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Rate-Compatible LDPC Codes with Short Block Lengths

Based on Puncturing and Extension Techniques

Jingjing Liu and Rodrigo C. de Lamare

Abstract

In this paper, we present novel strategies for generating rate-compatible (RC) irregular low-density parity-check

(LDPC) codes with short/moderate block lengths. We propose three puncturing and two extension schemes, which

are designed to determine the puncturing positions that minimize the performance degradation and the extension

that maximizes the performance. The first puncturing scheme employs a counting cycle algorithm and a grouping

strategy for variable nodes having short cycles of equal length in the Tanner Graph (TG). The second scheme relies

on a metric called Extrinsic Message Degree (EMD) and the third scheme is a simulation-based exhaustive search

to find the best puncturing pattern among several random ones. In addition, we devise two layer-structured extension

schemes based on a counting cycle algorithm and an EMD metric which are applied to design RC-LDPC codes.

Simulation results show that the proposed extension and puncturing techniques achieve greater rate flexibility and

good performance over the additive white Gaussian noise channel, outperforming existing techniques.

Index Terms

Rate-compatible (RC) codes, irregular low-density parity-check (LDPC) codes, cycle counting algorithm, Ex-

trinsic Message Degree (EMD), puncturing technique, extension scheme.

I. INTRODUCTION

When the channel state information (CSI) is known at the transmit end and the data transmission takes place

over time-varying channels, an error control coding scheme with a fixed code rate is not the best solution. In such

situations, an error-correction scheme with flexibility in code rates is desirable since such scheme can encode data

at different rates depending on the reliability of the channel. High-rate codes are applied to achieve higher data

throughput if the channel condition is good, otherwise low-rate codes are used to ensure reliable transmission. Thus,

both capacity and reliability can be realized in such scenarios. However, deploying many pairs of encoders and
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decoders is not feasible in practical applications due to their high memory and storage costs. Rate-compatible (RC)

codes refer to a family of codes where higher rate codes are embedded in lower rate codes; in other words, the

factor graphs of higher rate codes are subgraphs of lower rate codes [1]. For example, Lin and Yu [2] designed an

RC coding scheme for a hybrid automatic repeat-request with forward error correction (ARQ/FEC) system, where

the transmitter sends additional redundant bits upon request until the decoder claims a successful decoding. Having

been applied to convolutional codes [1] and turbo codes [3], RC techniques are proven not only to enhance system

performance but also to only require low hardware complexity thanks to the structure of a single pair of encoder

and decoder.

Low-Density Parity-Check (LDPC) codes were invented by Gallager [4] and were re-discovered by MacKay et

al. [5] as an advanced coding technique for Shannon capacity-approaching performance over a variety of channels

[6], [7]. In [8], [9], finite-length LDPC codes were studied for both “waterfall” performance in the low signal-

to-noise ratio (SNR) region and error-floor behavior in the high SNR region. Since RC-LDPC codes were first

considered in [10], there has been a fair amount of work in this area. Ha et al. [11] derived puncturing distributions

via asymptotic analysis while assuming infinite block length and absence of short cycles. Later, in [12] the authors

focused on minimizing the number of iterations required to recover punctured bits. Unlike [12], the work reported in

[13] tries to maximize the minimum reliability provided via check nodes. An efficiently-encodable irregular LDPC

codes along with a puncturing method were derived in [14], where good performance can only be achieved via

puncturing degree-2 non-systematic bits. Also, in [15] protograph-based RC ensembles were implemented for hybrid

ARQ applications and systematic construction of punctured LDPC codes was achieved via successive maximization,

respectively. Other puncturing methods have been reported in [16], [17], where the authors proved the existence

of a puncturing threshold with an improved decoding algorithm [16] and enhanced the performance at high SNRs

by grouping nodes [16], [17]. More recently, rate-compatible LDPC code designs have been reported based on the

approximate cycle extrinsic message degree (ACE) metric [19], protograph structures [20], robust techniques that

employ a set of criteria for puncturing [21] and application [22] and hardware [23] constraints. Moreover, extension

methods [10] and [18] have been applied by adding extra parity-check bits to increase the size of the parity-check

matrix of the mother code. As a result, lower rate codes can be generated based on a high-rate mother code.

In this work, we develop design techniques for RC-LDPC codes with reduced performance degradation as

compared to unpunctured codes and existing RC-LDPC codes with the same rates. In our preliminary work [24],

three puncturing schemes have been proposed that are able to generate finite-length RC-LDPC codes with high

decoding performance at high rates (ranging from 0.5 to 0.9). The first puncturing scheme is a cycle-counting
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based (CC-based) technique that exploits the algorithm reported in [25] to determine the puncturing pattern. Given

a mother code and a target rate, variable nodes having the largest number of girth-length cycles will be punctured

first, such that the decoding performance is expected to improve while breaking the shortest cycles. Using a metric

for evaluating the extrinsic message degree (EMD) [26] and [27], a second scheme called approximate cycle EMD

based (ACE-based) puncturing is developed, which selects the puncturing pattern by considering the cycle length

and graph connectivity simultaneously. Additionally, a third scheme relies on a simulation-based greedy search for

the best puncturing pattern among many randomly generated patterns. Based on the structure of short cycles and

the ACE spectrum, two extension schemes have been reported in [28]. In this paper, we present puncturing and

extension techniques that are further enhanced and detailed as compared to the methods first reported in [24], [28]

along with a technical analysis and a comprehensive set of numerical results in terms of bit error rate (BER), frame

error rate (FER) and system throughput. The main contributions can be summarized as:

• We present three puncturing schemes which depend upon the counting cycle algorithm, ACE metric and an

exhaustive search, respectively. Further performance gain is observed regarding the puncturing techniques

reported in [24].

• We propose two extension schemes based on the structure of short cycles and the ACE spectrum. The extension

schemes proposed show an improvement over the techniques described in [28].

• A comprehensive study of RC-LDPC codes is carried out from the short cycles point of view. A set of

puncturing/extension strategies is made available to create RC-LDPC codes that are highly flexible in block

length, regularity (available for both regular and irregular codes) and rate (across a wide range from 0.1 to

0.9).

• A simulation study including extensive comparisons to existing algorithms is presented. The performance of the

RC-LDPC codes proposed is shown with respect to BER, FER and throughput for a type-II hybrid automatic

repeat-request (ARQ) system, which performs only error detection for the first transmitted message block and

only employs LDPC codes for retransmitted blocks.

The organization of this paper is as follows: Section II explains the system model and the basic notation. The

proposed puncturing schemes and extension schemes are detailed in Section III and Section IV, respectively. Section

V presents simulation results with explanations. Finally, Section VI concludes this paper.
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II. SYSTEM MODEL AND BASIC NOTATION

This section presents a system model for the proposed puncturing and extension schemes, as well as the design

strategy behind them. The proposed techniques are based on cycle conditioning for each subgraph (puncturing)

or an extended graph (extension). Note that traditional cycle conditioning has only focused on eliminating short

cycles in a Tanner Graph (TG) with very long block sizes. However, it has been shown that avoiding short cycles

alone is not sufficient to achieve good performance, particularly in the error-floor region, [26] and [27], and cycle

conditioning is a challenging task for finite-length LDPC codes. Departing from prior studies, in this work we

derive design strategies for RC-LDPC codes over the additive white Gaussian noise (AWGN) channel.

A. Construction of RC-LDPC Codes Using Puncturing

Given a mother or parent LDPC code containing K information bits, the code rate is given by R = K/N

where N is the block length. Suppose that m represents the message with K bits from the source, c denotes the

encoded data with N bits, c′ is the punctured data, and m̂ denotes the estimate of the original message using

a belief propagation (BP) decoding algorithm given the unpunctured data r. The log-likelihood ratio (LLR) of

a punctured bit is set to 0 at the beginning of the decoding process. Suppose that P bits are punctured before

transmission, so the resulting code rate is given by R′ = K/(N − P ) and the puncturing rate by ρ = P/N . We

assume that the decoder has perfect knowledge regarding the puncturing pattern, i.e., the positions of punctured

bits in a codeword. Otherwise, some side information is needed to send the puncturing pattern to the receiver end.

Puncturing is a common and simple method to construct RC codes, for which a higher rate is achievable by means

of removing a subset of encoded bits c [16]. A randomly chosen puncturing pattern [10] can be used to realize

the rate compatibility at the expense of significant performance degradation. Intentional puncturing methods have

been investigated for short block-length LDPC codes in [12] - [14] and [17], ranging from asymptotic analysis to

grouping and sorting variable nodes. In contrast to those methods, the proposed puncturing schemes aim to reduce

the performance loss caused by puncturing from a cycle distribution perspective, i. e., the puncturing pattern is

selected in the sense that the removed bits will break a certain number of short cycles, which significantly improves

the connectivity of the TG.

B. Construction of RC-LDPC Codes Using Extension

The authors in [10] and [18] have shown that extension is another effective approach to constructing good RC-

LDPC codes. We employ the idea of cycle conditioning to devise the proposed extension schemes. The proposed
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Fig. 1. To extend the parity-check matrix H(M×N) to Hext(ML×NL) via a multi-level strategy.

extension framework is built as shown in Fig. 1, in which, starting from level 1 and running to level L, the current

parity-check matrix is extended in such a way that the same number of rows and columns are added in each level.

Consequently, the corresponding code rate gradually reduces. Since Ml = Nl = B(l = 1, . . . , L), the matrix hext,

along with two accompanying identity matrices, is a B ×B square matrix. Note that hext is fixed from one level

to the next. In Fig. 1, the areas filled by “0” ensure the sparsity of the extended parity-check matrix Hext, and

the existence of identity matrices guarantees a relatively uniform degree of check node distribution as well as

creating sufficient dependency between the original matrix H and the extended matrix Hextl . Our framework is

similar to that in [18], which enables fast linear-time encoding as the matrix Hext is always obtained in systematic

form by using Gauss-Jordan elimination. Furthermore, the proposed extension schemes have two extra features:

1) possible cycles of length 4 are avoided by not inserting two identity matrices together; 2) more importantly,

the submatrices hext are carefully chosen with cycle conditioning for each subgraph. If I denotes the identity

matrix and G denotes the generator matrix of the mother code, G1, . . . ,GL are systematically transformed from

the extended counterparts of Hext1, . . . ,HextL. Similar to the puncturing model, some side information is needed

at the receiver end to indicate the desired rate and corresponding parity-check matrix.
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III. PROPOSED PUNCTURING TECHNIQUES

Inspired by the cycle-conditioning and the ACE metric, in this section we introduce the proposed puncturing

schemes, i. e., CC-based puncturing, ACE-based puncturing, and simulation-based puncturing. The first two methods

are developed using the counting cycle algorithm and the ACE metric, while the last one is based on an exhaustive

search. As mentioned in the last section, all the proposed puncturing techniques can be applied offline (independently

of the data transmitted), and without any side information the puncturing patterns need to be stored at both the

transmitter and the receiver ends. Unlike the preliminary results reported in [24], we have replaced the cycle

counting algorithm [25] with a more efficient algorithm [29], modified the puncturing order of the proposed ACE-

based scheme, and employed an improved PEG code (ACE PEG) [30] as the mother code.

A. CC-Based Puncturing Scheme

The proposed counting cycle (CC)-based puncturing technique is developed based on the counting cycle algo-

rithms [25] and [29]. The former algorithm [25] employs matrix multiplications while the latter [29] takes advantage

of the message-passing nature of BP decoding. Given the same TG, we have verified that both algorithms produce

similar results for counting cycles of length g and g + 2, where g is the girth. However, the algorithm in [29]

has much lower complexity (O(g|E|2)) than its counterpart [25] (O(gN3)), especially for graphs with large sizes.

Given the cycle distribution, the objective is to select an ideal puncturing pattern that can break as many girth-length

cycles as possible, which may reduce the performance degradation introduced by puncturing. The idea behind the

proposed algorithm is inspired by the fact that the existence of short cycles creates a statistical dependency between

the extrinsic messages being exchanged in the current decoding iteration, such that the extrinsic messages for the

next iteration will, inaccurately, have high reliability.

According to the PEG algorithm [31], high degree nodes are placed in the leftmost positions of H(M×N) that

correspond to information bits, as they provide more protection for the original data. Following this design rule we

only puncture the set of variable nodes sj ∈ Vs , where K +1 ≤ j ≤ N . Define the vector csj = {Ng, Ng2 , Ng4}T

whose element refers to the number of g− cycles, (g+2)− cycles and (g+4)− cycles passing through a variable

node sj . Any sj(K + 1 ≤ j ≤ N) will be included as a punctured candidate if Ng ̸= 0. For each candidate node,

another vector vg sj is formed as:

vg sj = {vg s0 , vg s1 , . . . , vg sN−1
}T , sj ∈ Vc, (1)

where the entries represent the number of cycles of length g that sj has, and are arranged in decreasing order.

Similarly, we can also define vg2 sj or vg4 sj if necessary. There are two criteria to determine the set of punctured
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nodes: 1) to find variable nodes having the shortest cycles passing through; 2) to find variable nodes having more

such cycles than others. In addition, we have also tried to arrange the entries of (1) in a reverse manner, i.e., we

start by puncturing the variable nodes having the least number of cycles of length g. But with such a formation, the

performance deteriorates dramatically. If the candidates on the g− cycles are less than P , we puncture P nodes at

first then arrange the remaining candidates with respect to the (g+2)− and (g+4)− cycles. This situation rarely

occurs in practice unless an unreasonable puncturing rate ρ is given. Compared to random puncturing schemes, CC-

based puncturing requires more computational complexity due to the cycle counting algorithm. On the other hand,

CC-based puncturing has been verified to significantly outperform random puncturing techniques [24]. Obviously,

the complexity of CC-based puncturing is mainly increased by counting short cycles. It is worth noting that the

practical complexity is lower than O(g|E|2) since most of the time only a counting cycle of length g is required.

The proposed counting cycle (CC)-based puncturing technique can be summarized as:

Step 1: given the block size N , the rate R and the degree distribution, generate the parity-check matrix of the

mother code H(M×N) by using the improved PEG algorithm [30];

Step 2: for H(M×N) compute g − cycle, (g + 2) − cycle and (g + 4) − cycle with respect to variable nodes

sj ∈ Vs where (K + 1 ≤ j ≤ N);

Step 3: based on the knowledge from Step 2, define the vector csj = {Ng, Ng2 , Ng4}T for every variable node

sj . If Ng ̸= 0, sj is chosen as one of the punctured candidates;

Step 4: for all the candidates chosen in Step 3, define the vector vg sj (sj ∈ Vs). Puncture the first P candidates

in vg sj .

Now we illustrate how CC-based puncturing affects the cycle distribution as well as the overall performance. As

for a cycle of length c, the cycle distribution is defined as (Nc, µc, σc), where Nc denotes the number of cycles of

length c, while µc and σc denote the mean and standard deviation of c-length cycles with respect to the variable

nodes, respectively. As an example, we use an irregular TG of code A in Section V. Table I shows the cycle

distributions of the mother code and the punctured code. Applying CC-based puncturing, short cycles of length

g = 8 are reduced by 42% while short cycles of length 10 and 12 are reduced by 30% and 3%, respectively.
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TABLE I

CYCLE DISTRIBUTIONS OF CODE A BEFORE AND AFTER CC-BASED PUNCTURING

Mother code N = 1000 Punctured code N = 800

Nc µc σc Nc µc σc

c = 8 513 3.5 5.45 c = 8 295 28.1 32.17

c = 10 18553 148.52 143.31 c = 10 12853 385.53 372.31

c = 12 198607 2482.6 2298.3 c = 12 191287 4684 4558.3

Even if the number of girth-length cycles diminishes, it is worth noticing that the cycle distribution becomes less

uniform after puncturing. In [25], the authors suggest that with the same girth codes with a rather uniform cycle

distribution perform better than codes with a non-uniform cycle distribution. As a consequence, the proposed CC-

based puncturing removes a fair number of cycles of girth length but also damages the connectivity of the TG.

This fact motivated us to devise more advanced puncturing schemes, as detailed in what follows.

B. ACE-Based Puncturing Scheme

The second puncturing algorithm proposed is an improved version of the CC-based puncturing scheme, which

is called ACE-based puncturing algorithm, thanks to the use of the ACE metric. ACE-based puncturing strives to

remove a certain of short cycles and simultaneously maintain good graph connectivity. Since not all short cycles of

the same length are equally detrimental to iterative decoding, the ACE metric [26] and ACE spectrum [27] were

introduced to evaluate the effect of short cycles with a certain length in a TG. For a cycle C and a corresponding

set of variable nodes VC, all the edges connected to C can be categorized into three groups [27], in which Eext(VC),

including extrinsic edges incident to those check nodes with a single connection to VC, is expected to be large so

that short cycles possess more singly connected extrinsic edges, which decreases the probability of cycles forming

a small stopping set [8] or trapping set [32]. For short cycles of the same length, a larger ACE value indicates

better connections to the rest of the graph. Here we define the average ACE value regarding a variable node sj

contained in Ng cycles of length g as:

αg = 1/Ng

Ng∑
1

ϵACE , (2)

where αg2 and αg4 are defined with respect to the cycles of length g + 2 and g + 4. Moreover, for each sj ∈ Vs

where (K + 1 ≤ j ≤ N), αsj is defined as:

αsj = min{αg, αg2, αg4}. (3)
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TABLE II

CYCLE DISTRIBUTIONS OF CODE A BEFORE AND AFTER ACE-BASED PUNCTURING

Mother code N = 1000 Punctured code N = 800

Nc µc σc Nc µc σc

c = 8 513 3.5 5.45 c = 8 402 10.88 15.7

c = 10 18553 148.52 143.31 c = 10 15236 175.4 200.37

c = 12 198607 2482.6 2298.3 c = 12 172547 2787.25 2523.44

Compared to the work reported in [24], the ACE puncturing proposed has the following three improvements: 1) the

puncturing ordering is adjusted to consider the connectivity of cycles prior to their length; 2) a new code design

[30] for generating the mother code makes indexing ACE values more convenient since these designs are based

on the ACE metric, which lends itself naturally to the indexing of ACE values that are obtained from the design

procedure; 3) the combination of a new design method and ordering leads to improved performance for both mother

code and punctured code. The proposed ACE puncturing can be summarized as follows:

Step 1: given the block size N , the rate R, and the degree distributions, generate the parity-check matrix for the

mother code H(M×N) by using the improved PEG [30];

Step 2: for H(M×N) compute g − cycle, (g + 2) − cycle and (g + 4) − cycle for the variable nodes sj ∈ Vs

where (K + 1 ≤ j ≤ N);

Step 3: with the knowledge from Step 2, define the vector csj = {Ng, Ng2 , Ng4}T for every variable node sj

(sj ∈ Vs). Calculate αsj using (2) and (3);

Step 4: find the set of puncturing candidates w = {αs0 , αs1 , . . . , αsN−1
}T by sorting αsj in increasing order;

Step 5: puncture the first P candidates in w.

We use Table II to illustrate the change in the cycle distribution after running the ACE puncturing scheme.

Compared to the results from Table I, ACE puncturing is able to maintain a relatively uniform cycle distribution

by first removing the variable nodes which get involved with longer cycles but have low ACE values. From the
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decoding point of view, in a subgraph with good connectivity, the LLR of punctured bits is expected to be recovered

within a few iterations, even though there might be other punctured bits in the same neighborhood. On the other

hand, unlike CC puncturing, ACE puncturing does not work for regular codes since all the ACE values of variable

nodes are identical. In that case, it is impossible to consider puncturing priority with the ACE metric.

C. Simulation-Based Puncturing Scheme

The third puncturing scheme proposed, denoted SIM-based puncturing, has been developed on the basis of

an exhaustive search among a large number of random puncturing patterns. Then, the best puncturing pattern is

determined simply by choosing the one having the best average BER performance. At the receiver end, in order to

find the best pattern, we need to send a training sequence then compute the average BER values at T SNR points

for each puncturing pattern. For Q possible patterns the best pattern popt is selected as:

popt = argmin
q

1

rT

r∑
i=1

T∑
t=1

BER(pq), q = 1, . . . , Q. (4)

The proposed SIM-based algorithm can be described as follows:

Step 1: given the block size N , the rate R and the degree distributions, generate the parity-check matrix of the

mother code H(M×N) by using the improved PEG [30];

Step 2: for the desired rate R′, randomly generate Q puncturing patterns represented by a row vector pq where

q = 1, . . . , Q, in each of which P bits are randomly punctured from the encoded data;

Step 3: for each pattern in pq, send a training sequence of length 1, 000 at T SNR points then calculate BER

values;

Step 4: after running r repetitions, for all Q patterns calculate an average based on accumulated BER values;

Step 5: select the best puncturing pattern popt among p1, . . . ,pQ by choosing the pattern with the minimum

average BER.

From (4), it is apparent that given a desired rate R′ it is possible to obtain the optimal pattern popt when all

N !
M !(N−M)! possible puncturing patterns are considered, which seems infeasible in practice. Since the quality of the
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best pattern popt depends on Q, the proposed SIM-based puncturing scheme offers flexible trade-offs between the

performance and the number of candidate patterns. In [24], SIM-based puncturing always outperforms CC-based

puncturing and ACE-based puncturing. Nevertheless, with the additional improvement, ACE-based puncturing is

able to provide at least comparable performance to SIM-based puncturing, even when we increase Q to 500.

IV. PROPOSED EXTENSION TECHNIQUES

In this section, we investigate another approach to generating RC-LDPC codes which employs extension tech-

niques. In particular, two novel schemes are presented along with a detailed explanation about the construction of

RC-LDPC codes. An extension framework introduced in [18] is exploited which enables fast encoding and off-line

operation for the proposed extension schemes. To refine the techniques described in [28], we replace the cycle

counting algorithm [25] by a more efficient algorithm [29], further develop the design procedure, and utilize the

improved PEG code (ACE PEG) [30] as the mother code.

A. Counting-cycle based extension

The first extension scheme proposed is the counting cycle (CC)-based extension which employs an algorithm for

counting short cycles in order to select an extension submatrix hext among S candidates. We set the parameter S

to the number of desired extension rates, e.g. S = 3 if R = 5/10, R1 = 5/12 and R2 = 5/13, where R is the rate

of the mother code. In this case, three distinct submatrix candidates are constructed using the ACE PEG algorithm

[30] with different degree distributions, which are derived via density evolution (DE) [6] and provided with the

maximum variable nodes’ degree dvmax
and check nodes’ degree dcmax

. As per the extended part in Fig. 1, the

B ×B submatrix hext is very likely to have many short cycles while the rest of the extended part can be proved

cycle free. Define gh(s)(s = 1, 2, . . . , S) as the local girths for each candidate submatrix, and Ng(s) as the number

of cycles of length gh(s) corresponding to each hs(s = 1, 2, . . . , S). After running the counting cycle algorithm

[29], we select the candidate submatrix with the largest gh and the smallest Ng as hext. As a result, the CC-based

extension scheme maximizes the local girth gh of hext, and the selected hext has the smallest number of length-gh

cycles. The algorithm flow of the proposed CC-based extension is summarized as follows:

Step 1: given the parity-check matrix H(M×N) and the desired code rates R1, R2, ..., RL, determine the number

of extension levels L which ensures Ml = Nl = B(l = 1, . . . , L);
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Step 2: set S = L+ 1, given dvmax
and dcmax

derive S degree distributions according to DE;

Step 3: based on Step 2, construct S candidates for B×B submatrices by using the improved PEG algorithm [30];

Step 4: for each submatrix candidate compute the gh(s) and Ng(s) of each subgraph;

Step 5: choose the candidate with the largest gh(s) and the smallest Ng(s) as hext;

Step 6: for 1 ≤ l ≤ l gradually extend H(M×N) to Hext(L) by adding zero entries, identity matrices, and hext

as in Fig. 1.

B. ACE-based extension

The second scheme proposed is an ACE-based extension scheme. Unlike CC-based extension, the candidate

submatrix with the largest α(gh) will be selected as the hext, where α(gh(s)) is the average ACE spectrum with

respect to Ng(s)(s = 1, 2, . . . , S), as defined in (2). Similar to ACE-based puncturing, it is straightforward to

compute α(gh) if the submatrix candidates are created using the ACE PEG algorithm [30]. The proposed ACE-

based extension is described in the following:

Step 1: given the parity-check matrix H(M×N) and the desired code rates R1, R2, ..., RL, determine the number

of extension levels L which ensures Ml = Nl = B(l = 1, . . . , L);

Step 2: set S = L+ 1, given dvmax
and dcmax

derive S degree distributions according to DE;

Step 3: based on Step 2, construct S candidates for B×B submatrices by using the improved PEG algorithm [30];

Step 4: for each submatrix candidate compute gh(s) and Ng(s) for each subgraph;

Step 5: provided with gh(s) and Ng(s) in Step 3, calculate α(gh(s));
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Step 5: choose the candidate with the largest α(gh(s)) as hext;

Step 6: for 1 ≤ l ≤ l gradually extend H(M×N) to Hext(L) by adding zero entries, identity matrices, and hext

as in Fig. 1.

V. SIMULATION RESULTS

In this section, we present numerical results corresponding to the evaluation of the three proposed puncturing

schemes and the two proposed extension algorithms. We then carry out comparisons of the puncturing and extension

schemes at different rates, which shows that the former performs better at higher rates while the latter is superior at

lower rates. In all the simulations, mother codes are finite-length irregular LDPC codes generated by the improved

PEG algorithm [30]. Code A has block length of N = 1000, code rate R = 0.5 and degree distributions µ(x) =

0.21× x5 + 0.25× x3 + 0.25× x2 + 0.29× x, ν(x) = x5. Code B has a block length equal to N = 2, 000, code

rate R = 0.4 and degree distributions µ(x) = 0.45× x9 +0.26× x2 +0.29× x, ν(x) = x5. It should be noted that

other codes could be used in the comparison and will result in similar performance hierarchy among the proposed

and existing RC-LDPC codes. The decoder applies the standard BP algorithm in the logarithm domain.
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Fig. 2. Comparisons of the proposed puncturing schemes with existing puncturing schemes [17] and [19] with respect to BER performance,

where code A is the mother code.

In order to assess the proposed puncturing schemes, we first choose code A as the mother code, then compare

the performance to that of the puncturing techniques reported in [17] and [19]. In this scenario, the decoder runs a
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maximum of 60 decoding iterations. Fig. 2 shows a BER performance comparison of the three proposed schemes

with the existing methods [17] and [19], in which the resulting rate R′ is 0.625 and the puncturing rate ρ = 0.2, such

that 200 bits are punctured prior to transmission. It is clear that the proposed ACE-based puncturing outperforms

the existing methods as well as CC-based puncturing and the SIM-based puncturing technique. For comparison

purposes, we also include unpunctured irregular LDPC code, with N = 800, R = 0.625, which has the same

degree distributions as the mother code A. Notice that the performance gap between ACE-based puncturing and

the unpunctured code is less than 0.2 dB at BER of 10−6. Further results over a range of puncturing rates are

shown in Fig. 3, in which CC-based puncturing outperforms [17] by 0.25 dB at BER 10−5 at rate equal to 0.714,

whereas the proposed ACE puncturing scheme outperforms the puncturing schemes reported in [17] and [19] for

rates 0.526 and 0.714.
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Fig. 3. Comparison of the proposed CC-based and ACE puncturing with existing puncturing schemes [17] and [19] at different resulting

rates. R is the rate of the mother code, A, and R′ is the resulting rate.

To evaluate the performance of the proposed puncturing techniques in the type-II ARQ system, in Fig. 4 we

compare the proposed ACE-based puncturing with the puncturing scheme in [14] in terms of FER performance.

Specifically, we assess the throughput for a type-II hybrid ARQ system, which performs only error detection for

the first transmitted message block and only employs LDPC codes for retransmitted blocks. In this case, code B

is used as the mother code and the maximum number of decoding iterations is increased to 200. From Fig. 4, we

see that the puncturing scheme of [14] works better in the low SNR region but is outperformed by ACE-based
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puncturing in the high SNR region. The advantages of ACE-based puncturing over the method reported in [14] are

as follows:

• the method [14] is easy to implement in hardware, thanks to a specific code structure. But it usually has

to compromise on the optimal degree distribution so as to fulfil the design requirement that may affect the

performance. ACE-based puncturing is a more general technique, and can be applied to any irregular mother

code;

• the ACE-based method aims to obtain an ACE spectrum via puncturing such that graph connectivity is

optimized for each rate computed. Due to the design nature of [14], one has to maximize the number of

degree 2 variable nodes whose ACE value is 0. Once a cycle is formed, that will severely reduce performance,

especially in the high SNR region;

• the best puncturing performance for [14] results from Nv(2) = M − 1 where Nv(2) is the number of degree

2 nodes. However, this requirement is difficult to realize for a mother code with a low rate;

• the ACE scheme is expected to achieve any puncturing rate without limitations, while method [14] always

has a puncturing threshold of RH = K/(N − Nv(2)), above which one can only use random puncturing to

achieve a higher rate.

As for the extension schemes, we compare the proposed extension techniques with the technique reported in

[18]. In the following simulations, we use the mother code C constructed by the improved PEG algorithm [30]

with block length N = 1000, rate R = 5/10 and degree distributions µ(x) = 0.438x6 + 0.416x2 + 0.315x and

ν(x) = 0.561x6 + 0.438x5. The decoder terminates after a maximum of 100 iterations.

In Fig. 5, we compare the proposed CC-based and ACE-based extension algorithms with the existing extension

method [18]. From rates 5/10 to 5/14, the extension operates at three levels and 100 bits are added per level.

Notice that all the degree distributions are constrained by dvmax
≤ 7. In Fig. 5, both proposed schemes outperform

the existing method at different rates, and the performance gap increases as more parity bits are inserted.

Fig. 6 shows that the proposed extension schemes outperform the proposed puncturing schemes at low rates.

Both CC-based and ACE-based extensions originates from the mother code, C, while all punctured schemes are

from the mother code (M = 500, N = 1400, R = 5/14). On the other hand, Fig. 7 shows that at a high rate,

R′ = 5/8 of the punctured codes (mother code C) offer better performance as compared to the proposed extension
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Fig. 4. The comparison of the puncturing FER performance between ACE-based puncturing and [14]. The puncturing rates R′ are 0.5,

0.6, 0.7 and 0.8. We use the mother code B with block length N = 2, 000 and rate R = 0.4.
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Fig. 5. Comparison of the proposed extension schemes with another existing scheme [18] at different rates for irregular PEG LDPC codes.

The mother code corresponds to the rightmost curve with N0 = 1, 000 and R = 5/10. For other codes the rates from left to right are 5/14,

5/13, 5/12.
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Fig. 6. Comparison of the proposed extension schemes with the proposed puncturing schemes at a low rate, 5/13, for irregular LDPC

code.

1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/No (dB)

 

 
Mother(700,5/7)
CC EX(800,5/8)
ACE EX(800,5/8)
Mother(1000,5/10)
CC Punct(800,5/8)
ACE Punct(800,5/8)
SIM Punct(800,5/8)

Fig. 7. Comparison of the proposed extension schemes with the proposed puncturing schemes at a high rate, 5/8, for irregular LDPC code.

codes whose mother code has parameters M = 500, N = 700, R = 5/7. To illustrate the overall performance of

the proposed RC-LDPC codes, we compare the proposed RC-LDPC codes with the existing RC-LDPC family in

the system throughput [33] as shown in Fig. 8, in which Eb in previous figures is replaced by Es, the average
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Fig. 8. Comparison of the proposed irregular RC-LDPC codes with the irregular RC-LDPC code [18] in system throughput. The capacity

of AWGN channel is also included.

energy per transmitted symbol. Fig. 8 shows that the proposed RC-LDPC codes are superior to the RC codes of

[18] and can approach channel capacity.

VI. CONCLUSION

In this paper, we have investigated irregular RC-LDPC codes from both puncturing and extension perspectives.

By applying counting cycle algorithms, the ACE spectrum and exhaustive searches, three puncturing schemes as

well as two extension schemes have been devised. All proposed schemes manage to achieve various resulting rates,

and at the same time provide better performance than existing methods. Simulation results have shown that the

proposed extension designs are suitable for creating RC-LDPC with low rates (R < 0.5) and ACE-based extension

performs better than the CC-based extension. On the other hand, the puncturing designs are preferred for codes

with high rates. With the additional improvement, the ACE puncturing has been proven to generate the optimal

puncturing pattern and slightly outperform simulation-based puncturing. As a consequence, taking advantage of

a combined puncturing/extension strategy, we have devised algorithms to generate RC-LDPC codes with a wide

range of rates (0.1 < R < 0.9).
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