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Introduction

– Reduced-rank detection and estimation techniques are a fundamental

set of tools in signal processing and communications.

– Motivation of reduced-rank processing :

– robustness against noise and model uncertainties,

– computational efficiency,

– decompositions of signals for design and analysis,

– inverse problems,

– feature extraction,

– dimensionality reduction,

– problems with short data record, faster training .
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Introduction

– Main Goals of Reduced-Rank Methods :

– simplicity, ease of deployment,

– to provide minimal reconstruction error losses,

– to allow simple mapping and inverse mapping functions,

– to improve convergence and tracking performance for dynamic

signals,

– to reduce the need for storage of the coefficients of the estimator,

– to provide amenable and stable adaptive implementation,

5



Introduction

– Communications :

– Interference mitigation, synchronization, fading mitigation, channel

estimation.

– Parameter estimation with MMSE or LS criteria (Haykin [1]) :

w = R−1p

where

w is a parameter vector with M coefficients,

r(i) is the M × 1 input data vector,

R = E[r(i)rH(i)] is the M × M covariance matrix,

p = E[d∗(i)r(i)] and d(i) is the desired signal.

– Detection approaches using MMSE or LS estimates.

– Problems : dimensionality of system, matrix inversion

– How to improve performance ?
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Introduction

– Array signal processing :

– Beamforming, direction finding, information combining with sen-

sors, radar and sonar (van Trees [2]).

– Parameter estimation with LCMV criterion :

w = ξ−1R−1a(Θk)

where

w is a parameter vector with M coefficients,

r(i) is the M × 1 input data vector,

R = E[r(i)rH(i)] is the M × M covariance matrix,

a(Θk) is the M × 1 array response vector and

ξ = a(Θk)
HR−1a(Θk).

– Use of LCMV for beamforming and direction finding..

– Any idea ?

– Undermodelling ? → designer has to select the key features of r(i) →

reduce-rank signal processing
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System Model and Rank Reduction

– Consider the following linear model

r(i) = H(i)s(i) + n(i)

where s(i) is a M × 1 discrete-time signal organized in data vectors,

r(i) is the M ×1 input data, H(i) is a M ×M matrix and n(i) is M ×1

noise vector.

– Dimensionality reduction → an M-dimensional space is mapped into

a D-dimensional subspace.
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System Model and Rank Reduction

– A general reduced-rank version of r(i) can be obtained using a

transformation matrix SD (assumed fixed here) with dimensions M×D,

where D is the rank. Please see Haykin [1], Scharf-91 [3], Scharf and

Tufts-87 [4], Scharf and van Veen-87[5].

– In other words, the mapping is carried out by the transformation ma-

trix SD.

– The resulting reduced-rank observed data is given by

r̄(i) = SH
Dr(i)

where r̄(i) is a D × 1 vector.

– Challenge : How to efficiently (or optimally) design SD ?
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Historical Overview of Reduced-Rank Methods

– Origins of reduced-rank methods as a structured field :

• 1987 - Louis Scharf from University of Colorado defined the problem

as “a transformation in which a data vector can be represented by

a reduced number of effective features and yet retain most of the

intrinsic information of the input data” Scharf and Tufts-87 [4],

Scharf and van Veen-87[5].

• 1987- Scharf - Investigation and establishment of the bias versus

noise variance trade-off.
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Historical Overview of Reduced-Rank Methods

– Early Methods :

• Hotelling and Eckhart (see Scharf [3]) in the 1930’s → first methods

using eigen-decompositions or principal components.

• Early 1990’s - applications of eigen-decomposition techniques for

reduced-rank estimation in communications. See Haimovich and

Bar-Ness [7], Wang and Poor [8], and Hua et al. [9].

• 1994 → Cai and Wang [6], Bell Labs : joint domain localised adap-

tive processing → radar-based scheme, medium complexity.

– Main problems of eigen-decomposition techniques :

• Require computationally expensive SVD or algorithms to obtain the

eigenvalues and eigenvectors.

• Performance degradation with increase in the signal subspace.
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Historical Overview of Reduced-Rank Methods

– 1997 - Goldstein and Reed [10], University of Southern California :

cross-spectral approach.

• Appropriate selection of singular values which addresses the perfor-

mance degradation.

• Remaining problem : eigen-decomposition.

– 1997 → Pados and Batallama [19]-[23], University of New York, Buf-

falo : auxiliary vector filtering (AVF) algorithm :

• does not require SVD.

• very fast convergence but complexity is still a problem.

• equivalence between the AVF (with orthogonal AVs) and the MSWF

was established by Chen, Mitra and Schniter [17].
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Historical Overview of Reduced-Rank Methods

– 1998/9 - Partial despreading (PD) of Singh and Milstein [18], Univer-

sity of California at San Diego :

• simple but suboptimal and restricted to CDMA multiuser detection.

– 1997 - 2004 - Multistage Wiener filter (MSWF) of Goldstein, Reed

and Scharf and its variants [12]-[16] :

• State-of-the-art in the field and benchmark.

• Very fast convergence, rank not scaling with system size.

• Complexity is still a problem as well as the existence of numerical

instability for implementation.
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Historical Overview of Reduced-Rank Methods

– 2004 → de Lamare and Sampaio-Neto ( [25])- interpolated FIR filters

with time-varying interpolators : low complexity, good performance

but rank limited.

– 2005 → de Lamare and Sampaio-Neto - Novel approach - Joint in-

terpolation, decimation and filtering (JIDF) scheme [27]-[29] - Best

known scheme, flexible, smallest complexity in the field, patented.

– 2007 → de Lamare, Haardt and Sampaio-Neto - Robust MSWF [17] -

Development of a robust version of the MSWF using the constrained

constant modulus (CCM) design criterion.

– 2007 → de Lamare and Sampaio-Neto - Joint iterative optimisation of

filters - (JIO) - Development of a generic reduced-rank scheme that

is very good for mapping and inverse mapping [26].

– 2008 → de Lamare, Sampaio-Neto and Haardt [30] - Robust JIDF-

type approach called BARC - Development of a robust version of the

JIDF using the CCM design criterion.
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MMSE Reduced-Rank Parameter Vector Design

– The MMSE filter is the vector w =
[

w1 w2 . . . wM

]T
, which is designed

to minimize the MSE cost function

J = E
[

|d(i) − wHr(i)|2
]

where d(i) is the desired signal.

– The solution is w = R−1p, where E[d∗(i)r(i)] and R = E[r(i)rH(i)].

– The parameter vector w can be also be estimated via adaptive algo-

rithms, however ...

– The convergence speed and tracking of these algorithms depends on

M and the eigenvalue spread. Thus, large M implies slow convergence.

– Reduced-rank schemes circumvent these limitations via reduction of

number of coefficients and extraction of key features of data.
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MMSE Reduced-Rank Parameter Vector Design

– Consider a reduced-rank input vector r̄(i) = SH
Dr(i) as the input to

a filter represented by the D vector w̄ =
[

w̄1 w̄2 . . . w̄D

]T
for time

interval i.

– The filter output is

x(i) = w̄HSH
Dr(i)

– The MMSE design problem can be stated as

minimize J (w̄) = E
[

|d(i) − x(i)|2
]

= E
[

|d(i) − w̄HSH
Dr(i)|2

]

where d(i) is the desired signal.
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MMSE Reduced-Rank Parameter Vector Design

– The MMSE design with the reduced-rank parameters yields

w̄ = R̄−1p̄

where

R̄ = E [̄r(i)̄rH(i)] = SH
DRSD is the reduced-rank covariance matrix,

R = E[r(i)rH(i)] is the full-rank covariance matrix,

p̄ = E[d∗(i)̄r(i)] = SH
Dp and p = E[d∗(i)r(i)].

– The associated MMSE for a rank D estimator is expressed by

MMSE = σ2
d − p̄HR̄−1p̄ = σ2

d − pHSD(SH
DRSD)−1SH

Dp

where σ2
d is the variance of d(i).
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LCMV Reduced-Rank Parameter Vector Design

– Consider a uniform linear array (ULA) of M elements. There are K

narrowband sources impinging on the array (K < M) with directions

of arrival (DOA) θl for l = 1,2, . . . , K.

Output

Interferer SOI

Adaptive

algorithm

Sample Sample Sample

Interferer

c
l

Sample Sample

k
q

...

...

( )x i

1( )r i
2 ( )r i ( )

M
r i

( )
M

w i
1( )w i 2 ( )w i

...

...

– Reduced-rank array processing : The output of the array is

x(i) = w̄H r̄(i) = w̄H(i)SH
Dr(i)
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LCMV Reduced-Rank Parameter Vector Design

– In order to design the reduced-rank filter w̄(i) we consider the follo-

wing optimization problem

minimize E
[

|w̄HSH
Dr(i)|2

]

= w̄HSH
DRSDw̄

subject to w̄HSH
Da(θk) = 1

– Approach used to obtain a solution : Lagrange multiplier method

L(w̄, λ) = E
[

|w̄HSH
Dr(i)|2

]

+ 2ℜ[λ(w̄HSH
Da(θk) − 1)]

– The solution to this design problem is

w̄ =
(SH

DRSD)−1SH
DSH

Da(θk)

aH(θk)SD(i)(SH
DRSD)−1SH

Da(θk)
=

R̄
−1

ā(θk)

āH(θk)R̄
−1

ā(θk)

where the reduced-rank covariance matrix is R̄ = E[r̄(i)r̄H(i)] =

SH
DRSD and the reduced-rank steering vector is ā(θk) = SH

Da(θk).
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LCMV Reduced-Rank Parameter Vector Design

– The associated minimum variance (MV) for a LCMV parameter vec-

tor/filter with rank D is

MV =
1

āH(θk)R̄
−1

ā(θk)

=
1

a(θk)
HSD(SH

DRSD)−1SH
Da(θk)

– The above expression can be used for direction finding by replacing

the angles θk with a time-varying parameter (ω) in order to scan the

possible angles.

– It can also be employed for general applications of spectral estimation

including spectral sensing.
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Eigen-Decomposition Techniques

– Why are eigen-decomposition techniques used ?

– For MMSE parameter estimation and a rank D estimator we have

MMSE = σ2
d − pHSD(SH

DRSD)−1SH
Dp

– Taking the gradient of MMSE with respect to SD, we get

SD,opt = [v1 . . . vD]

– For MV parameter estimation and a rank D estimator we have

MV =
1

a(θk)
HSD(SH

DRSD)−1SH
Da(θk)

– Taking the gradient of MV with respect to SD, we get

SD,opt = [v1 . . . vD]
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Eigen-Decomposition Techniques

– Rank reduction is accomplished by eigen- decomposition on the input

data covariance matrix

R = V ΛV H ,

where

V = [v1 . . . vM ] and

Λ = diag(λ1, . . . , λM).

– Early techniques : selection of eigenvectors vj (j = 1, . . . , M) corres-

ponding to the largest eigenvalues λj

→ Transformation matrix is

SD(i) = [v1 . . . vD]
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Eigen-Decomposition Techniques

– Cross-spectral approach of Goldstein and Reed : choose eigenvectors

that minimise the design criterion

→ Transformation matrix is

SD(i) = [vi . . . vt]

– Problems : Complexity O(M3), optimality implies knowledge of R but

this has to be estimated.

– Complexity reduction : adaptive subspace tracking algorithms (popular

in the end of the 90s) but still complex and susceptible to tracking

problems.

– Can we skip or circumvent an eigen-decomposition ?
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The Multi-stage Wiener Filter
– Rank reduction is accomplished by a successive refinement procedure

that generates a set of basis vectors, i.e. the signal subspace, known

in numerical analysis as the Krylov subspace.

– Design : use of nested filters cj (j = 1, . . . , M) and blocking matrices

Bj for the decomposition → Projection matrix is

SD(i) = [p, Rp, ..., RD−1p]

– Advantages : rank D does not scale with system size, very fast conver-

gence.

– Problems : complexity slightly inferior to RLS algorithms, not robust

to signature mismatches in blind operation.
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A Robust Multi-stage Wiener Filter

– Rank reduction is accomplished by a similar successive refinement pro-

cedure to original MSWF. However, the design is based on the CCM

criterion (de Lamare, Haardt and Sampaio-Neto [ ]).

– Transformation matrix :

SD(i) =
[

q(i), R(i)q(i), . . . , R(D−1)(i)q(i)
]

– The reduced-rank CCM parameter vector with rank D is

w̄(i + 1) =

(

SH
D(i)R(i)SD(i)

)−1
SH

D(i)q(i),

where

q(i) = d(i) − (pH(i)R−1(i)p(i))−1(pH(i)R−1(i)d(i) − ν )p(i),

d(i) = E
[

x∗(i)SH
D(i)r(i)

]

25



Applications : Interference Suppression for CDMA

– We assess BER performance of the supervised LS, the CMV-LS and

the CCM-LS and their full-rank and reduced-rank versions.

– The DS-CDMA system uses random sequences with N = 64.

– We use 3-path channels with powers pk,l given by 0, −3 and −6 dB.

In each run the spacing between paths is obtained from a discrete

uniform random variable between 1 and 2 chips.

– Power distribution amongst the users : Follows a log-normal distribu-

tion with associated standard deviation of 1.5 dB.

– All LS type estimators use λ = 0.998 to ensure good performance and

all experiments are averaged over 200 runs.
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Applications : Interference Suppression for CDMA

– BER convergence performance at Eb/N0 = 12 dB.
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Techniques based on joint and iterative optimisa-
tion of filters

– Rank reduction is performed by joint and iterative optimisation (JIO)

of projection matrix SD(i) and reduced-rank filter w̄(i).

– Design criteria : MMSE, LS, LCMV, etc

– Adaptive algorithms : LMS, RLS, etc

– Highlights : rank D does not scale with system size, very fast conver-

gence, proof of global convergence established, very simple.
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MMSE Design of JIO Scheme

– The MMSE expressions for the filters SD(i) and w̄(i) can be computed

through the following cost function :

J = E
[

|d(i) − w̄H(i)SH
D(i)r(i)|2

]

– By fixing the projection SD(i) and minimizing the cost function with

respect to w̄(i), the reduced-rank filter weight vector becomes

w̄(i) = R̄−1(i)p̄(i)

where

R̄(i) = E[SH
D(i)r(i)rH(i)SD(i)] = E [̄r(i)̄rH(i)],

p̄(i) = E[d∗(i)SH
D(i)r(i)] = E[d∗(i)̄r(i)].
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MMSE Design of JIO Scheme

– Fixing w̄(i) and minimizing the cost function with respect to SD(i),

we get

SD(i) = R−1(i)PD(i)R−1
w (i)

where

R(i) = E[r(i)rH(i)],

PD(i) = E[d∗(i)r(i)w̄H(i)] and

Rw(i) = E[w̄(i)w̄H(i)].

– The associated MMSE is

MMSE = σ2
d − p̄H(i)R̄−1(i)p̄(i)

where σ2
d = E[|d(i)|2].
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MMSE Design of JIO Scheme

– The filter expressions for w̄(i) and SD(i) are functions of one another

and thus it is necessary to iterate (8) and (9) with an initial guess to

obtain a solution.

– Unlike prior art, the JIO scheme provides an iterative exchange of

information between the reduced-rank filter and the transformation

matrix.

– The key strategy lies in the joint optimization of the filters.

– The rank D or model order must be set by the designer to ensure

appropriate or adjusted on-line.

31



Adaptive JIO implementation : LMS algorithm

Initialize all parameter vectors, dimensions

For each data vector i = 1, . . . , Q do :

– Perform dimensionality reduction :

r̄(i) = SH
D(i)r(i)

– Estimate parameters

SD(i + 1) = SD(i) + η(i)e∗(i)r(i)w̄H(i)

w̄(i + 1) = w̄(i) + µ(i)e∗(i)r̄(i)

where e(i) = d(i) − w̄H(i)SH
D(i)r(i).
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Applications : Interference Suppression for CDMA

– We consider the uplink of a symbol synchronous BPSK DS-CDMA

system with K users, N chips per symbol and L propagation paths.

– Initialization : for all simulations, we use w̄(0) = 0D,1, SD(0) =

[ID 0D,M−D]T .

– We assume L = 9 as an upper bound on the channel delay spread,

use 3-path channels with relative powers given by 0, −3 and −6 dB,

where in each run the spacing between paths is obtained from a dis-

crete uniform random variable between 1 and 2 chips and average the

experiments over 200 runs.

– The system has a power distribution amongst the users for each run

that follows a log-normal distribution with associated standard devia-

tion equal to 1.5 dB.
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Applications : Interference Suppression for CDMA
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Applications : Interference Suppression for CDMA
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Applications : Interference Suppression for CDMA
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LCMV Design of JIO Scheme

– Main differences in approach : the filters SD(i) and w̄(i) are jointly

optimized and certain key quantities are assumed statistically inde-

pendent.

– The LCMV expressions for the filters SD(i) and w̄(i) can be computed

via the proposed optimization problem

minimize E
[

|w̄H(i)SH
D(i)r(i)|2

]

= w̄H(i)SH
D(i)RSD(i)w̄(i)

subject to w̄H(i)SH
D(i)a(θk) = 1

– Solution → method of Lagrange multipliers

L(SD(i), w̄(i), λ) = E
[

|w̄H(i)SH
D(i)r(i)|2

]

+ 2ℜ[λ(w̄H(i)SH
D(i)a(θk) − 1)],
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LCMV Design of JIO Scheme

– By fixing w̄(i), minimizing L(SD(i), w̄(i), λ) with respect to SD(i) and

solving for λ, we get

SD(i) =
R−1a(θk)w̄

H(i)R−1
w

w̄H(i)R−1
w w̄(i)aH(θk)R

−1a(θk)
,

where

R = E[r(i)rH(i)] and

Rw = E[w̄(i)w̄H(i)].

– A simplified expression for SD(i) obtained analytically with the exploi-

tation of the constraint is given by

SD(i) =
P (i)a(θk)ā

H(θk)

aH(θk)P (i)a(θk)
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LCMV Design of JIO Scheme

– By fixing SD(i), minimizing the Lagrangian with respect to w̄(i) and

solving for λ, we arrive at the expression for w̄(i)

w̄(i) =
R̄

−1
(i)ā(θk)

āH(θk)R̄
−1

(i)ā(θk)
,

where

R̄(i) = SH
D(i)E[r(i)rH(i)]SD(i) = E[r̄(i)r̄H(i)],

ā(θk) = SH
D(i)a(θk).

– The associated MV is

MV =
1

āH(θk)R̄
−1

(i)ā(θk)

39



LCMV Design of JIO Scheme

– The filter expressions w̄(i) and SD(i) are not closed-form solutions.

– They are functions of each other. Therefore, it is necessary to iterate

the expressions with initial values to obtain a solution.

– Existence of multiple solution (which are identical with respect to the

MMSE and symmetrical).

– Global convergence to the optimal reduced-rank LCMV filter (eigen-

decomposition with known covariance matrix) has been established.

– The key strategy lies in the joint optimization of the filters.

– The rank D must be adjusted by the designer to ensure appropriate

performance or can be estimated via another algorithm.

40



Adaptive LCMV version : LMS algorithm

Initialize all parameter vectors, dimensions

For each data vector i = 1, . . . , Q do :

– Perform dimensionality reduction :

r̄(i) = SH
D(i)r(i)

– Estimate parameters

SD(i + 1) = SD(i) − µsx
∗(i)

[

r(i)w̄H(i) − a(θk)w̄
H(i)aH(θk)r(i)

]

w̄(i + 1) = w̄(i) − µwx∗(i)
[

I −
(

āH(θk)ā(θk)
)−1

ā(θk)ā
H(θk)

]

r̄(i)
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Complexity of LCMV-JIO ALgorithms

Algorithm Additions Multiplications

Full-rank-SG [1] 3M + 1 3M + 2

Full-rank-RLS [1] 3M2 − 2M + 3 6M2 + 2M + 2

Proposed-SG 3DM + 2M 3DM + M

+2D − 2 +5D + 2

Proposed-RLS 3M2 − 2M + 3 7M2 + 2M

+3D2 − 8D + 3 +7D2 + 9D

MSWF-SG [12] DM2 − M2 DM2 − M2

+3D − 2 +2DM + 4D + 1

MSWF-RLS [12] DM2 + M2 + 6D2 DM2 + M2

−8D + 2 +2DM + 3D + 2

AVF [23] D((M)2 + 3(M − 1)2) − 1 D(4M2 + 4M + 1)

+D(5(M − 1) + 1) + 2M +4M + 2
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Complexity of LCMV-JIO ALgorithms
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Applications : LCMV Beamforming

– A smart antenna system with a ULA containing M sensor elements

and half wavelength inter-element spacing is considered.

– Figure of merit : the SINR, which is defined as

SINR(i) =
w̄H(i)SH

D(i)Rs(i)SD(i)w̄(i)

w̄H(i)SH
D(i)RI(i)SD(i)w̄(i)

– The signal-to-noise ratio (SNR) is defined as SNR =
σ2

d
σ2.

– Initialization : w̄(0) = [1 0 . . . 0] and SD(0) = [IT
D 0T

D×(M−D)
], where

0D×M−D is a D × (M − D) matrix with zeros in all experiments.
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Applications : LCMV Beamforming
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Applications : LCMV Beamforming
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Applications : Direction of Arrival Estimation

– A smart antenna system with a ULA containing M sensor elements

and half wavelength inter-element spacing is considered.

– We compare the proposed LCMV JIO method with an LS algorithm

with the Capon, MUSIC, ESPRIT, AVF, and CG methods, and run

K = 1000 iterations to get each curve.

– The spatial smoothing (SS) technique is employed for each algorithm

to improve the performance in the presence of correlated sources.

– The DOAs are considered to be resolved if |θ̂JISO − θk| < 1o.

– The probability of resolution is used as a figure of merit and plotted

against the number of snapshots.
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Applications : Direction of Arrival Estimation

Parameters : Probability of resolution versus number of snapshots (se-

paration 3o, SNR= −2dB, q = 2, c= 0.9, m = 30, r = 6, δ = 5 × 10−4,

α = 0.998, n = 26)
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Applications : Direction of Arrival Estimation

Parameters : Probability of resolution versus number of snapshots (sepa-

ration 3o, SNR= −5dB, q= 10, m = 50, r = 6, δ = 5×10−4, α = 0.998,

n = 41)
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Applications : Direction of Arrival Estimation

Parameters : Probability of resolution versus snapshots (separation 3o,

SNR= 0dB, qw = 9, m = 50, r = 6, δ = 5 × 10−4, α = 0.998, n = 41).

We assume an incorrect number of sources qw = 9 instead of q = 10.
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Reduced-rank processing based on joint and
iterative interpolation, decimation and filtering(JIDF)

– Interpolated received vector : rI(i) = V H(i)r(i)

– Decimated received vector for branch b : r̄(i) = Db(i)V
H(i)r(i)

– Selection of decimation branch D(i) : Euclidean distance

– Expression of estimate as a function of v(i), D(i) and w(i) :

x(i) = w̄H(i)SH
D(i)r(i) = w̄H(i)Db(i)V

H(i)r(i) = w̄H(i)D(i)ℜo(i)v
∗(i)

– Joint optimisation of v(i), D(i) and w̄(i)
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Reduced-rank processing based on joint and
iterative interpolation, decimation and filtering(JIDF)

– Decimation schemes : Optimal, uniform, random, pre-stored.

– The decimation pattern D(i) is selected according to :

D(i) = Db when Db(i) = arg min
1≤b≤B

|eb(i)|
2

– Optimal decimator : combinatorial problem with B possibilities

B = M · (M − 1) . . . (M − M/L + 1)
︸ ︷︷ ︸

M/L terms

=
M !

(M − M/L)!

– Suboptimal decimation schemes :

– Uniform (U) Decimation

– Pre-Stored (PS) Decimation.

– Random (R) Decimation.
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Reduced-rank processing based on joint and
iterative interpolation, decimation and filtering(JIDF)

– General framework for decimation schemes

Db =














0 . . . 0︸ ︷︷ ︸
r1 zeros

1 0 0 0 0 . . . 0 0 0

... ... ... ... ... ... ... ... ... ... ... ...
0 0 . . . 0︸ ︷︷ ︸

rm zeros

1 0 0 0 . . . 0 0 0

... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 0 . . .0︸ ︷︷ ︸

rD zeros

1 0 . . . 0︸ ︷︷ ︸

(JM−rD−1) zeros














where m (m = 1,2, . . . , M/L) denotes the m-th row and rm is the

number of zeros given by the decimation strategy.

– Suboptimal decimation schemes :

a. Uniform (U) Decimation with B = 1 → rm = (m − 1)L.

b. Pre-Stored (PS) Decimation. We select rm = (m − 1)L + (b − 1)

which corresponds to the utilization of uniform decimation for each

branch b out of B branches.

c. Random (R) Decimation. We choose rm as a discrete uniform ran-

dom variable between 0 and M − 1.
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MMSE Parameter Vector Design of JIDF

– The MMSE expressions for w̄(i) and v(i) can be computed via the

minimization of the cost function

J
(v(i),D(i),w̄(i))
MSE = E[|d(i) − vH(i)ℜT

o (i)DT (i)w̄∗(i)|2]

– Fixing the interpolator v(i) and minimizing the cost function with

respect to w̄(i) the interpolated Wiener filter weight vector is

w̄(i) = α(v) = R̄−1(i)p̄(i)

where

R̄(i) = E [̄r(i)̄rH(i)],

p̄(i) = E[d∗(i)̄r(i)],

r̄(i) = ℜ(i)v∗(i).
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MMSE Parameter Vector Design of JIDF

– Fixing w̄(i) and minimizing the cost function with respect to v(i) the

interpolator weight vector is

v(i) = β(w̄) = R−1
u (i)pu(i)

where

Ru(i) = E[u(i)uH(i)], pu(i) = E[d∗(i)u(i)] and u(i) = ℜ
T (i)w̄∗(i).

– The associated MSE expressions are

J(v) = JMSE(α(v),v) = σ2
d − p̄H(i)R̄−1(i)p̄(i)

JMSE(w̄, β(w̄)) = σ2
d − pH

u (i)R−1
u (i)pu(i)

where σ2
d = E[|d(i)|2].

– The points of global minimum can be obtained by vopt = argminv J(v)

and w̄opt = α(vopt) or w̄opt = argminw̄ JMSE(w̄, β(w̄)) and vopt =

β(w̄opt).
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Adaptive JIDF implementation : LMS algorithms

Initialize all parameter vectors, dimensions, number of branches B and

select decimation technique

For each data vector i = 1, . . . , Q do :

– Select decimation branch that minimizes eb(i) = d(i) − wH(i)r̄(i)

– Make r̄(i) = r̄b(i) when b = argmin1≤b≤B |eb(i)|
2

– Estimate parameters

v(i + 1) = v(i) + ηe∗(i)u(i)

w̄(i + 1) = w̄(i) + µe∗(i)r̄(i)

where u(i) = ℜ
T (i)w̄∗(i) and r̄(i) = D(i)V H(i)r(i).
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Complexity of JIDF Algorithms

Number of operations per symbol

Algorithm Additions Multiplications

Full-rank-LMS 2M 2M + 1

Full-rank-RLS 3(M − 1)2 + M2 + 2M 6M2 + 2M + 2

JIDF-LMS (B + 1)(D) + 2NI (B + 2)D

JIDF-RLS 3(D − 1)2 + 3(NI − 1)2 6(D)2 + 6N2
I

+(D − 1)NI + NIM + (D)2 +DNI + 2

+N2
I + (B + 1)D + 2NI +(B + 2)D + NI

MWF-LMS D(2(M̄ − 1)2 + M̄ + 3) D(2M̄2 + 5M̄ + 7)

MWF-RLS D(4(M̄ − 1)2 + 2M̄) D(4M̄2 + 2M̄ + 3)

AVF D((M)2 + 3(M − 1)2) − 1 D(4(M)2 + 4M + 1)

+D(5(M − 1) + 1) + 2M +4M + 2
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Complexity of JIDF Algorithms
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Applications : Interference suppression for CDMA

Parameters : Uplink scenario, QPSK symbols, K users, N chips per symbol and L

propagation paths, receiver filter has M = N + Lp − 1 taps.
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Applications : Interference suppression for CDMA

Parameters : Uplink scenario, QPSK symbols, K users, N chips per symbol and L

propagation paths, receiver filter has M = N + Lp − 1 taps.
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Techniques based on joint and iterative optimisa-
tion of basis functions

– Consider the M × D transformation matrix expressed as

SD(i) = [φ1(i), · · · , φd(i), · · ·φD(i)]

where {φd(i)| d = 1, . . . , D} are the M-dimensional basis vectors.

– In order to start the development, let us express the reduced-rank

input vector as

r̄(i) = SH
D(i)r(i)

=









rT (i)

rT (i)
. . .

rT (i)









D×MD








φ1(i)
φ2(i)

...
φD(i)








∗

MD×1

= Rin(i)t(i)

where the projection matrix is transformed into a vector form, and

t(i) is called parameter vector in what follows.
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Techniques based on joint and iterative optimisa-
tion of basis functions

– Let us now design the parameter vector using the cost function

JMSE(w̄(i), t(i)) = E[|d(i) − w̄H(i)Rin(i)t(i)|
2]

– The MMSE solution of the reduced-rank filter in the generic scheme

has the same form as before, i.e.

w̄(i) = R̄−1(i)p̄(i)

where

R̄(i) = E[SH
D(i)r(i)rH(i)SD(i)] = E [̄r(i)̄rH(i)],

p̄(i) = E[d∗(i)SH
D(i)r(i)] = E[d∗(i)̄r(i)].
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Techniques based on joint and iterative optimisa-
tion of basis functions

– The MMSE expression for the parameter vector t(i) is

t(i) = R−1
w (i)pw(i)

where Rw(i) = E[RH
in(i)w̄(i)w̄H(i)Rin(i)] and pw(i) = E[d(i)RH

in(i)w̄(i)].

– The associated MMSE is

MMSEg = σ2
d − p̄HR̄−1p̄

– However, in this generic scheme, a D-dimensional reduced-rank filter

and an MD-dimensional parameter vector are required to be adapted

for each iteration.

– In applications such as DS-UWB systems where the received signal

size M is large, the complexity of updating the parameter vector or

the projection matrix is very high.

– In order to reduce the complexity of this generic scheme, we will

introduce constraints in the design of the transformation matrix in

order to obtain a cost-effective structure.
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Techniques based on joint and iterative optimisa-
tion of basis functions

( )it
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– The proposed switched approximation of adaptive basis functions

(SAABF) constrains the structure of the MD-dimensional parame-

ter vector t(i). , using a multiple-branch framework.

– The SAABF scheme uses a structure with C branches for determining

the best position of the basis function vectors.
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Techniques based on joint and iterative optimisa-
tion of basis functions

( )it

2

Choose that

minimizes e(i)

optP ( )irParameter

Vector ( )iø 1D ´

Design algorithm

( )d i

( )e i

å

( )y i +
-Reduced-rank

Filter ( )iw

1P

c
P

C
P

( )
in

iR

D M D´1M ´

( )ir Generate

Input-M atrix

1D ´1qD ´MD qD´

– For each branch, the mapping matrix SD,c(i) is constructed by a set

of adaptive basis function vectors as given by

SD,c(i)(i) = [φc,1(i), · · · , φc,d(i), · · ·φc,D(i)]

where c = [1,2, · · · , C], d = [1,2, · · · , D] and the M-dimensional basis

function vector is

φc,d(i) = [0, · · · ,0
︸ ︷︷ ︸

zc,d

, ϕT
d (i)

︸ ︷︷ ︸
q

, 0, · · · ,0
︸ ︷︷ ︸

M−q−zc,d

]T

where zc,d is the number of zeros before the q×1 function ϕd(i), which

is called the inner function in what follows.
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Techniques based on joint and iterative optimisa-
tion of basis functions
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– At each time instant, the output signal of each branch or mapping

matrix can be expressed as :

yc(i) = w̄H(i)SH
D,c(i)r(i) = w̄H(i)Rin(i)tc(i),

where the MD × 1 vector tc(i) is

tc(i) =
[

φT
c,1(i), φ

T
c,2(i), · · · , φT

c,D(i)
]H
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Techniques based on joint and iterative optimisa-
tion of basis functions
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– For each basis function, we rearrange the expression as

φc,d(i) =







0zc,d×q

Iq
0(M−q−zc,d)×q







M×q

ϕd(i) = Zc,dϕd(i)

where the matrix Zc,d consists of zeros and ones. With an q×q identity

matrix in the middle, the zero matrices have the size of zc,d × q and

(M − q − zc,d) × q, respectively.
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Techniques based on joint and iterative optimisa-
tion of basis functions
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– With this kind of arrangement, we rewrite the expression of tc as :

tc(i) =








Zc,1
Zc,2

. . .

Zc,D















ϕ1(i)
ϕ2(i)

...
ϕD(i)








∗

= Pcψ(i),

where the MD× qD block diagonal matrix Pc is called position matrix

which determines the positions of the q-dimensional inner functions.
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Techniques based on joint and iterative optimisa-
tion of basis functions
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– The parameter ψ(i) denotes the qD-dimensional parameter vector

which is constructed by the inner functions.

– For each mapping matrix, we have a unique position matrix Pc.

– The dimension of the parameter vector t(i) is shortened from MD to

qD and only a qD-dimensional parameter vector will be updated for

the rank reduction.

– The adaptation of the instantaneous position matrix, the parame-

ter vector and the reduced-rank filter involves a discrete parameter

optimization for choosing the instantaneous position matrix and a

continuous filter design for adapting the parameter vector and the

reduced-rank filter.
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Discrete Parameter Optimization of SAABF
( )it

2

Choose that

minimizes e(i)

optP ( )irParameter

Vector ( )iø 1D ´

Design algorithm

( )d i

( )e i

å

( )y i +
-Reduced-rank

Filter ( )iw

1P

c
P

C
P

( )
in

iR

D M D´1M ´

( )ir Generate

Input-M atrix

1D ´1qD ´MD qD´

– In order to calculate the error signal, we find the output signal of each

branch and express it as

yc(i) = w̄H(i)Rin(i)Pcψ(i)

the corresponding error signal is ec(i) = d(i)− yc(i). Hence, the selec-

tion rule can be expressed as

copt = arg min
c∈{1,...,C}

|ec(i)|
2

P(i) = Pcopt
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Discrete Parameter Optimization of SAABF
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– In the SAABF scheme, the position matrices are distinguished by the

values of zc,d.

– An exhaustive approach has been considered for the selection of zc,d,

in which all the possibilities of the positions should be tested. We then

choose a structure for the projection matrix which corresponds to the

minimum squared error.

– However, in applications such as UWB systems, the number of possible

positions is (M − q)D, when M is much larger than q and D, say

M = 120 and q = D = 4, it becomes impractical to compare such a

huge number of possibilities.
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Discrete Parameter Optimization of SAABF
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– Hence, we constrain the number of possibilities or equivalently, we set

a small value of C that enables us to find the sub-optimum position

matrix for each time instant, and the sub-optimum solution enables

the SAABF scheme to obtain required performance.

– It turns out that a deterministic way to set the values of zc,d was the

most practical. Assuming that q and D are much smaller than M , we

set

zc,d = ⌊
M

D
⌋ × (d − 1) + (c − 1)q,

where c = 1, . . . , C and d = 1, . . . , D.
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Discrete Parameter Optimization of SAABF
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– Bearing in mind the matrix form shown, we implement this determi-
nistic approach to generate the position matrices. The first MD × qD
position matrix P1 can be expressed as

P1 =

















Iq

0M−q

0⌊M

D
⌋

Iq

0M−q−⌊M

D
⌋

. . .
0⌊M

D
⌋D

Iq

0M−q−⌊M

D
⌋D

















,

where all the zero and identity matrices have q columns and the

subscripts denote the number of rows of these matrices.
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LS Parameter Vector Design of SAABF

– After determining the position matrix P(i), the LS design of the

reduced-rank filter and the parameter vector can be designed by mi-

nimizing the following cost function

JLS(w̄(i), ψ(i)) =
i∑

j=1

λi−j|d(j) − w̄H(i)Rin(j)P(i)ψ(i)|2, (1)

where λ is a forgetting factor. Since this cost function is a function

of w̄(i) and ψ(i), the LS solutions can be obtained as follows.

– Firstly, we calculate the gradient of with respect to w̄(i)

gLSw̄∗(i) = −p̄wLS(i) + R̄wLS(i)w̄(i), (2)

where p̄wLS(i) =
∑i

j=1 λi−jd∗(j)̄r(j) and R̄wLS(i) =
∑i

j=1 λi−j r̄(j)̄rH(j).
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LS Parameter Vector Design of SAABF

– Assuming that ψ(i) is fixed, the LS solution of the reduced-rank filter

is

w̄LS(i) = R̄−1
wLS

(i)p̄wLS(i).

– Secondly, we examine the gradient of the cost function with respect

to ψ(i), which is

gLSψ∗(i) = −pψLS
(i) + RψLS

(i)ψ(i),

where the vector pψLS
(i) =

∑i
j=1 λi−jd(j)rψ(j) and the matrix RψLS

(i) =
∑i

j=1 λi−jrψ(j)rH
ψ (j)ψ(i), and rψ(j) = PH(j)RH

in(j)w̄(j).

– With the assumption that w̄(i) is fixed, the LS solution of the para-

meter vector is

ψLS(i) = R−1
ψLS

(i)pψLS
(i).
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Adaptive version of SAABF : LMS algorithms
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Step 1 : Initialization :
ψ(0)=ones(qD,1) and w̄(0)=zeros(D,1)
Set values for µw and µψ

Generate the position matrices P1, . . . , PC

Step 2 : For i=0, 1, 2, . . . .
(1) Compute the error signals ec(i) for each branch,
(2) Select the branch copt = argminc∈{1,...,C} |ec(i)|2,
(3) Set the instantaneous position matrix P(i)=Pcopt

,
(4) Update w̄(i + 1) : w̄(i + 1) = w̄(i) + µwRin(i)P(i)ψ(i)e∗(i)
(5) Update ψ(i + 1) : ψ(i + 1) = ψ(i) + µψPH(i)RH

in(i)w̄(i + 1)e(i) .
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Applications : UWB communications

– We apply the proposed generic and SAABF schemes to the downlink

of a multiuser BPSK DS-UWB system and evaluate their performance

against existing reduced-rank and full-rank methods.

– In all numerical simulations, the pulse shape adopted is the RRC pulse

with the pulse-width 0.375ns.

– The spreading codes are generated randomly with a spreading gain of

24 and the data rate of the communication is approximately 110Mbps.

– The standard IEEE 802.15.4a channel model for the NLOS indoor

environment is employed.

– We assume that the channel is constant during the whole transmis-

sion.

– The sampling rate at the receiver is assumed to be 8GHz that is

the same as the standard channel model and the observation window

length M for each data symbol is set to 120 samples.
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Applications : UWB communications

Parameters :BER performance of different algorithms for a SNR=16dB and 3 users.

The following parameters were used : full-rank LMS (µ = 0.075), full-rank RLS (λ =

0.998, δ = 10), MSWF-LMS (D = 6, µ = 0.075), MSWF-RLS (D = 6, λ = 0.998),

AVF (D = 6), SAABF (1,3,M)-LMS (µw = 0.1, µψ = 0.2, 2 iterations) and SAABF

(1,3,M)-RLS (λ = 0.998, δ = 0.1, 1 iteration).
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Applications : UWB communications

Parameters :BER performance of the proposed SAABF scheme versus the number

of training symbols for a SNR=16dB. The number of users is 3 and the following

parameters were used : SAABF-RLS (λ = 0.98, δ = 10).
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Applications : UWB communications
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Model-order selection techniques

– Basic principle : to determine the best fit between observed data and

the model used.

– General approaches to model-order selection :

– Setting of upper bounds on models with ”some” prior knowledge :

one of the most used in communications.

– Akaike’s information theoretic criterion : works well but requires

some computations.

– Minimum description length (MDL) : also works well but requires

some computations.

– Adaptive filtering approach : use for dynamic lengths adaptive al-

gorithms, work well and have lower complexity than prior art.
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Model-order selection techniques

– Approaches used for reduced-rank techniques :

– Testing of orthogonality conditions between columns of transfor-

mation matrix SD(i) [12] : used with the MSWF for selecting the

rank D.

– Cross-validation of data [23] : used with the AVF, works but can

be complex since the algorithms sometimes selects D quite large.

This can be a problem if M is large and D approaches it.

– Use of a priori values of least-squares type cost functions with lower

and upper bounds : works very well and it is simple to use and design

[12, 17, 29]. It can be easily extended when the designer has multiple

parameters with orders to adjust.
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Model-order selection with LCMV JIO algorithm

– Consider the exponentially weighted a posteriori least-squares type

cost function described by

C(SD(i − 1), w̄(D)(i − 1)) =
i∑

l=1

αi−l
∣
∣
∣w̄H, (D)(i − 1)SD(i − 1)r(l)|2,

where α is the forgetting factor and w̄(D)(i − 1) is the reduced-rank

filter with rank D.

– For each time interval i, we can select the rank Dopt which minimizes

C(SD(i − 1), w̄(D)(i − 1)) and the exponential weighting factor α is

required as the optimal rank varies as a function of the data record.

– The key quantities to be updated are the projection matrix SD(i), the

reduced-rank filter w̄(i), the associated reduced-rank steering vector

ā(θk) and the inverse of the reduced-rank covariance matrix P̄ (i) (for

the proposed RLS algorithm).
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Model-order selection with LCMV JIO algorithm

– Let us define the following extended projection matrix S(D)(i) and

the extended reduced-rank filter weight vector w̄(D)(i) as follows :

S(D)(i) =






s1,1 . . . s1,Dmin
. . . s1,Dmax

... ... ... . . . ...
sM,1 . . . sM,Dmin

. . . sM,Dmax




 and w̄(D)(i) =











w1
...

wDmin...
wDmax











– S(D)(i) and w̄(D)(i) are updated along with the associated quantities

ā(θk) and P̄ (i) for the maximum allowed rank Dmax.

– The rank adaptation algorithm determines the rank that is best for

each time instant i using the cost function.

– The proposed rank adaptation algorithm is then given by

Dopt = arg min
Dmin≤d≤Dmax

C(SD(i − 1), w̄(D)(i − 1))

where d is an integer, Dmin and Dmax are the minimum and maximum

ranks allowed for the reduced-rank filter, respectively.
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Model-order selection with LCMV JIO algorithm

SINR performance of LCMV (a) SG and (b) RLS algorithms against

snapshots with M = 24, SNR = 12 dB with automatic rank selection.
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Model-order selection with JIDF algorithm

– Consider the following exponentially weighed a posteriori least-squares

type cost function

C(w̄(D),v(NI), D) =
i∑

l=1

αi−l
∣
∣
∣d(l) − w̄H, (D)(l)D(l)ℜo(l)v

∗, (NI)(l)|2,

where α is the forgetting factor, w̃(D)(i− 1) is the reduced-rank filter

with rank D and v(NI)(i) is the interpolator filter with rank NI.

– For each time interval i and a given decimation pattern and B, we

can select D and NI which minimizes C(w̄(D),v(NI), D).

– The rank adaptation algorithm that chooses the best lengths Dopt

and NIopt
for the filters v(i) and w̄(i), respectively, is given by

{Dopt, NIopt
} = arg min

NImin
≤n≤NImax

Dmin≤d≤Dmax

C(w̄(d),v(n), D)

where d and n are integers, Dmin and Dmax, and NImin
and NImax are the

minimum and maximum ranks allowed for w̄(i) and v(i), respectively.
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Model-order selection with JIDF algorithm

SINR performance against rank (D) for the analyzed schemes using LMS

and RLS algorithms.
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Applications, perspectives and future work
– Applications : interference suppression, beamforming, channel esti-

mation, echo cancellation, target tracking, wireless sensor networks,

signal compression, radar, control, seismology and bio-inspired sys-

tems, etc.

– Perspectives :

• Work in this field is not widely explored.

• Many unsolved problems when dimensions become large : estima-

tion, tracking, general acquisition.

– Future work :

• Information theoretic study of very large observation data : perfor-

mance limits as M goes to infinity.

• Investigation of tensor-based reduced-rank schemes.

• Development of vector and matrix-based parameter estimates as

opposed to current scalar parameter estimation of existing methods.

• Distributed reduced-rank processing.
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Concluding remarks

– Reduced-rank signal processing is a set of powerful techniques that
allow the processing of large data vectors, enabling a substantial re-
duction in training with low complexity.

– A survey on reduced-rank techniques, detailing eigen-decomposition
methods and the MSWF, was presented along with some critical com-
ments on their suitability for practical use.

– A family of reduced-rank algorithms based on joint and iterative op-
timisation (JIO) of filters was presented.

– A recently proposed reduced-rank scheme that employs joint interpo-
lation, decimation and filtering (JIDF) was also briefly described.

– Techniques based on approximations of basis functions (SAABF) were
discussed and algorithms were devised for an UWB application.

– Several applications have been envisaged as well as a number of future
investigation topics.
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Questions ?
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Vielen Dank !

Contact :

Dr. R. C. de Lamare

Communications Research Group

University of York

Website : http ://www-users.york.ac.uk/∼rcdl500/

E-mail : rcdl500@ohm.york.ac.uk
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