l∈Nk,i−1
cklψ

(i−1)
l

(j) ψ
(i)
k

= φ
(i−1)
k

+ α
(i)
k
p
(i)
k

ψ
(i)
k

(j) = φ
(i−1)
k

(j) + α
(i)
k

(j)p
(i)
k

(j) g
(i)
k

= λfg
(i)
k−1 − α

(i)
k
R

(i)
k
p
(i)
k

+ x
(i)
k

[d
(i)
k
− x

(i)
k

H
φ

(i−1)
k

]

g
(i)
k

(j) = g
(i)
k

(j − 1)− α
(i)
k

(j)R
(i)
k
p
(i)
k

(j) β
(i)
k

= [g
(i)
k−1

H
g
(i)
k−1]

−1[(g
(i)
k
− g

(i)
k−1)

Hg
(i)
k

]

β
(i)
k

(j) = [g
(i)
k

(j − 1)
H
g
(i)
k

(j − 1)]−1[(g
(i)
k

(j))Hg
(i)
k

(j)] p
(i)
k+1 = g

(i)
k

+ β
(i)
k
p
(i)
k

p
(i)
k

(j + 1) = g
(i)
k

(j) + β
(i)
k

(j)p
(i)
k

(j) k = k + 1
j = j + 1 After N iterations

After J iterations ωi = ψ
(i)
N

k = k + 1 i = i + 1
After N iterations

ωi = ψ
(i)
N

, i = i + 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fig. 4. Network structure.

VI. CONCLUSIONS

We have developed distributed CG algorithms for incremen-
tal and diffusion type estimation over sensor networks. The
CG- based strategies avoid the matrix inversion and numerical
instability of RLS algorithms and have a faster convergence
than LMS and AP algorithms. Simulation results have shown
that the proposed IDMCG and DDMCG algorithms have a
better performance than the LMS and AP algorithm, and a
close performance to the RLS algorithm.

REFERENCES

[1] C. G. Lopes and A. H. Sayed, ”Incremental adaptive strategies over
distributed networks”, IEEE Trans. Sig. Proc., vol. 55, no. 8, pp. 4064-
4077, August 2007.

[2] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adap-
tive networks: Formulation and performance analysis”, IEEE Trans.
Sig. Proc., vol. 56, no. 7, pp. 3122-3136, July 2008.

[3] L.L. Li, J.A. Chambers, C.G. Lopes,and A.H. Sayed, “Distributed
Estimation Over an Adaptive Incremental Network Based on the Affine
Projection Algorithm”, IEEE Trans. Sig. Proc., vol. 58, issue. 1, pp.
151-164, Jan. 2010.

[4] F. Cattivelli, C. G. Lopes, and A. H. Sayed, ”Diffusion recursive least-
squares for distributed estimation over adaptive networks,” IEEE Trans.
Sig. Proc., vol. 56, no. 5, pp. 1865-1877, May 2008.

0 10 20 30 40 50 60 70 80 90 100
−35

−30

−25

−20

−15

−10

−5

0

5

iterations

E
M

S
E

 (
d
B

)
DDLMS

DDRLS

DDCCG

DDMCG

DDAP

Fig. 5. Output EMSE against the number of iterations for the
diffusion strategy with αDDLMS=0.0075, λ=0.998, λf−DDCCG=0.25,
ηf−DDCCG=0.25, j=5, λf−DDMCG=0.46, ηf−DDMCG=0.45,
αDDAP =0.075, K=2.

[5] G. Mateos, I. D. Schizas, and G. B. Giannakis, ”Distributed Recursive
Least-Squares for Consensus-Based In-Network Adaptive Estimation,”
IEEE Trans. Sig. Proc., vol. 57, no. 11, pp. 4583-4588,November 2009.

[6] O. Axelsson, Iterative Solution Methods, New York: Cambridge Univ.
Press, 1994.

[7] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Ed..
Baltimore, MD: Johns Hopkins Univ. Press, 1989.

[8] P. S. Chang and A. N. Willson, Jr, “Analysis of Conjugate Gradient
Algorithms for Adaptive Filtering”, IEEE Transactions on Signal
Processing, vol. 48, no. 2, pp. 409-418, Febrary 2000.

[9] L. Wang, and R.C.de Lamare , “Constrained adaptive filtering algo-
rithms based on conjugate gradient techniques for beamforming ”, IET
Signal Processing, vol. 4, issue. 6, pp. 686-697, Feb. 2010.

[10] R. Fa, R. C. de Lamare, and L. Wang, “Reduced-Rank STAP Schemes
for Airborne Radar Based on Switched Joint Interpolation, Decimation
and Filtering Algorithm”, IEEE Trans. Sig. Proc., vol. 58, no. 8, pp.
4182-4194, Aug. 2010.

[11] R. C. de Lamare and R. Sampaio-Neto, “Adaptive Reduced-Rank
Processing Based on Joint and Iterative Interpolation, Decimation, and
Filtering”, IEEE Trans. Sig. Proc., vol. 57, no. 7, pp. 2503 - 2514, Juy.
2009.

