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Abstract

Souza Leite, Wesley; Caiado de Lamare, Rodrigo (Advisor).
Compressed Sensing Algorithms for Direction of Arrival
Estimation with Non-Uniform Linear Arrays. Rio de Janeiro,
2020. 89p. Dissertação de Mestrado – Departmento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The Direction of Arrival (DoA) estimation or Direction Finding
(DF) is a relevant topic for research in areas such as radar, sonar, seismology,
electronic surveillance, and wireless communications. This thesis devises a new
algorithm that combines a stochastic Maximum Likelihood (ML) method with
the widely-known Orthogonal Matching Pursuit (OMP) greedy algorithm,
commonly used in sparse recovery with Compressive Sensing (CS). Even
though ML techniques are known to be optimal in the mean-squared error
sense, achieving the Cramér-Rao Lower Bound (CRLB), the tighter lower
bound on estimator variance, they demand a significant, sometimes infeasible,
amount of computational resources. On the other hand, departing from a
sparsified variant of the data acquisition equation, the problem of finding
the sparsest solution of underdetermined systems of equations with OMP
has been employed successfully to find the DoA estimates, but with many
opportunities for improvement in cases of challenging scenarios. For instance,
scenarios with electromagnetic (EM) coupling, low signal-to-noise ratio (SNR),
and a limited number of available snapshots (time samples). The proposed
difference coarray DoA estimator termed List-Based Maximum Likelihood
OMP (LBML-OMP) has shown substantial improvements over traditional and
modern techniques, such as OMP, Iterative Hard Thresholding (IHT), and
Spatial Smoothing Multiple Signal Classification (SS-MUSIC). It uses a list of
candidates generated from the OMP solution and decides for the best based
on a limited search using the stochastic ML rule. Thus, it does not perform
a grid search with the ML estimator, and this justifies its use in practical
scenarios. For the sensing of space-time field, classic and modern non-uniform
linear arrays are employed, such as 2-nd Order Nested Array (NAQ2), 2-nd
Order Super Nested Array (SNAQ2), Minimum Redundancy Array (MRA),
Minimum Hole Array (MHA), and Coprime Array (CPA). Additionally, the
estimation is performed under the assumption of EM coupling and noise as
disturbing side effects. Furthermore, a new model for difference coarray DoA
estimation is developed. It accounts for the finite number of snapshots and
has shown to increase the estimation accuracy for all the algorithms, not
only LBML-OMP, evidencing secondary sources of error for the difference



coarray transformation. To complement the work, a denoising algorithm
called Randomized OMP (RandOMP) was applied to successfully increase
the estimation accuracy for difference coarray estimators in scenarios with
severe noisy conditions. The contributions of this work relate mainly to the
development of a new algorithm and a new difference coarray transformation
to improve the DoA estimation accuracy with non-uniform linear arrays. Also,
it should be noticed the employment of different geometries for the numerical
experiments, making evident the impact of the array sensors’ positions in the
root mean square error (RMSE) curves.

Keywords
Sensor array systems; Parameter estimation; Direction finding;

Non-uniform arrays; Compressive sensing.



Resumo

Souza Leite, Wesley; Caiado de Lamare, Rodrigo. Algoritmos de
Sensoriamento Compressivo para Estimação de Direção
com Arranjos Lineares Não-Uniformes. Rio de Janeiro, 2020.
89p. Dissertação de Mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

O problema de estimação de direção (DoA) de chegada é um
importante tópico de pesquisa em áreas como radar, sonar, sismologia,
vigilância eletrônica e comunicações sem fio. Este trabalho teve como principal
resultado o desenvolvimento de um novo algoritmo que combina o método
da máxima verossimilhança (ML) estocástica com o algoritmo ganancioso
de busca ortogonal (OMP), comumente empregado em recuperação esparsa
com Sensoriamento Compressivo (CS). Muito embora técnicas ML sejam
consideradas ótimas em termos de erro médio quadrático, atingindo o limitante
inferior de Cramér-Rao (CRLB), o menor limitante inferior para a variância do
estimador, estas técnicas demandam de modo significante, às vezes inexequível,
os recursos computacionais. Por outro lado, a partir de uma variante esparsa
da equação de aquisição de dados, o problema de encontrar a solução mais
esparsa possível de sistemas de equações subdeterminados com o algoritmo
OMP tem sido empregado de modo satisfatório para encontrar as estimativas
de direção, porém com muitas oportunidades de melhoria em casos com
cenários sujeitos a condições severas. Por exemplo, cenários com acoplamento
eletromagnético (EM), baixa razão sinal-ruído (SNR) e um número limitado de
amostras temporais disponíveis. O estimador de direção proposto, baseado em
coarranjo diferença, denominado OMP com Máxima Verossimilhança Baseado
em Lista (LBML-OMP), apresentou uma melhora significativa no processo de
estimação em comparação com técnicas tradicionais e modernas, tais como:
OMP, Técnica de Limiar Iterativa (IHT) e Classificação de Múltiplos Sinais
Espacialmente Suavizados (SS-MUSIC). A técnica proposta utiliza uma lista
de candidatos gerada a partir da solução do algoritmo OMP original e decide
pelo melhor a partir de uma busca limitada utilizando o estimador ML
estocástico, o que justifica seu uso em cenários práticos. Para a amostragem
dos sinais no ambiente, arranjos lineares não-uniformes clássicos e modernos
foram empregados, tais como Arranjos Aninhados de Segunda Ordem (NAQ2),
Arranjos Aninhados de Segunda Ordem Aperfeiçoados (SNAQ2), Arranjos
de Redundância Mínima (MRA) e Arranjos Coprimos (CPA). Além disso,
a estimação foi realizada considerando-se o efeito do acoplamento EM e ruído.
Ainda, um novo modelo para estimação de direção em coarranjo diferença foi



desenvolvido. Este modelo considera o número de amostras temporais finitas
(não-assintótico) e mostrou melhora significativa quando do seu emprego no
processo de estimação de direção de todos os algoritmos considerados, não
apenas o LBML-OMP, evidenciando fontes secundárias de erro no modelo
original estabelecido. De forma a complementar o trabalho, um algoritmo
de atenuação de ruído chamado OMP aleatorizado (RandOMP) foi utilizado
para aumentar a precisão da estimação em cenários com condições de ruído
severas. Neste sentido, as contribuições deste trabalho estão relacionadas
principalmente ao desenvolvimento de um novo algoritmo e um novo modelo
de transformação em coarranjo diferença de modo a melhorar as estimativas de
direção das fontes com arranjos lineares não-uniformes. Além disso, enfatiza-se
o emprego de diferentes geometrias para as simulações, tornando-se evidente
o impacto da posição dos sensores nas curvas de raiz quadrada do erro médio
quadrático (RMSE).

Palavras-chave
Sistemas de arranjos de sensores; Estimação de parâmetros;

Estimação de direção; Arranjos não-uniformes; Sensoriamento
compressivo.
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1
Introduction

Array processing is a relevant topic for research on radar and
sonar systems, wireless communications, medical imaging, seismology, radio
astronomy, electronic surveillance, and related subjects [1–4]. The powerful
tools of array processing have been used to extract information from impinging
signals acquired by a set of sensors arranged in a specially designed structure
(termed geometry) aiming to estimate their unknown parameters [2].

It may appear in different scenarios and contexts: noisy schemes
with signals/interferers being modeled as either deterministic or stochastic
according to a specific multivariate statistical distribution, with a parameter
set to be estimated. In this regard, one can mention the estimation of a
source profile according to different quantities, such as direction, polarization,
amplitude, frequency, power, and radial velocity [1, 2, 5, 6].

1.1
Problem Statement

The problem consists of performing an in-depth analysis in the
space-time field through a predefined technique that is proven to be capable
of describing/tracking all the time-varying/invariant parameters of interest
regarding the signals traveling around that environment. This work analyzes
this general problem by restricting to the case that the directions of the
impinging signals are the quantities to be estimated and considered to be
time-invariant during all the estimation time window. Moreover, the signals
are modeled as stochastic and drawn from white circular complex Gaussian
distributions, uncorrelated with each other, and with the measurement noise.

This problem, namely Direction Finding (DF) or Direction of Arrival
(DoA) estimation has been a research topic for many years since its beginnings
in the early twentieth century, in signal processing. In 1907-09, the first
attempts at DoA estimation started using directional characteristics of antenna
elements, at that time named position finding. Some years later, phased arrays
were introduced to perform this task [5].

After the introduction of phased arrays, the data acquisition process
has improved significantly, with enhanced signal-to-interference-plus-noise
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Figure 1.1: Non-Uniform versus Uniform Linear Arrays

ratio (SINR) and the parameter estimation task being performed in high
dimensional spaces [7].

These arrays consist of a set of sensors arranged according to a specific
physical placement rule. Most of the literature evaluate and derive performance
prediction equations considering a uniform placement of sensors. The sensors
allocation can be carried out in one of three ways: linear (1-D), planar (2-D)
or volumetric (3-D) [2]. The present work tackles the 1-D case, with the much
broader perspective of considering the non-uniform scenario.

The so-called Non-Uniform Linear Array (NLA) consists of a set of
sensors that lacks a regular spatial distribution of the individual elements, i.e.,
the position difference between any pair of neighbor sensors is not constant.
Thus, NLA geometries have some empty spaces, which lead to the termed
sparse patterns.

A schematic that illustrates the differences between uniform and
non-uniform arrays is exhibited in Figure 1.1. The filled black circles represent
the individual physical sensors, and the crosses mean an empty space in that
position. This way of representing non-uniform arrays is useful to compare
them with the equivalent ULA of the same aperture. NLA design has attracted
considerable attention during the last several decades. Sparse geometries such
as Nested Arrays (NAQn), Coprime Arrays (CPA), Minimum Redundancy
Arrays (MRA) and Minimum Hole Arrays (MHA orGolomb rulers), are typical
examples of non-uniform arrays which have been extensively studied recently
[8–10].

These non-uniform structures have the advantage that they can more
effectively deal with mutual electromagnetic coupling between sensors.
Moreover, by denoting N as the number of sensors (physical sensors, unless
otherwise specified), these geometries offer O(N2) degrees of freedom for
DoA estimation because their central difference coarray consecutive set has
cardinality O(N2), which is called Uniform Degrees of Freedom (UDoF) [1].

Different classes of algorithms have been developed, aiming to estimate
the sources DoAs. In this regard, a widely known algorithm category is based
upon the maximum likelihood estimation (MLE) technique, which is more
accurate, achieving the Cramér-Rao Lower Bound (CRLB), the tighter lower



Chapter 1. Introduction 23

bound on estimator variance [8, 11]. Therefore, efficient estimators, optimum
in the mean-squared error sense, are generated, but at the cost of a significant,
sometimes infeasible, amount of computational complexity [2, 12].

On the other hand, some computationally suboptimal feasible
alternatives were developed. They reduce computational complexity and
speed up the DoA finding procedure. A well-established class in the literature
explores the orthogonality between noise and signal subspaces. They are called
subspace-based algorithms and include MUSIC, root-MUSIC, and ESPRIT
[13, 14]. Other methods called quadratic (deal with quadratic forms in their
expressions), such as Minimum Variance Distortionless Response (MVDR -
Capon) and Barlett beamformer (beam scan) are also relevant [2, 15, 16].
These techniques give rise to estimators that present a lower computational
complexity, but most of the time with an acceptable performance [5].

Additionally, regarding NLA geometries, it is worth emphasizing the
recently developed covariance-matrix based method known as SS-MUSIC
(Spatial Smoothing MUSIC) [17] to perform MUSIC with a spatially smoothed
covariance matrix in coarray domain. Moreover, Compressive Sensing (CS)
techniques such as greedy (Orthogonal Matching Pursuit (OMP), Subspace
Pursuit (SP)) and thresholding based (Iterative Hard Thresholding (IHT))
are capable of solving the sparsified mathematical models to obtain the DoA
estimation for this kind of non-uniform geometry. [18, 19].

Some of the previously mentioned techniques are capable of solving both
uniform and non-uniform systems with appropriate mathematical modeling.
CS techniques are one of them, with ease of implementation and acceptable
computational complexity, as is further discussed.

In this thesis, the main goal is to develop a new CS algorithm capable of
better estimating the DoAs associated with multiple sources impinging on an
NLA geometry.

1.2
Motivation

Noisy environments and EM coupling are factors that reduce the DoA
estimation accuracy [1, 2]. The classic uniform linear geometry has its sensors
pretty close to each other, which enhances the EM coupling effect and reduces
the aperture size [17]. To overcome this limitation, a lot of non-uniform
geometries have been proposed [1, 2, 17, 20]. One of the more significant
aspects of these arrangements is that they allow the estimation of more DoAs
than sensors (enhanced degrees of freedom) using some specific techniques like
SS-MUSIC [17] and CS-based algorithms [19]. In this context, a list-based
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CS algorithm was developed with a trade-off between performance and
computational complexity. Additionally, the RandOMP denoising method [21]
was applied to the DoA estimation task in difference coarray under severe noisy
conditions and provided satisfactory results. Furthermore, the traditional CS
difference coarray transformation model was slightly modified to account for
finite snapshot versions of related quantities.

1.3
Contributions

i) Greedy CS Algorithm. A new list-based OMP-like algorithm for
DoA estimation in the context of non-uniform arrays is developed.
The algorithm takes the OMP suggested solution for the current index
support set, searches for Q candidates around it based on the chosen
grid, and applies a selection rule for the best candidate, employing a
Maximum Likelihood search over the candidate set;

ii) Difference Coarray Transformation Model. The classic difference
coarray model is studied in detail, and a new modeling equation is
derived, evidencing some secondary sources of error when performing
DoA estimation in difference coarray domain;

iii) CS-Based Denoising Preprocessing Applied to DoA Estimation
with NLA. The CS-based denoising strategy introduced in [21] was
applied to the difference coarray model giving suitable results when
acting as a preprocessing to the DoA estimation problem with CS
algorithms. This step is incorporated in the proposed framework for
DoA estimation as a fundamental first step when dealing with extreme
conditions in terms of SNR; and

iv) Non-Uniform Arrays Performance Evaluation with CS
Algorithms A study of multiple non-uniform linear arrays for DoA
estimation under the proposed CS framework with many CS algorithms
is performed.

1.4
Notation

See List of Symbols on page 18.
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1.5
Thesis Outline

In Chapter 2, the data acquisition model and its modified version to
incorporate electromagnetic coupling effects are discussed. Also, a summary
of some of the most recent non-uniform geometries is presented. Besides,
classical methods for DoA estimation (quadratic, subspace, and maximum
likelihood) are summarized. Following that, the recently developed Spatial
Smoothing MUSIC (SS-MUSIC) algorithm for DoA estimation in difference
coarray domain is described along with some of the CS algorithms used to
perform DoA estimation using NLA geometries.

In Chapter 3, a list-based maximum likelihood CS algorithm for DoA
estimation is devised and compared with some of the traditional algorithms
addressed in Chapter 2. Additionally, a new difference coarray transformation
model is developed. Following that, the application of the CS-based denoising
algorithm introduced in [21] in the context of non-uniform geometries and
difference coarray DoA estimation is proposed.



2
Literature Review and Background

2.1
Introduction

The goal of this chapter is to present a literature revision and a
broad overview of the problems commonly faced in array signal processing
related to the Direction of Arrival (DoA) estimation. It gives a gradual
introduction through the main concepts related to this field of research and
defines some of the core technical terms needed to follow the discussion
and the approach employed in the text. Firstly, generic data models are
defined, including the transformations related to difference coarray domain
and electromagnetic coupling model. Secondly, a short review of some classic
and modern non-uniform array geometries is performed. After that, it describes
some of the traditional techniques to perform DoA estimation with quadratic,
subspace-based, and Maximum Likelihood (ML) estimation methods. Lastly,
it is presented the algorithms recently developed to perform DoA estimation
in difference coarray domain, including the focus of this work, the so-called
Compressive Sensing (CS) algorithms. All of the figures presented in this thesis
were generated by the author using either MATLAB R2019b (simulations) or
TikZ/PGF (LATEXpackages) (illustrative schemes).

2.2
Data Model

The DoA estimation problem can be performed under different modeling
schemes. The choice of a particular model is, in general, related to some
aspects, such as desired accuracy, types of signals and noise in the space-time
field, array geometry and environment [2]. The parameter estimation is
analyzed in the context of Gaussian distributed signals with additive white
Gaussian noise. Sources of electromagnetic radiation in far-field regions emit
the signals towards the sensor array. Furthermore, the signals are assumed
to be narrowband traveling over a isotropic and linear transmission medium
[22, 23].

Furthermore, the arrays are supposed to be perfectly calibrated. A
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white circular complex Gaussian noise is supposed to be the unique source
of perturbation during the data acquisition process. Moreover, the sensors are
supposed to have a perfect omnidirectional response and located in positions
that are integer multiples of the minimum inter-sensor spacing of d.

Figure 2.1 illustrates the DoA estimation scheme: the multiple sources
have an expanding wave representation with red concentric partially drawn
rings; the array sensors have a 1-D placement distribution over the x-axis
(linear array) and are deliberately irregularly distributed (non-uniform); there
is spatial interference affecting the measurement process (external noise
sources possibly not pointlike like natural thermal radiation of the background
surrounding the target) [2, 24]; and an array processor performing the DoA
estimation from the raw data acquired by the array [5].

Internal noise, although always present (thermal noise, electronic noise),
is not represented in the scheme due to the ease of representation, but it is
taken into account into the mathematical models.

Associated to the array normal axis there is the broadside axis or y-axis.
The angle between the source direction from the k-th source to the center of
the array and the broadside axis is termed broadside angle and is represented
by θk. That is the quantity of interest. Since the array is illuminated by
multiple sources, there is a parameter vector to be estimated that considers
the directions θ estimated as θ̂.

The signals follow the path from the spatially distributed array sensors
and enter into an RF network through measurement channels, which are
denoted by downward arrows. After that, the preprocessing stage includes a
line of frequency converters (tuners - translation to an intermediate frequency
(IF)), followed by AD/C converters, down-converters, and a filtering process,
which are specially designed to narrowband DoA estimation [5]. Following
that, the setting of model parameters is performed to appropriately provide
the complete mathematical model for the DoA estimation algorithm.

For this scenario, the single measurement vector (SMV) model for D
sources can be modeled by [8, 25, 26]

xS = AS(θ)s + nS (2-1)

where all the quantities are considered to be in the complex field, except for
the DoA vector θ ∈ RD, and the time dependence for the random vectors was
not represented. The vector xS ∈ CN is the received signal, s ∈ CD represents
the source signal and nS ∈ CN is the additive white Gaussian noise.

The matrix AS(θ) ∈ CN×D is the only deterministic quantity and is called
array manifold matrix, defined over the vector θ and the set S. Its elements
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interferers
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Setting of Model Parameters

DoA Estimation Algorithm

Figure 2.1: DoA Estimation Basic Scheme

are given by

[AS(θ)]i,k , exp
(
j

2πd
λ
ni sin (θk)

)
(2-2)

where θk are the previously described broadside angles in Figure 2.1, d is the
minimum inter-element sensor-to-sensor spacing, ni are the elements of the set
S (normalized sensors’ positions) and λ is the source signal carrier wavelength
[5].

The set S ⊂ N defines the sensors’ physical locations as integer multiples
of d. Its cardinality |S| represents the number N of sensors. In order to avoid
spatial aliasing, it is assumed d = λ/2.

The model for DoA estimation can be either deterministic or stochastic
[2]. In the following, the latter is adopted. The quantities s and nS are
random vectors drawn from a zero-mean multivariate circularly white complex
Gaussian distribution with first and second-order statistics given by
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s ∼ CN (0| diag
(
[σ2

1, . . . , σ
2
D]>

)
)

nS ∼ CN (0|σ2
nI)

(2-3)

Moreover, considering the partitioned vector f = [s>|n>S ]> ∈ CD+N , it
should be noticed that, by the following equation

f ∼ CN


diag

(
[σ2

1, . . . , σ
2
D]>

)
0

D×N

0
N×D

σ2
nI


 (2-4)

that noise and the source signals are uncorrelated with each other, beyond the
fact that the signals are spatially uncorrelated between themselves (diagonal
covariance matrix). Since the noise covariance matrix is diagonal, noise from
different channels are also uncorrelated. The received signal covariance matrix
can be obtained by taking the statistical expectation of the received signal
cross-product [2]. Indeed,

CxS = E{xSxHS }

= E{(AS(θ)s + nS) (AS(θ)s + nS)H}

= E{(AS(θ)s + nS)
(
sHAH

S (θ) + nHS
)
}

= E{AS(θ)ssHAH
S (θ)}+

��
���

���:
0

E{AS(θ)snHS }+

���
���

���:
0

E{nSsHAH
S (θ)}+ E{nSnHS }

= AS(θ)E{ssH}AH
S (θ) + E{nSnHS }

= AS(θ)CsAH
S (θ) + CnS

= AS(θ) diag
[
σ2

1, . . . , σ
2
D

]
AH

S (θ) + σ2
nI

=
D∑
i=1

σ2
i aS(θi)aHS (θi) + σ2

nI

(2-5)

where the cross-terms are zero because signal and noise are uncorrelated. This
covariance matrix is usually estimated through the sample covariance matrix
[27], which gives

ĈxS = 1
T

ẊSẊ
H

S (2-6)

where T is the number of snapshots, ẊS = [ẋS(1), ẋS(2), . . . , ẋS(T )] ∈ CN×T

is the received signal data matrix, and ẋS(t) ∈ CN is the t-th statistical
realization of the random vector xS(t).

Furthermore, it is worth emphasizing that all the ẋS(t) are drawn from
multivariate complex zero-mean Gaussian distributions, and independent and
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identically distributed (i.i.d) from snapshot to snapshot1. For the sample
sources covariance matrix, consider

Ĉs = 1
T

ṠṠH (2-7)

where Ṡ ∈ CD×T is the matrix with source signal snapshots vector as its
columns. To conclude, the finite snapshot version of the multiple measurement
vector (MMV) model is given by

ẊS = AS (θ) Ṡ + Ṅ (2-8)

where Ṅ ∈ CN×T is the matrix with the successive snapshots as its columns.

2.2.1
Difference Coarray Transformation Model

In order to deal with the position difference of the array sensors and
increase the available Degrees of Freedom (DoF) for DoA estimation, (2-5)
is submitted to a transformation termed Difference Coarray Transformation
Model (DCTM) by vectorizing the received signal covariance matrix using
the vec (·) operator2 [2, 28] and extract the diagonal elements of the sources
covariance matrix with vecd (). That said, consider the following

vec (CxS) = vec
(
AS(θ) diag

[
σ2

1, . . . , σ
2
D

]
AH

S (θ) + σ2
nI
)

= vec
(
AS(θ) diag

[
σ2

1, . . . , σ
2
D

]
AH

S (θ)
)

+ σ2
n vec (I)

= (A∗S(θ) ◦AS(θ)) vecd
(
diag

[
σ2

1, . . . , σ
2
D

])
+ σ2

n vec (I)

= (A∗S(θ) ◦AS(θ)) p + σ2
ñi

(2-9)

where
p =

[
σ2

1, . . . , σ
2
D

]>
(2-10)

is the sources power/variances vector,

A∗S(θ) ◦AS(θ) = [a∗S(θ1)⊗ aS(θ1), . . . , a∗S(θD)⊗ aS(θD)] (2-11)

is the column-wise Khratri-Rao product between matrices A∗S(θ) and AS(θ),
which consists of the Kronecker product of the corresponding columns, and
ĩ = vec (I) ∈ RN2 is the vectorization of the identity matrix.

After these considerations, it is straightforward to notice that
1Notice that, by (2-1), xS comes from a linear transformation of random vectors that does

not affect the resulting mean (s and nS are zero-mean), but it does change the covariance
matrix.

2vec () operator property: vec
(
AXB>) = (B ◦A) vecd (X) if X is diagonal. See (5) in

[28].
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[A∗S(θ) ◦AS(θ)]i,k , exp
(
j

2πd
λ

(nb(i−1)/Nc − n(i−1) modN) sin (θk)
)

(2-12)

where S = [n0, n1, . . . , nN−1] is the set with the sensors normalized positions3,
b·c is the floor function, and (·) mod(·) is the modulo operator (remainder after
division).

At this point, it is worth establishing some difference coarray related
definitions [1].
Definition 2.1 (Difference Coarray Set - D) The difference coarray set
represented by D is a set associated to the sensors’ positions S through

D ,
{
n1 − n2 | (n1, n2) ∈ S2

}
(2-13)

arranged in ascending order and without any repetition of elements.

Definition 2.2 (Degrees of Freedom - DoF) The number of Degrees of
Freedom, denoted by DoF, of a geometry specified by S is the cardinality of
its difference coarray set. Then,

DoF , |D| (2-14)

Definition 2.3 (Central Difference Coarray Consecutive Set - U) The central
difference coarray consecutive set, denoted by U, associated with a difference
coarray set D is the set4

U = {0} ∪ {± [m]} (2-15)

arranged in ascending order and without any repetition of elements, such that
m is chosen to maximize the cardinality of U with U ⊆ D

Definition 2.4 (Uniform Degrees of Freedom - UDoF) The number of
Uniform DoF, denoted by UDoF, of a geometry specified by S, is the cardinality
of its central difference coarray consecutive set (U), i.e.,

UDoF , |U| (2-16)

Definition 2.5 (Weight Function - w(m)) The weight function is an
application

w : Z→ {0} ∪ {± [N ]}

such that
w(m) =

|M(m)| if m ∈ D

0 otherwise
(2-17)

where M(m) = {(n1, n2) ∈ S2 | n1 − n2 = m}, i.e., M(m) is a function that
counts the number of sensor pairs with separation m (covariance lag).

3Usually, we assume n0 = 0 (reference)
4The symbol [m] represents the set {1, 2, . . . ,m}.
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Notice that the weight function assumes its maximum value at the origin
(w(0) = N), and it possesses even symmetry. The importance of this function
is associated with the way it allows one to obtain the quantities DoF, UDoF,
and an idea about the array electromagnetic coupling robustness.

Going back to (2-12), it can be seen that A∗S(θ)◦AS(θ) will exhibit some
repeated rows, once the same position difference ni2 − ni1 can be produced, in
general, by more than one pair of sensors, i.e., the perfect array condition [2]

w(m) =


1 if m ∈ D \ {0}

N if m = 0

0 otherwise

(2-18)

is not fulfilled for the vast majority of the arrays. The notation {D} \ {0}
represents the difference between the sets D and {0}. Each sensor pair
repetition will give rise to one repeated row in (2-11). If we exclude these
rows, we arrive at

xD = AD(θ)p + σ2
ni

=
[
AD(θ) i

]  p
σ2
n

 (2-19)

which can be compared to (2-1) and considered to be the deterministic received
signal xD ∈ CDoF expression with deterministic additive noise σ2

ni ∈ RDoF and
difference coarray manifold AD(θ) ∈ CDoF×D. In this case, the vector i has DoF
elements. Its ((DoF+1)/2)-th entry is unitary and all the others are zero. This
can be represented in a compact notation as [i]k = δ((k− (DoF+1)/2)), where
δ(n) is the widely known unit sample sequence or discrete time impulse [29].

2.2.2
Electromagnetic Coupling Model

One of the most essential features to justify the employment of
non-uniform arrays is the increase in robustness to deal with electromagnetic
coupling effects [1, 30]. It is straightforward to see that, in (2-1) the sensors
measurements do not interfere with each other.

Nevertheless, the mutual electromagnetic coupling effect must be taken
into account in order to ensure a higher quality DoA estimation in practice.
The model with electromagnetic coupling can be adapted from the previous
expressions through

x′S = GAS(θ)s + nS, (2-20)
where G ∈ CN×N is the mutual coupling matrix with elements given by
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[G]i,j =

g (|ni − nj|) if |ni − nj| ≤ B

0 otherwise
(2-21)

This is called B-banded mode model, and it assumes that the coupling
coefficients are inversely proportional to the distance between any two sensors
[31, 32]. In that way, it is reasonable to consider the coupling coefficients as
zeros for two sensors too far apart. This threshold distance for which there is
a minimum coupling defines the parameter B.

Moreover, regarding the elements of matrix G, we state that

1 = g(0) > |g(m1)| > |g(m2)| > . . . > |g(B)| >

|g(B + 1)| = . . . =
∣∣∣g (max

(
D+
))∣∣∣ = 0 (2-22)

where it was assumed5 mi ∈ D+, the sorted strictly positive part of D and
B < max (D+).

Furthermore, it is assumed that the coupling between two equally spaced
sensors is the same and time-invariant during the DoA estimation process.
This is not entirely true, once the coupling matrix tends to change with time
influenced by temperature, pressure, humidity, and neighboring objects [31].

In this sense, the model in (2-5) for the EM coupling scenario becomes

C′xS
= E{x′Sx′HS }

= E{(GAS(θ)s + nS) (GAS(θ)s + nS)H}

= E{(GAS(θ)s + nS)
(
sHAH

S (θ)GH + nHS
)
}

= E{GAS(θ)ssHAH
S (θ)GH}+

���
���

���:
0

E{GAS(θ)snHS }+

���
���

���
��:0

E{nSsHAH
S (θ)GH}+ E{nSnHS }

= GAS(θ)E{ssH}AH
S (θ)GH + E{nSnHS }

= (GAS(θ)) Cs (GAS(θ))H + Cn

= (GAS(θ)) diag
[
σ2

1, . . . , σ
2
D

]
(GAS(θ))H + σ2

nI

=
D∑
i=1

σ2
iGaS(θi)aHS (θi)GH + σ2

nI

(2-23)

By applying the difference coarray transformation carried out in
Subsection 2.2.1, we have6 [20]

5To clarify: D = D− ∪ {0} ∪ D+, i.e., for D = {−4,−3,−1, 0, 1, 3, 4} ⇒ D+ = {1, 3, 4}
6See properties (24) ((C ⊗ D)(A ◦ B) = (CA) ◦ (DB)) and (5) (vec

(
AXB>) =

(B ◦A) vecd (X) if X is diagonal) in [30] and [28], respectively.
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vec
(
C′xS

)
= vec

(
(GAS(θ)) diag

[
σ2

1, . . . , σ
2
D

]
(GAS(θ))H + σ2

nI
)

= vec
(
(GAS(θ)) diag

[
σ2

1, . . . , σ
2
D

]
(GAS(θ))H

)
+ σ2

n vec (I)

= ((GAS(θ))∗ ◦ (GAS(θ))) vecd
(
diag

[
σ2

1, . . . , σ
2
D

])
+ σ2

n vec (I)

= (G∗ ⊗G) (A∗S(θ) ◦AS(θ)) p + σ2
n vec (I)

= G′ (A∗S(θ) ◦AS(θ)) p + σ2
ñi

(2-24)

where G′ = G∗ ⊗G ∈ CN2×N2 .
If the repeated rows in A∗S(θ) ◦AS(θ) are removed (the same procedure

performed in (2-19)), then (2-20) becomes

x′D = G′′AD(θ)p + σ2
ni

=
[
G′′AD(θ) i

]  p
σ2
n

 (2-25)

which is the model to be used with CS-based DoA estimation algorithms.
Notice that the EM coupling case is a more general scenario. The EM

coupling-free setting can be considered in (2-20) by setting G as the identity
matrix, i.e., B = 0.

Another relevant concept for EM coupling evaluation in array processing
is the so-called coupling leakage coefficient [20], given by

L (G) = ‖G‖F
‖G‖F

(2-26)

where G = G− diag (vecd (G)) is the hollow matrix associated to the matrix
G. Usually, arrays that are more robust to EM coupling exhibits a smaller
leakage coefficient.

2.3
Array Geometries

In this section, different ways of defining the set S will be described.
New geometries are associated with individual formation rules/tabulated
entries. These arrangements will be demonstrated to have different associated
characteristics regarding estimation performance, degrees of freedom, leakage
coefficient, and electromagnetic coupling. Moreover, since the discussion is
restricted to the context of linear arrays, the set S is the only quantity that
defines the geometries.
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2.3.1
Uniform Linear Arrays

The so-called Uniform Linear Array (ULA) is the most common array
geometry in the literature. Its characteristics have been extensively studied
since the very beginning of the array processing theory. The essential
characteristics of that kind of array are:

i) Uniformly (equally) spaced physical sensors; and

ii) Linear disposition (over a straight line) of the array elements.

The related literature presents tons of expressions in order to evaluate
the performance prediction of different DoA estimation algorithms under a
ULA acquisition geometry. However, these expressions become a lot more
sophisticated in the context of non-uniform arrays [2].

An example of ULA is given in Figure 2.2 along with its associated
triangular-shaped weight function. One must observe that the ULA acronym
employed here is the same as dense ULA. A sparse ULA is a different
arrangement that is detailed in the following sections.

1 2 3 4 5 6 7 8

2.2(a): Geometry

0

2

4

6

8

ULA

N=8 | DoF=15 | UDoF=15

-7 -5 -4 -2 -1 0 1 2 4 5 7

2.2(b): Weight function with UDoF = DoF = 15

Figure 2.2: ULA with N = 8 sensors

2.3.2
Non-uniform Linear Arrays

Non-uniform Linear Arrays (NLA) are arrays in which the sensors are
linearly distributed with non-uniform spacing [2]. In this text, these structures
are treated as having some empty locations for some positions in comparison
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with a ULA having the same aperture. A generic example is given in Figure 2.3.
NLAs have some advantages over ULA, namely:

i) Smaller electromagnetic coupling (EM), once the mean distance between
elements is larger than that of a ULA;

ii) Larger aperture with the same number of physical sensors;

iii) Possibility of estimating O(N2) sources DoAs with O(N) physical
sensors. With the same number of sensors, ULA arrangements can
estimate only O(N) DoAs.

1 2 4 5 6 8

Figure 2.3: Generic NLA with N = 6 sensors (filled black circles) and 2
empty locations (crosses)

2.3.2.1
Nested Arrays

The so-called nth-Order Nested Arrays (NAQn) were first introduced in
[17]. The discussion is restricted here to the 2nd-Order Nested Arrays (NAQ2).
The formation rule (positioning procedure) described by S is given by (2-27).
The total number of sensors is N = N1 + N2. It is straightforward to notice
that NAQ2 arrangements consist of two ULA segments. The first one with N1

sensors and unitary spacing and the second with N2 sensors and spacing of
magnitude N1 + 1.

S = {n, n = 0, 1, . . . , N1 − 1} ∪ {n(N1 + 1)− 1, n = 1, 2, . . . , N2} (2-27)

That said, the first ULA is a dense structure, and the second one is termed
sparse. Two of its fundamental characteristics are commonly highlighted:

i) Filled difference coarray (hole free), i.e.,

M(m) 6= ∅ ∀ m ≤ max (D) (2-28)

ii) DoF and UDoF are obtained through (2-29). From that, notice that there
are O(N1N2) available DoF for arrays with only N1+N2 sensors. Besides,
since the two kinds of DoF are equal, we state that NAQ2 structures
have no holes at all in difference coarray domain, which is an interesting
property for covariance matrix based algorithms.

DoF = UDoF = 2N2(N1 + 1)− 1 (2-29)
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Figure 2.4 shows a generic array geometry with N = 8 sensors
(Figure 2.4(a)) assembled with two ULAs formed of 4 sensors each.
Figure 2.4(b) represents the associated weight function exhibiting a hole-free
difference coarray set, according to what was expected.

0 1 2 3 4 9 14 19
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2.4(a): Geometry

0

2

4

6

8

NAQ2

N=8 | DoF=39 | UDoF=39

-19 -15 -11 -7 -3 0 3 7 11 15 19

2.4(b): Weight function with UDoF = DoF = 39

Figure 2.4: NAQ2 with N = 8 sensors

2.3.2.2
Coprime Arrays

Coprime Arrays (CPA) comprise a set S with formation rule dictated by

S = {nN1, n = 0, . . . , N2 − 1}∪

{mN2, m = 1, . . . , 2N1 − 1}, N2 > N1. (2-30)

That arrangement consists of a slightly modified version of the original
CPA structure [9]. It was firstly introduced in [33]. That modified version was
required to allow the use of SS-MUSIC for DoA estimation.

It is worth noticing that the cardinality of the set S is |S| = N2 +2N1−1,
which clearly states that CPA has a total of N = N2 + 2N1 − 1 physical
sensors. The difference coarray associated with CPA geometries have some
holes. However, it will always possess a central uniform segment with UDoF ≥
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2N1N2 + 1, which allows the employment of SS-MUSIC algorithm in the same
manner as for the previously presented NAQ2 arrays.

Figure 2.5 gives us an example of a CPA geometry with N = 8 sensors,
representing the weight function with a central uniform segment of UDoF = 23
elements and a difference coarray set with DoF = 27.
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2.5(a): Geometry
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2.5(b): Weight function with UDoF = 23 and DoF = 27. Notice that
the difference coarray set has holes for m = ±12 and m = ±14.

Figure 2.5: CPA with N = 8 sensors and (N1, N2) = (2, 5)

2.3.2.3
Super Nested Arrays

The so-called 2nd-Order Super Nested Arrays (SNAQ2) were first
introduced in [1] and consist of an enhanced version of the previously described
NAQ2. One of the most critical features of SNAQ2 structures is the reduction
in the mean of the electromagnetic coupling (EM) of the ensemble of physical
sensors in terms of array design.

Therefore, when the model considers EM coupling as a disturbing side
effect, usually SNAQ2 leads to better results. For the same number of sensors,
these arrangements have the same aperture of that of a NAQ2 (same hole-free
set D). However, their weight function is different. This allows the employment
of the SS-MUSIC algorithm to perform the multi-target DoA estimation
procedure. The set S, in this case, is given by (2-31).
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S = X(2)
1 ∪ Y(2)

1 ∪ X(2)
2 ∪ Y(2)

2 ∪ Z(2)
1 ∪ Z(2)

2 (2-31)
where

X(2)
1 = 1 + 2l|0 ≤ l ≤ A1

Y(2)
1 = (N1 + 1)− (1 + 2l) | 0 ≤ l ≤ B1

X(2)
2 = (N1 + 1) + (2 + 2l) | 0 ≤ l ≤ A2

Y(2)
2 = 2(N1 + 1)− (2 + 2l) | 0 ≤ l ≤ B2

Z(2)
1 = l(N1 + 1) | 2 ≤ l ≤ N2

Z(2)
2 = N2(N1 + 1)− 1

(2-32)

The parameter set associated with (2-32) (A1, B1, A2 and B2) is defined
according to (2-33).

(A1, B1, A2, B2) =



(r, r − 1, r − 1, r − 2) if N1 = 4r

(r, r − 1, r − 1, r − 1) if N1 = 4r + 1

(r + 1, r − 1, r, r − 2) if N1 = 4r + 2

(r, r, r, r − 1) if N1 = 4r + 3

(2-33)

In order to illustrate some of the features, Figure 2.6(a) shows us a
generic SNAQ2 structure with N = 8 sensors. The associated weight function
is presented in Figure 2.6(b). It brings to light the hole-free coarray and the
smaller magnitude of the weights next to the origin if compared to NAQ2
(Figure 2.4(b)). Moreover, confronting Figure 2.4 and Figure 2.6, we verify
the equality of aperture (same physical length) and difference coarray set
extension.

2.3.2.4
Minimum Redundancy Arrays

Minimum Redundancy Arrays (MRA) are designed to minimize the
number of pairs of physical sensors with the same position difference, under
the restriction that the associated difference coarray set is hole-free. Since
many DoA estimation algorithms are based on the signal covariance matrix
CxS , MRA structures can be useful to them due to its capability of estimating
second-order statistics with a minimum number of physical sensors.

However, one of the drawbacks of MRA is the lack of a simple formation
rule for the set S. This set is defined through exhaustive search routines and
consists of an intricate combinatorial optimization problem that increases its
complexity with the number of physical sensors.
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Figure 2.6: SNAQ2 with N = 8 sensors

It can be shown that [2]:

Na = N(N − 1)−NR +NH

2 (2-34)

where Na, NR and NH correspond to the aperture length, number of
redundancies (undesired feature) and number of holes7. It is required that
NH = 0 and Na is maximized in MRA design. Some of the known MRAs
presented in [2] are exhibited in Table 2.1. An MRA geometry with N = 8
sensors and its weight function are presented in Figure 2.7.

Table 2.1: Minimum Redundancy Arrays

N NR/2 Na S
3 0 3 {0, 1, 3}
4 0 6 {0, 1, 4, 6}
5 1 9 {0, 1, 4, 7, 9}
6 2 13 {0, 1, 4, 5, 11, 13}
7 4 17 {0, 1, 4, 10, 12, 15, 17}
8 5 23 {0, 1, 4, 10, 16, 18, 21, 23}
9 7 29 {0, 1, 4, 10, 16, 22, 24, 27, 29}

7The number of redundancies and holes is computed considering both sides of the weight
function. The original approach in [2] considers only positive coarray locations.
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2.7(b): Weight function with UDoF = DoF = 47

Figure 2.7: MRA with N = 8 sensors

2.3.2.5
Minimum Hole Arrays

Minimum Hole Arrays (MHA), Non-redundant Arrays or Golomb Rulers,
are designed in such a way the number of holes in D is minimized with the
restriction that the weight function has only 0 and 1 as possible elements,
except for the point (0, w(0) = N) [8]. That said, we minimize NH subject
to {w(m) = 0 or w(m) = 1 for m 6= 0}. The constraint ensures that |M(m)| ≤
1, ∀ m 6= 0. This procedure forces a non-redundance acquisition system and
generates a large aperture array compared to the other geometries discussed
in this text [34].

These geometries are obtained from tabulated entries, as in the case of
MRA. Some MHA described in [2] can be seen in Table 2.2. Figure 2.8(a)
exhibits a generic MHA geometry with N = 8 sensors. The larger aperture
with 34 − 0 = 34 units is way superior to the other geometries apertures
considered so far. Moreover, the weight function in Figure 2.8(b) also makes
evident the increased DoF, which makes easier the estimation procedure by
using Compressive Sensing algorithms. One of the drawbacks of this kind of
structure is the nonexistence of closed-form solutions for the design of S [8, 35].
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Table 2.2: Minimum Hole Arrays

N NH/2 Na S
3 0 3 {0, 1, 3}
4 0 6 {0, 1, 4, 6}
5 1 11 {0, 1, 4, 9, 11}
6 2 17 {0, 1, 4, 10, 12, 17}
7 4 25 {0, 1, 4, 10, 18, 23, 25}
8 6 34 {0, 1, 4, 9, 15, 22, 32, 34}
9 8 44 {0, 1, 5, 12, 25, 27, 35, 41, 44}
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· · · · · · · · · · · ·

2.8(a): Geometry
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2.8(b): Weight function with UDoF = 31 and DoF = 57

Figure 2.8: MHA with N = 8 sensors

2.4
Classic DoA Estimation Algorithms

In this section, some of the classic algorithms that are employed to
perform DoA estimation are discussed, namely:

i) Quadratic: Beamscan (Bartlett beamformer), MVDR;

ii) Subspace: Spectral MUSIC; and

iii) Stochastic Maximum Likelihood.

2.4.1
Quadratic Methods

Quadratic methods are called as such because they compute quadratic
forms to estimate spatial spectra. Two of the most known algorithms
of this type are the beamscan (Bartlett beamformer) and the Minimum
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Variance Distortionless Response (Capon beamformer) or MVDR method.
Each algorithm varies the steering vector aS(θ) over the grid (range) indicated
by θg, plots the value of a specified function and selects its D peaks as the
estimated DoAs θ̂ = [θ1, θ2, . . . , θD]. Notice that the number of sources D is
assumed to be known a priori [2].

The Bartlett beamformer computes the expression

P̂B(θ) = aHS (θ)ĈxSaS(θ) (2-35)

for each θ in θg and takes the D largest values as corresponding to the DoA
estimates [16], where ĈxS is the sample covariance matrix defined in (2-6).

The MVDR beamformer consists of the design of a distortionless filter
w to match a plane wave coming from θ direction [7, 15, 36, 37]. In this case,
we require

wHaS(θ) = 1 (2-36)
Furthermore, we assume the input signal covariance matrix is available. This
design procedure intend to minimize the total output power subject to (2-36).
This optimization leads to the MVDR filter which is given by

wH
MVDR =

aHS (θ)Ĉ−1
xS

aHS (θ)Ĉ−1
xS aS(θ)

(2-37)

This weighting is used to generate the MVDR power spectrum, which is
computed as follows

P̂MVDR(θ) = 1
T

T∑
t=1

∣∣∣wH
MVDRẋ(t)

∣∣∣2

= 1
T

T∑
t=1

∣∣∣∣∣∣ aHS (θ)Ĉ−1
xS

aHS (θ)Ĉ−1
xS aS(θ)

ẋ(t)

∣∣∣∣∣∣
2

= 1
aHS (θ)Ĉ−1

xS aS(θ)

(2-38)

Again, as in Bartlett beamformer, we make the D largest values in (2-38)
correspond to the estimated DoAs. To illustrate the discussion, consider the
MVDR and Bartlett spectra in Figure 2.9. Both spectra were computed from
(2-35) and (2-38). The peaks in θ1 = −π/4 and θ2 = π/8 radians correspond
to two plane-wave signals impinging on an MRA with N = 6 sensors, T = 100
snapshots and SNR = −1 dB.

To conclude, consider the previous scenario evaluated with R = 500
Monte Carlo trials over an SNR range from −10 dB to 10 dB, with a
comparison between MRA and ULA geometries for each of the algorithms
discussed above. The root mean square error (RMSE) is a standard metric
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Figure 2.9: Spectrum estimate for MVDR and Bartlett methods. Two
equal-power uncorrelated sources at θ1 = −π/4 and θ2 = π/8 radians,
T = 100 snapshots, SNR = −1 dB. The signals impinge on an MRA
with N = 6 sensors.

used to evaluate the algorithm performance in this case and is defined through
[2]

RMSE =

√√√√ 1
DR

R∑
i=1
‖θ − θ̂i‖2

2 (2-39)

where R is the number of trials, and θ̂i ∈ RD is the vector with the DoA
estimation for the D sources produced by the i-th trial.

The RMSE curves are shown in Figure 2.10. The MRA geometry leads
to better performance over almost the entire SNR range. This fact is well
documented in the literature: typically, NLAs have a much better performance
in comparison with ULAs with the same number of array elements, once they
cover a larger aperture [5, 38]. Next, subspace methods are discussed.

2.4.2
Subspace-Based Methods

The subspace-based techniques for DoA estimation rely on the following
properties, established from the analysis of CxS [23]:

i) The eigenstructure of that matrix comprises two subspaces spanned by
its eigenvectors: the signal and noise subspaces, orthogonal to each other;

ii) The steering vectors, which are the columns of the array manifold matrix
AS(θ), span the signal subspace. The same space is spanned by the
eigenvectors corresponding to the D largest eigenvalues; and

iii) The remaining eigenvectors span the noise subspace and correspond to
the N −D smallest eigenvalues.

In what follows, a subspace method termed Multiple Signal Classification
(MUSIC) is detailed. Let
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Figure 2.10: MVDR and Bartlett algorithms evaluation with N = 6
sensors MRA and ULA. Two equal-power uncorrelated sources at θ1 =
−π/4 and θ2 = π/8, T = 100 snapshots and SNR = [−10, 10] dB.

CxS = UΣUH (2-40)
be the eigen-decomposition of the received signal covariance matrix, where

Σ = diag
([
σ2

1 + σ2
n, . . . , σ

2
D + σ2

n, σ
2
n, . . . , σ

2
n

])

=

 Σs
D×D

0
D×(N−D)

0
(N−D)×D

Σn
(N−D)×(N−D)

 (2-41)

is the diagonal matrix with the eigenvalues of CxS sorted in descending
order. The matrix with the corresponding eigenvectors U can be written
as U = [Us | Un]. The range spaces of Us ∈ CN×D and Un ∈ CN×(N−D)

correspond to the mutually orthogonal signal and noise subspaces, respectively.
They are also linked to the largest and the smallest eigenvalues in (2-41)
corresponding to the matrices Σs and Σn.

Following that, R (Us), the range space of Us, equals the space spanned
by the source signals [5]

R (Us) = R (AS(θ)) (2-42)

Since U is unitary, UHU = I. From that, [Us | Un]H [Us | Un] = I ⇒
UH
s Un = 0, which shows us that both subspaces are orthogonal. Taking that

into account and considering (2-42), it follows that
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Figure 2.11: Spectrum MUSIC. Two equal-power uncorrelated sources
at θ1 = −π/4 and θ2 = π/8 radians, T = 100 snapshots, SNR = −1 dB.
The signals impinge on an MRA with N = 6 sensors.

aHS (θi) Un = 0, for i = 1, . . . , D (2-43)

After that, we compute

P̂MU (θ) = 1
aHS (θi) UnUH

n aS (θi)
(2-44)

for all θi ∈ θg, plot (2-44) (MUSIC spectrum) against θg and find the largest D
local maxima that correspond to the D estimated DoAs. Notice that Spectrum
MUSIC algorithm is applicable to both NLA and ULA as well [2].

To demonstrate, consider what is shown in Figure 2.11, under the same
scenario of Subsection 2.4.1. The MUSIC spectrum under the same conditions
regarding number of snapshots, SNR and MRA geometry was computed.
Notice that the largest peaks are located at θ1 = −π/4 and θ2 = π/8 radians,
indicating the two sources impinging on that array in the corresponding
directions.

Figure 2.12 shows MUSIC performance with RMSE curves against SNR
for MRA and ULA with N = 6 sensors, highlighting the superior performance
of non-uniform arrays for subspace methods, except for lower SNRs.

2.4.3
Maximum Likelihood Estimators

The Maximum Likelihood Estimator (MLE) is an unbiased estimator
under certain conditions. Asymptotically8, its performance approaches the
Cramér-Rao Lower Bound (CRLB). Moreover, according to what is well
established in the literature [2, 39], it also possesses a satisfactory performance
outside the asymptotic region.

8T , the number of snapshots, tends to ∞.
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Figure 2.12: MUSIC algorithm evaluation under MRA and ULA with
N = 6 sensors each. Two equal-power uncorrelated sources at θ1 = −π/4
and θ2 = π/8, T = 100 snapshots and SNR = [−10, 10] dB.

Since the arriving signals in the array, under the model assumptions
considered in this text, are considered to be unknown complex Gaussian
distributed, the unconditional (stochastic) version of the ML estimator is
considered.

Consider an arbitrary array geometry with N sensors. In this case, the
single snapshot probabilistic model assumed by the received signal9 x ∼
CN (0|Cx) is governed by the following probability density function (PDF)
[2]

px(t)|u (ẋ(t)) = 1
|πCx|

exp
{
−ẋH(t)C−1

x ẋ(t)
}

(2-45)

where x(t) ∈ CN is the received signal random vector, ẋ(t) ∈ CN is its
realization (snapshot taken at time t), and u =

[
θ> | p>

]>
∈ R2D is the

nonrandom unknown parameter vector to be estimated (true source directions
and powers).

Notice that the received signal covariance matrix in (2-5) depends on the
DoA angles θ and the sources covariance matrix diag (p), in such a way that
a total of 2D parameters must be estimated, under the hypothesis that σ2

n is
known a priori.

Later on, the scenario with unknown σ2
n is considered. For the

multiple measurements vector (MMV) model, associated with independent
and identically distributed (i.i.d) snapshots, the joint PDF for the total of
T snapshots is given by

px(1),...,x(T )|u (ẋ) =
T∏
t=1

1
|πCx|

exp
{
−ẋH(t)C−1

x ẋ(t)
}

(2-46)

9To simplify the notation, we dropped the dependence of x on S.
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The log-likelihood function is written as

Lx (u) = ln
(
px(1),...,x(T )|u (ẋ)

)
= −T ln (|Cx|)−

T∑
t=1

ẋH(t)C−1
x ẋ(t)− TN ln (π)

(2-47)

Pre-multiplying by 1/T , dropping the constant term and making use of
the cyclic property of the trace operator, we have

L (u) = − ln (|Cx|)−
1
T

T∑
t=1

ẋH(t)C−1
x ẋ(t)

= −
[
ln (|Cx|) + tr

(
1
T

T∑
t=1

ẋH(t)C−1
x ẋ(t)

)]

= −
[
ln (|Cx|) + tr

(
C−1

x
1
T

T∑
t=1

ẋ(t)ẋH(t)
)]

= −
[
ln (|Cx|) + tr

(
C−1

x Ĉx
)]

(2-48)

The MLE is the value of u that maximizes (2-48) (the dependence of u is
implicit in Cx(u)). In order to obtain the solution to this optimization problem,
once u is a partitioned vector and the optimization problem formulation allows
it, the first step to be taken is the maximization over p (or Cs), in such a way
we obtain an explicit function of θ. After that, we maximize over the remaining
D variables. To perform that, we follow the method described in [2, 39].

The MLE for Cs, which is denoted as Ĉs,ML, is given by

Ĉs,ML = A†S(θ)
(
Ĉx − σ2

nI
) [

A†S(θ)
]H

(2-49)

where A†S(θ) =
[
AH

S (θ)AS(θ)
]−1

AH
S (θ) is the Moore-Penrose pseudoinverse

associated with the matrix AS(θ). Using (2-5), we find the ML estimate for
Cx, which will be given by

Ĉx,ML = AS(θ)Ĉs,MLAH
S (θ) + σ2

nI

= PAS(θ)
(
Ĉx − σ2

nI
)

PAS(θ) + σ2
nI

(2-50)

where PAS(θ) = AS(θ)
[
AH

S (θ)AS(θ)
]−1

AH
S (θ) is the orthogonal projection

matrix onto the space spanned by the columns of AS(θ). Substituting (2-50)
into (2-48) and manipulating the expression to find a more useful way of
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expressing the final optimization problem, results in

θ̂AML = argmax
θ

{
− ln

(
det

(
PAS(θ)ĈxPAS(θ) + σ2

nP>AS(θ)

))
−

tr
(
P>AS(θ)Ĉx

)
/σ2

n

}
(2-51)

where det (·) is the determinant operator, ln (·) represents the natural
logarithm, AML stands for Asymptotic ML and P>AS(θ) = I − PAS(θ) is the
orthogonal projection matrix onto the null-space of AH

S (θ). Since one of the
model assumptions is that the variance σ2

n is known, for the practical case in
that this quantity is not available, it can be estimated through [2]

σ2
n,ML =

tr
(
P>AS(θ)Ĉx

)
N −D

(2-52)

which leads to the final asymptotic MLE

θ̂AML = argmin
θ

det
PAS(θ)ĈxPAS(θ) +

tr
(
P>AS(θ)Ĉx

)
P>AS(θ)

N −D

 (2-53)

Thus, the sources DoA θ can be estimated by maximizing (2-53), since we
have at our disposal the array manifold matrix AS(θ), the number of sensors
N , the number of sources D, and the sample received signal covariance matrix
estimate Ĉx, obtained through (2-6).

In general, a search procedure is performed to find the solution of (2-53).
To clarify that, consider what is in Figure (2.13). The simulation scenario
with MRA is again considered in this case. Since we have two parameters
to be estimated, we can visualize the objective function (2-53) against the
bidimensional range for each direction.

The contour plot indicates the optimal point at θ̂1 ≈ −π/4 and θ̂2 ≈ π/8.
Notice that the evaluation produces a symmetric surface, which is consistent
with the mathematical nature of the problem. In that way, only g(g − 1)/2
points must be computed for the entire search. After that, optionally, a
local optimization routine can be performed to precisely estimate the DoAs
[2]. Notice that instead of a one-dimensional search as was done for the
previous algorithms, MLE requires D-dimensional searches, which is the major
drawback of this method.

2.5
Difference Coarray DoA Estimation

All of the detailed algorithms described so far do not consider the
difference coarray transformation in Subsection 2.2.1. Due to that, they cannot
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Figure 2.13: ML objective function (2-53) with the corresponding
contour plot. Two equal-power uncorrelated sources at θ1 = −π/4 and
θ2 = π/8, T = 100 snapshots, SNR = −1 dB. The signals impinge on
an MRA with N = 6 sensors. Evaluation over a two-dimensional grid of
1024 × 1024 points in the interval [−π/2, π/2]. Note the optimal point
in θ̂ ≈ [−π/4, π/8]>.

take advantage of the extra DoF that arises from that kind of formulation,
allowing the estimation of more sources than sensors. The following subsections
describe two techniques to deal with DoA estimation in difference coarray
domain: spatial smoothing MUSIC (SS-MUSIC) and compressive sensing, the
latter being the focus of this work.

2.5.1
Spatial Smoothing MUSIC

In this subsection, we describe the so-called Spatial Smoothing MUSIC
(SS-MUSIC), an algorithm introduced in [17] and adapted in [40] to reduce
computational complexity and turn its theoretical analysis simpler.

This algorithm performs a forward spatial smoothing based approach to
build up the rank of the received signal covariance matrix in difference coarray
domain. It should be remembered that spatial smoothing only can be applied
to the set U of the difference coarray, i.e., it is required that the portion on
which it is performed does not have any holes [40].

This is the main reason why SS-MUSIC can only be used with arrays
that present the ratio |U| / |D| relatively large. Ideally, it should be 1 in order
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Figure 2.14: Weight function for MHA with UDoF= 31 and DoF= 57

to maximize the available DoF. Indeed, this ratio is unitary for all geometries
with hole-free difference coarrays, which is the case for ULA, NAQ2, SNAQ2,
and MRA.

Consider the vectorized version of CxS where we removed the repeated
rows and sorted them in ascending order to get the sensors’ positions differences
in correspondence with the set D. The resulting vector was represented as xD

in (2-19). Define the number

L = |U|+ 1
2 (2-54)

as the number of sensors in each subcoarray for the spatial smoothing
procedure in difference coarray domain. That said, we build the spatial
smoothed matrix

Rss = 1
L

L−1∑
i=0

JixU (JixU)H (2-55)

where Ji =
[
0L×(L−1−i) | IL×L | 0L×i

]
∈ {0, 1}L×(2L−1) is a selection matrix,

which is positive semidefinite (PSD) [40]. This matrix is used to decompose
signal and noise subspaces and allows one to estimate until L−1 sources DoA.
For most of the geometries, L = O (N2).

To illustrate, consider again the weight function of a MHA geometry with
N = 8 sensors in Figure 2.8(b), reproduced in Figure 2.14. It is clear that the
sets D and U are given by

D = {0} ∪ {±1,±2, . . . ,±15,±17,±18,±19,±21,±22,

± 23,±25,±28,±30,±31, . . . ,±34} (2-56)

U = {0} ∪ {±1,±2, . . . ,±15} (2-57)
These sets are graphically represented in Figure 2.15, which serves us as

a guide to SS-MUSIC. Note the coarray representation in which the blue filled
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square symbols represent a location for which the weight function is different
from zero, i.e., the elements of D and U ⊂ D. The crosses represent holes
(missing lags) in the difference coarray domain.

In the scheme, the contiguous uniform set U was zoomed in to highlight
the useful part of the whole difference coarray for SS-MUSIC. The number of
sources DoA that can be estimated by SS-MUSIC is directly connected to that
contiguous central set.

Furthermore, the overlapping subcoarrays are represented as orange filled
squares sliding along the set U. Their cross-products are then used in (2-55) to
build the matrix Rss such that rank (Rss) = L, with an eigenstructure linked
to the noise and signal subspaces, similar to what we saw in Subsection ??.

To clarify, consider the SS-MUSIC spectrum in Figure 2.16. The
simulation scenario is the same used for the classic algorithms from previous
sections, except for the geometry. In this case, an MHA with N = 8 sensors
was employed. The two peaks demonstrate the SS-MUSIC capability to detect
the sources DoA. RMSE curves in Figure 2.17 demonstrate the superior
performance of MHA over a ULA with the same number of sensors, following
the previous comparisons.

2.5.2
Compressive Sensing Algorithms

Compressive Sensing is a relatively new field of research that aims at
recovering sparse solutions of underdetermined systems of linear equations
with overwhelming probability (probability 1, in practice). CS algorithms are
able to recover compressible (sparse) signals measured linearly, overcoming the
Nyquist-Shannon sampling theorem [19, 41–43].

They have been used to undersample signals and accurately reconstruct
them in many areas such as medical imaging, radar, sonar, and machine
learning [19, 44]. Moreover, they have been employed to design new acquisition
systems that are capable of performing a compressed acquisition of data.
In that way, instead of obtaining tons of data and compress them after the
acquisition, they allow data acquisiton in a compressed manner, so that the
DAQ storage systems and A/DC converters become more straightforward and
less expensive.

That said, consider the following linear measurement process

y = Ax (2-58)

where A ∈ Cm×N is the measurement matrix with l2-normalized columns,
y ∈ Cm is the observed data (or measurements vector) and x ∈ CN is a
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Figure 2.16: SS-MUSIC. Two equal-power uncorrelated sources at θ1 =
−π/4 and θ2 = π/8, T = 100 snapshots, SNR = −1 dB. The signals
impinge on an MHA with N = 8 sensors.
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Figure 2.17: SS-MUSIC algorithm evaluation under MHA and ULA with
N = 8 sensors each. Two equal-power uncorrelated sources at θ1 = −π/4
and θ2 = π/8, T = 100 snapshots and SNR = [−10, 10] dB.

generic compressible (sparse) discrete signal10, with m < N .
Commonly, noise measurements are considered in the model so that

(2-58) becomes
y = Ax + ε (2-59)

where typically the variable ε is assumed to have the measurement noise
variance in magnitude (‖ε‖2 = σ2

n). In this case, sparse recovery algorithms
typically try to find the vector x that minimizes the residual Euclidean norm
‖y−Ax‖2.

It is worth pointing out that we can deal with signals that are not
themselves sparse, but have a sparse representation under some basis Ψ. In
that case, x = ∑N

i=1 siψi = Ψs, where s ∈ CN is the weighting coefficients
sparse vector so that si = 〈ψi,x〉 = ψH

i x.
When this alternative basis is emphasized, the measurement matrix A

10Notice that the variablesm andN are generic dimensions for A and do not have anything
to do with the number of sensors and covariance lag from previous subsections.
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becomes the composition of the standard matrix product between the matrices
Φ and Ψ, where Φ is the fixed measurement matrix that does not depend on x
and, for reasons to be explained later, is usually selected as a random matrix.

For example, when the signal is sparse in time domain, Ψ = I and all the
properties required to allow the sparse reconstruction imposed to A apply to
Φ. To sum up, A = Φ or A = ΦΨ. In the discussion that follows, we consider
the former case for the ease of representation.

Since we considerm < N and y 6= 0 (unknowns outnumber the equations
and a DAQ system with proper functioning), the system is nonhomogeneous
underdetermined (fewer equations than unknowns) and it is either inconsistent
(no solution) or consistent with infinitely many solutions [45].

On the other hand, results in CS theory have demonstrated that if
the vector x is sufficiently sparse on a given basis, which must be known
a priori, then it can be effectively recovered from the observed data with
overwhelming probability. This is called sparse recovery process and requires
specific conditions on A and x.

These conditions involve some core definitions called Restricted Isometry
Property (RIP) and Coherence, which are described along with some other
critical definitions in CS theory [19] [46], as follows.

Definition 2.6 (Overcomplete Dictionary) The linear measurement matrix A
is defined as overcomplete dictionary.

Definition 2.7 (Atoms) The set of columns of the matrix A = [a1, a2, . . . , aN ]
is defined as atoms set.

Note that, since m < N , the set {a1, a2, . . . , aN} is linearly dependent, and
span (a1, a2, . . . , aN) = Cm, for a full row-rank matrix A.

Definition 2.8 (Sparse Recovery Algorithm) The sparse recovery algorithm,
denoted ∆ : Cm → CN , is a sequence of computationally tractable mathematical
instructions that allows one to recover the sensed sparse signal x ∈ CN from
the observed data y ∈ Cm.

Definition 2.9 (Support) The support of a vector x ∈ CN is the index set of
its nonzero entries, i.e.,

supp (x) , {j ∈ [N ] | xj 6= 0} (2-60)

Definition 2.10 (K-Sparse Vector) The vector x is called K-sparse if at most
K of its entries are nonzero, i.e., if
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‖x‖0 , |supp (x)| ≤ K (2-61)

which means that the cardinality of its support set is at most K. The notation
‖x‖0 is employed to express the number of nonzero entries in the vector x.
Notice that this does not represent a norm at all, because it does not satisfy
the homogeneity property11.

Definition 2.11 (Set of K-Sparse Vectors) The set of all K-sparse vectors is
the set ΣK such that

ΣK , {x | ‖x‖0 ≤ K} (2-62)
Definition 2.12 (Sparsity-Level) The vector x is said to posses a
sparsity-level K if its support set has cardinality K.

Definition 2.13 (Coherence) Let A ∈ Cm×N be a matrix with l2-normalized
columns, i.e., ‖ai‖2 = 1 ∀ i ∈ [N ]. The coherence µ = µ(A) of the matrix A
is defined as

µ , max
1≤i<j≤N

|〈ai, aj〉| (2-63)

i.e., the largest absolute inner product between any two different columns.

Definition 2.14 (Restricted Isometry Property - RIP) A matrix A satisfies
the Restricted Isometry Property (RIP) of order K if there exists a δK ∈ (0, 1)
such that

(1− δK)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δK)‖x‖2
2 (2-64)

holds for all x ∈ ΣK

Definition 2.15 (Restricted Isometry Constant - RIC) The K-th restricted
isometry constant δK = δK (A) of a matrix A ∈ Cm×N is the smallest δ ≥ 0
such that

(1− δK)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δK)‖x‖2
2 (2-65)

holds for all x ∈ ΣK.

Note that Definition 2.14 is linked to the fact that if A satisfies the RIP
of order 2K, then (2-64) means that the dictionary approximately preserves
the distance between any chosen pair of K-sparse vectors. To clearly see that,
it is enough to replace x by x1 − x2, with x1,x2 ∈ ΣK and, as a consequence,
x ∈ Σ2K .

From that, the dimensionality reduction from N to m imposed on the
measurement process does not confuse the vectors in the observed data space,
in such a way that ambiguities are avoided during the reconstruction procedure.
In general, the case of interest is when δK is small for reasonably largeK. Next,
we discuss two of the most popular classes of CS algorithms, namely greedy
and thresholding-based methods.

11‖ax‖ = |a| ‖x‖, for all scalars a (homogeneity)
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2.5.2.1
Greedy Algorithms

The so-called greedy algorithms are a particular class of algorithms
commonly used in CS, which try to find out the sparse signal x support set
prior to the magnitude of its non-zero coefficients. Two of the most popular
CS greedy algorithms are named Orthogonal Matching Pursuit (OMP) and
Subspace Pursuit (SP).

The OMP algorithm [19, 47] consists of an iterative strategy that aims
at reducing the Euclidean residual norm ‖y − Ax‖2 at each iteration. The
algorithm is formally defined in Algorithm 2.1. In this case, the sparsity level
K is assumed to be known so that the algorithm performs exactly K iterations
and builds up a support set T = supp (x) with cardinality |T| = K.

There are three fundamental stages. In line 3, correlation-maximization
step is performed, which extract the atom from the dictionary most correlated
with the residual. This indicates one index to be merged to the sparse vector
support set T. This mergin step is carried out in line 4. After that, an
orthogonal projection is performed in line 5. At the end, both the sparse signal
x and its support set T are estimated as x(])

OMP and T(]).

Algorithm 2.1: Orthogonal Matching Pursuit - OMP
Input : Dictionary A

Observed data y
Sparsity level K

1 T(0) = ∅, x(0) = 0
2 for i← 0 to K − 1 do
3 j ← argmax

ĵ∈[N ]

{∣∣∣∣[AH
(
y−Ax(i)

)]
ĵ

∣∣∣∣}
4 T(i+1) = Ti ∪ {j}
5 x(i+1) ← argmin

z∈CN

{
‖y−Az‖2, supp (z) ⊂ T(i+1)

}
Output: K-sparse vector x(])

OMP = x(K) and support set estimate
T(]) = T(K)

The orthogonal projection step is a fundamental stage in many of the
algorithms in CS theory. Due to that, it is worth to explain some of its
fundamental aspects. Consider the scheme in Figure 2.18. We deal with the
case most frequently found in practice: the noisy environment in (2-59). The
observed data vector y is not enclosed in the dictionary range R (A). However,
it can be decomposed into two components: yp and r, namely, the estimated
noiseless observed data, entirely enclosed in R (A), and the residual (under
perfect recovery, r = ε).
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yp = Ax] = PAy

y
r = y −Ax] = Pᵀ

Ay

R(A)

N
(
AH

)

Figure 2.18: Orthogonal Projection Scheme

The former is the orthogonal projection of y onto R (A). The OMP
optimization in line 5 aims to estimate that vector through the search of x].
Fortunately, that search has a closed-form solution given by [2]

x] =
(
AHA

)−1
AHy

= A†y
(2-66)

and

yp = Ax]

= A
(
AHA

)−1
AHy

= PAy

(2-67)

where A† =
(
AHA

)−1
AH is the Moore-Penrose pseudoinverse of A and

PA = A
(
AHA

)−1
AH is the orthogonal projection matrix onto the spanning

of the columns of the full column rank (tall) matrix A. The residual can be
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obtained from yp by

r = y− yp
= y−Ax]

= y−A
(
AHA

)−1
AHy

= (I−PA) y

= P>Ay

(2-68)

where P>A = I − PA is the orthogonal projection matrix onto the null space
of the full row rank (fat) matrix AH . Moreover, let us demonstrate the
orthogonality between the null and range spaces of A.

Consider a generic vector u ∈ N
(
AH

)
and v ∈ R (A). Then, AHu = 0

and v = Ax. From that,

〈u,v〉 = uHv

= uHAx

=
((

uHAx
)H)H

=
(
xHAHu

)H
=
(
xH0

)
= 0

(2-69)

Consequently, if r ∈ N
(
AH

)
and yp ∈ R (A),

〈r,yp〉 = rHyp

=
(
yH −

(
x]
)H

AH
)

Ax]

= yHAx] −
(
x]
)H

AHAx]

= yHAA†y− yH
(
A†
)H

AHAA†y

= yHAA†y− yHA
(
AHA

)−1 (
AHA

)
A†y

= yHAA†y− yHAA†y

= 0

(2-70)

which is consistent with (2-69). This concludes the algebraic proofs related to
the geometric intuition in Figure 2.18.

Consider the following triangular brackets notation, where 〈s〉L is the
vector in C|L| which is a restriction of s to the entries indexed by L, 〈A〉L
is the matrix in Cm×|L| which is a restriction of A ∈ Cm×N to the columns
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indexed by L, and L is the complement of L.
Taking that into account, the orthogonal projection solution for each

iteration of Algorithm 2.1 is 〈x〉(i+1)
T(i+1) = 〈A〉†T(i+1) y and 〈x〉(i+1)

T(i+1) = 0. Then,
x(i+1) = 〈x〉(i+1)

T(i+1)∪T(i+1) .
Another greedy algorithm very similar to OMP is the Subspace Pursuit

(SP). This algorithm was firstly introduced in [48] and is detailed in Algorithm
2.2.

Define the operators LK() and HK(·) as [19]

LK(x) , index set of K largest absolute values of x (2-71)

HK(x) , x′, where 〈x′〉LK(x) = 〈x〉LK(x) and 〈x′〉LK(x) = 0 (2-72)

i.e., the operator HK(·), termed K-th order hard thresholding operator,
sets all but the largest (magnitude) K elements of a vector to zero. For
example, L2

(
[−1, 2,−3, 5,−4]>

)
= {4, 5} and H2

(
[−1, 2,−3, 5,−4]>

)
=

[0, 0, 0, 5,−4]>.

Algorithm 2.2: Subspace Pursuit - SP
Input : CS Measurement matrix/dictionary A

Observed data y
Sparsity level K

1 x(0) = 0, T(0) = ∅, i = 0
2 while some stopping criterion is not met do
3 V(i+1) ← LK

(
AH

(
y−Ax(i)

))
4 U(i+1) ← T(i) ∪ V(i+1)

5 u(i+1) ← argmin
z∈CN

{
‖y−Az‖2, supp (z) ⊂ U(i+1)

}
6 T(i+1) ← LK

(
u(i+1)

)
7 x(i+1) ← argmin

z∈CN

{
‖y−Az‖2, supp (z) ⊂ T(i+1)

}
8 i = i+ 1

Output: K-sparse vector x(])
SP

OMP presents a lower computational complexity in comparison with SP,
due to the two orthogonal projections in lines 5 and 7 of Algorithm 2.2. Notice
that the last one is performed in a K-dimensional space for all the iterations.
To be more specific, SP selects K indices from correlation-maximization in line
3 and merges this set with the candidate support (line 4).

After that, it performs the orthogonal projection step in a range space
given by the spanning of the atoms indexed by U(i+1), according to line 5), and
compute the support set estimate through the operator LK(·) in line 6.
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Once the support set is found, SP computes the current K-sparse
estimation projecting the measurements onto the spanning of the atoms
indexed by T(i+1). Next, we introduce a different class of CS-based algorithms
based on thresholding operations.

2.5.2.2
Thresholding-Based Algorithms

The iterative hard thresholding (IHT) algorithm [49] is detailed in
Algorithm 2.3. In case of successful recovery, it converges to a local minimum
of the following optimization problem

argmin
z∈FN

‖y−Az‖2
2 subject to |supp (z)| ≤ K (2-73)

i.e., it seeks for the orthogonal projection solution (minimum least squares)
iteratively under the constraint of a K-sparse signal.

The recursion in line 3 operates to solve the system AHAx = AHy,
which can be interpreted as the fixed-point equation x(i+1) =

(
I −AHA

)
x(i)+

AHy⇒ x(i+1) = x(i)+
(
AH

(
y−Ax(i)

))
. TheHK (·) operator ensures we have

K-sparse signals, once we target K-sparse vectors [19, 46]. It should be noticed
that IHT does not compute any orthogonal projection in each of its two steps.

Algorithm 2.3: Iterative Hard Thresholding - IHT
Input : CS Measurement matrix/dictionary A, observed data y,

sparsity level K
1 x(0) = 0, i = 0
2 while some stopping criterion is not met do
3 u(i+1) ← x(i) +

(
AH

(
y−Ax(i)

))
4 x(i+1) ← HK

(
u(i+1)

)
5 i = i+ 1

Output: K-sparse vector x(])
IHT

In CS theory, according to what was reviewed in Definition 2.14 and
Definition 2.15, an adequate dictionary for the sparse recovery problem has to
satisfy the RIP property. Gaussian random matrices are typically employed as
dictionaries in CS because they satisfy RIP with high probability [41], leading
to adequate rates of exact recovery.

However, due to some intrinsic characteristics of the dictionary B in
relation to the RIP (deterministic matrix), CS algorithms need to utilize a
modified version of the hard thresholding operator that sets all but the K
largest local maxima of a vector to zero.
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This is slightly different from keeping the K largest absolute entries
because local maxima are defined as elements larger than its two neighboring
entries.

As an example, consider x = [4, 5, 3, 2, 1, 2,−1]>. Consequently, H2(x) =
[4, 5, 0, 0, 0, 0, 0]> and H ′2(x) = [0, 5, 0, 0, 0, 2, 0]>. In case it is not possible to
findK local maxima, the resulting vector is padded with the largest magnitude
elements in descending order. In an analogous case, L′K(·) corresponds to the
index set computed from the modified thresholding operation.

For example, H ′3(x) = [4, 5, 0, 0, 0, 2, 0]>, H ′4(x) = [4, 5, 3, 0, 0, 2, 0]>,
L′3(x) = {1, 2, 6} and L′4(x) = {1, 2, 3, 6}.

For the performed numerical experiments, it was observed that this
modified operator is crucial to allow CS algorithms to converge under model
(3-1) in both scenarios: the presence or absence of the EM coupling effect.

It was observed that the original versions of IHT and SP algorithms did
not converge with HK(·)/LK(·) for the model (2-76). Thus, for all the scenarios
with curves derived from thresholding operations, the modified operators
versions are employed.

2.5.2.3
Denoising

Another algorithm that deserves to be described is related to the task
of cleaning the noise from data. It is called Randomized OMP (RandOMP)
and was introduced in [21]. Differently from the previous sparse recovery
algorithms, this one performs multiple sparse recoveries with OMP, takes
the plain average of the solutions, and employ it to obtain the cleaned
signal. Consider our model in (2-59), which represents the measurement vector
corrupted by noise. The model can be rewritten as

y = y′ + ε (2-74)

where the term y′ = Ax represents the noise-free signal. This is the quantity
to be estimated by RandOMP.

At this point, it is worth emphasizing that this is not a sparse recovery
algorithm, because the task is related to the recovery of y′ instead of the sparse
signal x. Consider the discrete random variable (r.v) u with probability mass
function (PMF) given by

pu(u̇) = exp
{

σ2

2σ2
n (σ2 + σ2

n)aHu̇ r(i)
}

(2-75)

where σ and σ2
n are the sources and noise variances, supposed to be known a

priori, r(i) is the residue at the i-th iteration and au̇ is the u̇-th atom. Instead of
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choosing the most correlated atom with the residue, the choice is now random
and subjected to the realization of the r.v u, denoted u̇. Notice that u̇ ∈ [N ].

Consequently, the choice of the atoms is randomized, and the final sparse
solution is stored. After we repeat this process J0 times, we take the average
of all the J0 sparse solutions to generate a global representation that is not
sparse, and project the dictionary onto it to obtain the noise-free signal. The
algorithm is summarized in Algorithm 2.4.

Algorithm 2.4: Randomized Orthogonal Matching Pursuit -
RandOMP

Input : Dictionary A
Observed data y
Sparsity level K
Number of representations J0

1 T(0) = ∅, x(0) = 0, r0 = y
2 for l← 0 to J0 − 1 do
3 for i← 0 to K − 1 do
4 Take one realization of the r.v u such that

pu(u̇) = exp
{

σ2

2σ2
n(σ2+σ2

n)a
H
u̇ r(i)

}
5 T(i+1) ← T(i) ∪ {u̇}
6 x(i+1) ← argmin

z∈CN

{
‖y−Az‖2, supp (z) ⊂ T(i+1)

}
7 r(i+1) = y−Ax(i+1)

8 v(l) = x(K)

9 y′ = A
(

1
J0

∑J0−1
p=0 v(p)

)
Output: Cleaned y′ measurement vector

2.5.2.4
Sparse model for difference coarray DoA estimation

Considering the CS framework presented before, we must adapt the
difference coarray model in (2-19) for DoA estimation under a sparse
formulation. To do that, following [18], we rewrite (2-19) as

xD = AD(θg)pg + σ2
ni

=
[
AD(θg) i

] pg

σ2
n


= Bh

(2-76)

where, B ∈ CDoF×(g+1), θg ∈ Rg is the grid-search vector for possible DoAs
and pg ∈ Rg is the source powers augmented vector, such that dim (θg) =
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dim (pg) = g. With that, the vector h ∈ Rg+1 becomes a sparse vector with
support set supp (h) = T and the estimated DoAs are given by θ̂ = 〈θg〉T\{g+1}.

2.6
Summary

This chapter reviewed the data models related to DoA estimation
in standard and difference coarray domain. Different non-uniform array
geometries were discussed, along with the main concepts related to this field
of research. Then, classic techniques for DoA estimation and its main concepts
were presented, followed by a review of some algorithms in difference coarray
domain like SS-MUSIC and CS algorithms. In the following chapter, we
introduce a new CS algorithm specially developed to perform DoA estimation
with non-uniform linear arrays.



3
List-Based Maximum Likelihood Compressive Sensing
Algorithm for DoA Estimation in Difference Coarray Domain

3.1
Introduction

Several different approaches have been used to find the DoAs with
compressive sensing algorithms [50–52]. More recently, a sparse formulation
in difference coarray domain was devised to deal with NLAs [18]. In this case,
the sparse solution was found through the widely known LASSO technique
[53].

However, due to the sparse nature of the problem, most of the CS
algorithms are suited to perform sparse recovery with this model, as is the
case for the previously described OMP, IHT, SP etc [54, 55]. In this context,
generic CS formulations to solve any sparse recovery problem are vastly covered
in the literature [19].

However, since underdetermined systems of equations are commonly
solved employing a fitting in terms of l2-norm, when multiple candidates are
considered, the rule for choosing the right candidate support is frequently
associated with the l2-norm of the residue [19, 51, 56]. This gap is filled with
the introduction of a much more specific rule, devised in [39] for ML DoA
estimation and adapted to be used with the CS framework.

This chapter takes advantage of the concepts introduced in Chapter 2
to devise a new CS algorithm for DoA estimation in the difference coarray
domain. An innovative list-based algorithm with a flexible ML selection rule
is presented in the context of greedy methods.

Furthermore, to complement the work, a slightly different Difference
Coarray Transformation Model (DCTM) for a finite number of snapshots is
proposed, followed by an application of OMP-denoising [21] in the context of
non-uniform linear arrays under severe noisy conditions.
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3.2
Proposed List-Based ML-OMP

Consider the model for DoA estimation with CS in the difference coarray
domain introduced in Subsection 2.5.2.4,

xD =
[
AD(θg) i

] pg

σ2
n


= Bh

(3-1)

where B ∈ CDoF×(g+1) is the dictionary, xD ∈ CDoF is the measurement vector
(received signal for the difference coarray) and h ∈ Cg+1 is the K-sparse vector
to be recovered. In addition, if a grid θg ∈ Cg is chosen, then the vector h has
K = D + 1 non-zero elements (sources and noise variances).

Clearly, from (3-1), the noise variance index is known a priori ((g + 1)-th
element in h). From that, according to our notation, [h]g+1 = σ2

n. Thus, if
supp (h) = T, then g + 1 ∈ T and, since |T| = D + 1, the D remaining
elements of T must be estimated. This final task can be performed utilizing a
sparse recovery algorithm that enables one to obtain the final DoA estimates
through

θ̂ = 〈θg〉T\{g+1} (3-2)
Consider the OMP algorithm previously detailed in Algorithm 2.1. In

order to increase the algorithm accuracy for the DoA estimation problem, a
strategy based on a list of candidates for the current support set estimate was
devised.

In this way, instead of choosing only one index at each iteration in the
correlation-maximization (corr-max) step in line 3 of Algorithm 2.1, a list
with Q candidates around the corr-max index is generated. After that, the
best element from the list is chosen to be the one that maximizes (2-53) over
the list, i.e. MLE is used to find the estimate for the current iteration.

Due to the finite number of snapshots, modeling errors, and noise, the
corr-max step in OMP sometimes fails in obtaining the proper support set
element at each iteration. Thus, the rationale is that the original corr-max
index must be expanded around its neighbors on the grid, increasing the
chances of having the correct estimate as an element of this list with multiple
candidates. Firstly, a search for the central candidate index is performed in
the set

J = [g] \ T(i) (3-3)
arranged in ascending order, to prevent the selected atom from a previous
iteration to be selected again. After that, the correlations between all the
atoms in B are computed and the one that possesses the maximum correlation
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with the residual xD −Bh(i) is selected through

j(i) = argmax
ĵ∈J

{∣∣∣∣[BH
(
xD −Bh(i)

)]
ĵ

∣∣∣∣} (3-4)

Consider the index n0 such that

j(i) = [J]n0
(3-5)

which is a restriction on J to the element of this set indexed by n0. From that,
the set with candidate indices is compactly represented by

V =
{

[J]n0−n

∣∣∣∣∣ n =
⌊
−Q− 1

2

⌋
, . . . ,

⌈
Q− 1

2

⌉}
(3-6)

where Q candidates are considered and b·c / d·e are the floor and ceil functions,
respectively. In simple terms, V consists of the Q nearest neighbours on J
around j(i), including j(i) itself.

The set of candidate support sets for pg is given by the union of each of
the elements of V with the support set from the previous iteration, excluding
the element {g + 1}1, i.e.

Yq =
{
T(i) \ {g + 1}

}
∪ vq (3-7)

where vq ∈ V and q ∈ [Q].
Next, consider the ML estimation in the form of the optimization problem

previously described in (2-53) and recast as

u(i) = argmin
q∈[Q]

{
det

(
P〈AS(θg)〉Yq

ĈxSP〈AS(θg)〉Yq
+

tr
(
P>〈AS(θg)〉Yq

ĈxS

)
N − i− 1 P>〈AS(θg)〉Yq


 (3-8)

where [Q] = {1, . . . , Q} is the domain of the optimization problem (3-8) and
has an one-to-one correspondence with {Y1, . . . ,YQ}. The set Yu(i) is the
support set of pg selected at the current iteration based on the performed
ML search.

The matrices P〈AS(θg)〉Yq
and P>〈AS(θg)〉Yq

= I − P〈AS(θg)〉Yq
are the

projection matrices onto R
(
〈AS (θg)〉Yq

)
and N

(
〈AS (θg)〉HYq

)
, respectively2.

The matrix 〈AS (θg)〉Yq
∈ CN×|Yq | is a restriction of AS (θg) to the columns

1At this point, the support set for pg is referred, since the element {g + 1} is not included.
This is the support set of interest, but still has to include {g + 1} to be the support set of
h.

2For a deeper coverage of some of the theoretical aspects of orthogonal projections, refer
to the Subsection 2.5.2.1
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indexed by Yq.
Then, the measurement vector xD is projected onto R(〈B〉T(i+1)) and

obtain the
∣∣∣T(i+1)

∣∣∣-sparse vector h(i+1) by means of

h(i+1) = argmin
z∈Cg+1

{
‖xD −Bz‖2, supp (z) ⊂ T(i+1)

}
(3-9)

After K iterations, the DoA estimates are then given by (3-2), where
T = T(K), the final support set estimate.

LBML-OMP, summarized in Algorithm 3.1, as will be shown, has
a superior performance over standard OMP for almost all the considered
geometries. However, this performance improvement must take into account
an increase in computational complexity.

According to [48], the computational complexity of OMP is
O (KDoF(g + 1)), considering the sparse formulation of model (3-1). For
that, the dominant stage is the orthogonal projection step in line 5 of
Algorithm 2.1, due to the computation of the Moore-Penrose pseudoinverse.

In the case of LBML-OMP, the whole process is similar, except for the
computation of the projection matrices in line 10 of Algorithm 3.1. This is the
dominant stage. The evaluation through (3-8) for each candidate support set
has about the same complexity as that of one OMP iteration.

This is due to the pseudoinverse calculation, according to (2-66) and
(2-67). However, this is performed Q times per iteration, which leads to a total
computational complexity Q+ 1 times higher than that of the standard OMP
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algorithm, i.e., O ((Q+ 1)KDoF(g + 1)).
Algorithm 3.1: List-Based Maximum Likelihood OMP
(LBML-OMP)
Input : Dictionary B ∈ CDoF×(g+1)

Observed data xD ∈ CDoF

Sparsity level K = D + 1
Array manifold matrix over the grid AS (θg) ∈ CN×g

Sample received signal covariance matrix ĈxS ∈ CN×N

Number of sensors N
Number of candidates Q
Grid θg ∈ Rg

1 T(0) = {g + 1}, h(0) = 0 // initialization

2 for i← 0 to K − 1 do
3 J← [g] \ T(i) // arranged in ascending order

4 j(i) ← argmax
ĵ∈J

{∣∣∣∣[BH
(
xD −Bh(i)

)]
ĵ

∣∣∣∣} // max-corr step

5 n0 ← position index of j(i) in J
6 V =

{
[J]n0−n

∣∣∣ n =
⌊
−Q−1

2

⌋
, . . . ,

⌈
Q−1

2

⌉}
7 for q ← 1 to Q do
8 vq ← q-th element of the set V
9 Yq =

{
T(i) \ {g + 1}

}
∪ vq

10 u(i) ← argmin
q∈[Q]

{
det

(
P〈AS(θg)〉Yq

ĈxSP〈AS(θg)〉Yq
+

tr
(

P>
〈AS(θg)〉Yq

ĈxS

)
N−i−1 P>〈AS(θg)〉Yq




11 T(i+1) ← T(i) ∪
{
u(i)

}
12 h(i+1) ← argmin

z∈Cg+1

{
‖xD −Bz‖2, supp (z) ⊂ T(i+1)

}
13 θ̂ ← 〈θg〉T(K)\{g+1}

Output: Estimated Sources DoA θ̂

3.3
Enhanced Difference Coarray Transformation Model

In order to account for finite snapshot models that arise naturally in
the DoA estimation problem, a slightly different formulation to the model
(2-9) was devised. It was termed Enhanced Difference Coarray Transformation
Model (EDCTM). Consider the following property ((A.114) in [2]) regarding
the vec (·) operator,
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vec (ABC) =
(
CT ⊗A

)
vec (B) (3-10)

The model for the received signal covariance matrix is given by

CxS = AS(θ)CsAH
S (θ) + Cn (3-11)

which, for spatially and temporally uncorrelated noise, becomes

CxS = AS(θ)CsAH
S (θ) + σ2

nI (3-12)

If the sources are uncorrelated as well, then Cs is diagonal and the
difference coarray model is considerably simplified by vectorizing

CxS = AS(θ) diag
[
σ2

1, . . . , σ
2
D

]
AH

S (θ) + σ2
nI (3-13)

That is the formulation usually found in the literature [17, 20, 57, 58]. However,
evaluating (3-11) from a finite snapshot perspective, it follows that

ĈxS = AS(θ)ĈsAH
S (θ) + Ĉn (3-14)

Applying the vec (·) operator, it leads to

vec
(
ĈxS

)
= vec

(
AS(θ)ĈsAH

S (θ)
)

+ vec
(
Ĉn

)
= (A∗S(θ)⊗AS(θ)) vec

(
diag

(
Ĉs

)
+ Ĉs − diag

(
Ĉs

))
+

vec
(
Ĉn

)
= (A∗S(θ)⊗AS(θ)) vec

(
diag

(
Ĉs

)
+ Ĉs

)
+ vec

(
Ĉn

)
= (A∗S(θ)⊗AS(θ)) vec

(
diag

(
Ĉs

))
+ (A∗S(θ)⊗AS(θ)) vec

(
Ĉs

)
+

vec
(
Ĉn

)
= (A∗S(θ) ◦AS(θ)) vecd

(
Ĉs

)
+ vec

(
AS(θ)ĈsAH

S (θ)
)

+

vec
(
Ĉn

)
(3-15)

This enables one to write

vec
(
ĈxS

)
−

error term η︷ ︸︸ ︷
vec

(
AS(θ)ĈsAH

S (θ)
)

= (A∗S(θ) ◦AS(θ)) vecd
(
Ĉs

)
+

vec
(
Ĉn

) (3-16)

The quantity η = AS(θ)ĈsAH
S (θ) will approach the null vector as the

number of snapshots T increases indefinitely. This is because the hollow matrix
Ĉs → 0 when T → ∞. Notice that, for practical purposes, Ĉs becomes
diagonal for uncorrelated sources under this asymptotic condition.

On the other hand, consider the vector a with its entries as the elements
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of the set S, i.e, a = [0, n1, . . . , nN−1]>. The kronecker product b = (a ⊗−a) ∈
RN2×1, when indexed by a set H, is reduced to a vector b′ = 〈b〉H such
that the entries of b′ are sorted in ascending order with removal of repeated
elements. The entries of b′ are the same as the elements of the set D, resulting
in |H| = |D| = DoF.

Consequently, row-indexing the matrix A∗S(θ) ◦AS(θ) through H results
in the removal of its repeated rows and sorting of the coarray locations in
ascending order, i.e.,

AD (θ) = 〈〈A∗S(θ) ◦AS(θ)〉〉H (3-17)

where 〈〈A∗S(θ) ◦ AS(θ)〉〉H is the matrix in C|H|×D that is a restriction of
A∗S(θ) ◦AS(θ) ∈ CN2×D to the rows indexed by H. That said, indexing both
sides of (3-16) through H, leads to

x̂D − η′ = AD(θ)p̂ +
〈
vec

(
Ĉn

)〉
H

(3-18)

Considering that
〈
vec

(
Ĉn

)〉
H
≈ σ̂2

ni, it follows that

x̂D − η′ = AD(θ)p̂ + σ̂2
ni

=
[
AD(θ) i

]  p̂
σ̂2
n

 (3-19)

which, after the same procedure described in Subsection 2.5.2.4, results in

x̂D − η′ = AD(θg)p̂g + σ̂2
ni

=
[
AD(θg) i

] p̂g

σ̂2
n

 (3-20)

This model has a more realistic measurement vector x̂D−η′ in comparison
with DCTM. Moreover, it represents the acquired data with more precision
and can be used for any algorithm, not only CS-based, in difference coarray
DoA estimation, assuming that η′ is known a priori or can be estimated from
the available data. In what follows, numerical experiments demonstrate the
improvements in the RMSE curves under EDCTM.

3.4
Denoising as a Preprocessing Stage for DoA Estimation

In order to be able to use RandOMP denoising algorithm, which was
described in Subsection 2.5.2.3, summarized in Algorithm 2.4, the model (2-1)
must be adapted so that the vector with the source signals becomes sparse. To
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do that, the data acquisition model must be rewritten as

xS = AS(θg)sg + nS (3-21)

where AS(θg) ∈ CN×g is the extended array manifold matrix/dictionary over
the grid and sg ∈ Cg is the D-sparse source signal vector to be recovered.

After denoising the data, a new received signal xRandOMP
S is available,

cleaned from noise. This is the signal to be used in the whole process as
resulting from the DAQ step. Remember that RandOMP must act on each of
the available snapshots (MMV model) with the a priori knowledge of sources
and noise powers.

3.5
Results and Discussion

The following subsections exhibit the results obtained from the simulated
scenarios, with the proper discussion. Different geometries and algorithms
were considered. The DAQ process accounts for EM coupling and additive
white Gaussian noise. The arrays are assumed to be perfectly calibrated with
omnidirectional response in an isotropic and linear homogeneous medium. All
the source signals correspond to uncorrelated plane waves coming from the
far-field.

3.5.1
Array Characterization

To pave the way towards a deeper understanding and become acquainted
with the geometries and models discussed in Chapter 2, the characterization
of all of the employed arrays is presented. This includes:

i) Weight functions and derived quantities (sets D and U);

ii) Coupling matrices and leakage coefficients; and

iii) Uniformly weighted beampatterns.

The scenarios were built from arrays with N = 8 sensors, placed
at positions according to specific formation rules or tabulated entries (case
of MHA and MRA). The corresponding weight functions can be seen in
Figure 3.1.

Notice that for all the geometries the sets D and U are the same, except
for CPA and MHA. The latter has the largest aperture (largest element in D),
but with the inconvenience of having some holes. Due to that, |U|MHA < |D|MHA

and fewer uniform degrees of freedom are available.
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Figure 3.1: Weight function for ULA, NAQ2, CPA, SNAQ2, MRA and
MHA with N = 8 sensors each, evidencing DoF and UDoF

Furthermore, MHA has the maximum number of degrees of freedom
(DoF = 57), while MRA possesses the analogous property regarding uniform
degrees of freedom (UDoF = 47). This makes sense because both the
geometries result from optimization procedures that aim at finding the array
that maximizes |U| such that |D| = |U| (case of MRA) and minimize (|D| − |U|)
with no redundancy (unitary weights) except for the coarray location m = 0
(case of MHA).

On the other hand, ULA has considerably more redundancy (greater
weight coefficients) with the smaller number of (uniform) degrees of freedom
(DoF = UDoF = 15). Thus, in terms of redundancy and difference
coarray structure, MHA/MRA and ULA are in opposite extreme sides, with
MHA/MRA overcoming ULA in all possible aspects.

At this point, some drawbacks regarding MHA/MRA must be
highlighted. When the constraints are critical in terms of the spatial dimension
of the array, their larger aperture becomes a crucial concern. In general, in
this case, one would adopt smaller aperture arrays, even ULAs, and try
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Figure 3.2: Coupling matrices and leakage coefficients for ULA, NAQ2,
CPA, SNAQ2, MRA, MHA with N = 8 sensors each. Note that darker
matrices present a smaller leakage coefficient.

to compensate for the degradation with more snapshots [2]. Moreover, for
geometries obtained through computer search, as is the case for MHA/MRA,
the computational complexity in array design increases dramatically when the
number of physical sensors increases as well.

In terms of EM coupling, consider what is in Figure 3.2, which presents
the coupling matrices G for each of the arrays discussed so far in a visual
display, along with the leakage coefficient L.

In order to build the B-banded mode coupling model described in
Subsection 2.2.2, the setting of parameters considers B = 100 and coupling
coefficients generated through ci = c1 exp(−j(i − 1)π)/i, for 2 ≤ i ≤ B and
c1 = 0.3 exp (jπ/3) [1]. The coefficients are pictured in dB scale. Lighter regions
represent larger coupling coefficients.

In this figure, arrays that are less sensitive to EM coupling present darker
coupling matrices, as is the case for MHA, MRA, and SNAQ2. Furthermore,
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Figure 3.3: Uniformly weighted beampattern (dB scale) for ULA, NAQ2,
CPA, SNAQ2, MRA, MHA with N = 8 sensors each, evidencing the
narrower main-lobe in MHA.

these geometries have smaller leakage coefficients L. MHA again is the best
in this sense, with L = 0.187. Notice that a coupling-free environment can be
obtained from the setting of B to zero. This would lead to diagonal coupling
matrices, which have zero-valued off-diagonal coefficients.

The third aspect, which it is worth emphasizing in this array analysis,
is the beampattern associated with each structure. Figure 3.3 shows the
uniformly weighted beampattern zoomed in the region [−π/8, π/8], so that the
difference between the half-power beamwidth (BWHPBW) (3 dB beamwidth)
and beamwidth notch-notch (BWNN) can easily be noticed for all the
geometries3. Due to its larger aperture, MHA presents the narrower central
lobe. Then, in terms of main-lobe characteristics, this suggests an improvement
over all of the other geometries.

As the goal of this beampattern comparison is to establish a brief analysis,
this topic will not be elaborated further. Additionally, notice that, despite
uniformly weighted beampatterns being seldom used in practice, all of the
arrays are compared under that same condition.

The above-mentioned characteristics of MRA/MHA justify their
inclusion in the simulation scenarios, even though their design process lacks
closed-form expressions [30]. Moreover, they provide a benchmark for other
geometries and illustrate the performance of the algorithms acting on arrays
with a larger aperture for the same number of sensors.

3Note that perfect nulls are not available. Due to that, the beamwidth notch-notch must
be considered to evaluate the main lobe characteristics.
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3.5.2
LBML-OMP Comparison

In this subsection, RMSE curves for different geometries and multiple
algorithms illustrate the superior performance of LBML-OMP. Simulation
parameters include two uncorrelated plane-waves coming from θ1 = −0.2952π
and θ2 = 0.2952π radians, Q = 10 candidates, T = 400 snapshots, and
R = 2000 trials.

Figure 3.4 presents RMSE against SNR for the geometries considered in
Subsection 3.5.1. There is a distinct enhancement in RMSE for LBML-OMP
in comparison with OMP, SS-MUSIC, and IHT, except for the CPA structure.

The performance of CPA is a matter of further investigation. However,
some light can be shed upon that considering the dependence of the array
manifold on the set S and the relation between this matrix and its associated
restricted isometry constants. The hypothesis laid on the assumption that the
CPA structure increase the RIC for the array manifold in relation to other
geometries. The initial investigation would consider this as a first conjecture.

As can be seen, none of the algorithms holds a fixed rank regarding
performance when the sensing procedure employs multiple structures.
However, for most of the geometries, the proposed LBML-OMP has shown
superior performance.

To complement the discussion, Figure 3.5 presents the curves for RMSE
against snapshots. In this case, LBML-OMP exhibits a sharp improvement
over its counterparts, except for CPA, as in the previous scenario.

In addition, consider the RMSE as a multivariate function of the form

RMSE = f(S, N, SNR, T,∆) (3-22)

From that, for the same number N of sensors, SNR, number of snapshots T,
geometry (set S), and two different sparse recovery algorithms (∆1, ∆2), it
is worth evaluating the region (SNR × snapshots) in which the RMSE due
to OMP is higher than that resulted from LBML-OMP. Figure 3.6 shows the
RMSE difference between OMP and LBML-OMP using

RMSEdiff = max (f(S, N, SNR, T,∆OMP)

−f(S, N, SNR, T,∆LBML-OMP), 0)

= max (RMSEOMP − RMSELBML-OMP, 0)

(3-23)

where the negative values of the RMSE difference were set to zero through the
max(·, 0) function, in such a way it could be easier to visualize the results.

Although this kind of analysis is not usually found in the literature,
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Figure 3.4: RMSE against SNR for ULA, NAQ2, CPA, SNAQ2, MRA,
MHA with N = 8 sensors, T = 400 snapshots and two uncorrelated
sources at θ1 = −0.2952π and θ2 = 0.2952π radians.

it enables one to notice that the proposed algorithm makes more significant
improvements over standard OMP in regions with a greater number of
snapshots and higher SNRs for all the geometries, except for CPA.

Figure 3.7 shows LBML-OMP acting on data acquired from multiple
geometries. It exhibits the RMSE curves against SNR and snapshots. This is
useful for investigating which geometry is the most suited for the proposed
algorithm. In this case, SNAQ2.

3.5.3
DCTM versus EDCTM

Figure 3.8 exhibits the RMSE curves against SNR and snapshots for an
MRA geometry with N = 8 sensors comparing the model EDCTM developed
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Figure 3.5: RMSE against snapshots for ULA, NAQ2, CPA, SNAQ2,
MRA, MHA with N = 8 sensors, SNR= 6 dB and two uncorrelated
sources at θ1 = −0.2952π and θ2 = 0.2952π radians.

in (3-19) and (3-20) (sparse version) with the traditional approach DCTM
presented in (2-19) and (2-76) (sparse version) . The error term η′ was assumed
to be known a priori.

From these RMSE responses, it can be easily seen that the proposed
model presents better results regardless of the algorithm being employed.

Moreover, notice that, in Figure 3.8, the accuracy improvement is less
relevant as the number T of snapshots is increased. This is because the error
term η′ in (3-19) and (3-20) tends to the null vector with the increase in T ,
once the off-diagonal elements of the sample source covariance matrix Ĉs tend
to zero for the particular case of scenarios with uncorrelated plane waves.
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Figure 3.6: OMP vs LBML-OMP with (3-23) (contour plots for
RMSEdiff, in radians). Lighter regions represent improvement of
LBML-OMP over OMP. Notice that the region for which CPA give
rise to suitable results is restricted to scenarios with limited number
of available snapshots and low SNR.

3.5.4
CS-Based Denoising in Difference Coarray Domain

Figure 3.9 shows the use of RandOMP to perform denoising on data as
a preprocessing step of the DoA estimation process for SNAQ2 with N = 8
sensors. Two algorithms were employed: SS-MUSIC and SP. The plots consider
RMSE against SNR curves at T = 200 snapshots. Note that the SNR range is
compatible with severe noisy conditions.

From the RMSE curves, it can be ascertained that cleaning of noise from
signals with RandOMP is a resourceful procedure to increase the accuracy of
DoA estimation in difference coarray model. The estimation was successfully
performed even for the regions that both the algorithms completely fail without
this preprocessing of raw data.
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3.6
Summary

In this chapter, a list-based maximum likelihood OMP algorithm,
termed LBML-OMP, was devised. Its superior performance over standard CS
algorithms and SS-MUSIC was highlighted through numerical experiments.

Furthermore, a new transformation model for difference coarray was
proposed, which is more suited to fewer snapshots scenarios. In the end,
RandOMP, a CS-based denoising algorithm, was used to perform cleaning
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Figure 3.9: Denoising comparison. SNAQ2 with N = 8 sensors and
two uncorrelated sources at θ1 = −0.2952π and θ2 = 0.2952π radians.
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from noise on data for severe noisy conditions as a preprocessing step in the
DoA estimation procedure, presenting satisfactory results.



4
Conclusions and Future Work

4.1
Summary of work

In Chapter 2, data models for the DoA estimation process were presented,
including the EM coupling effect. Moreover, different non-uniform arrays were
detailed, along with the aspects related to their degrees of freedom and intrinsic
characteristics. Then, widely known classic techniques for DoA estimation
were reviewed, followed by a discussion of some algorithms that are commonly
employed in difference coarray domain like SS-MUSIC and CS algorithms.

In Chapter 3, a new CS algorithm specifically designed for DoA
estimation in difference coarray domain was proposed. This algorithm was
shown to possesses a more accurate response in terms of RMSE for non-uniform
and uniform linear arrays, except for CPA geometries. A modified version of
the traditional finite snapshot model was introduced and, as a complement
to the work, the task of denoising as a previous step to DoA estimation was
performed with a CS-based denoising technique known as RandOMP.

4.2
Future Work

The algorithm introduced in this thesis lacks a sufficient condition on
the deterministic dictionary to perform sparse recovery with success in terms
of RIC/RIP. Thus, it would be interesting to perform a RIP based sparse
recovery condition analysis. Moreover, refined conditions at the initialization
can be established to improve results.

Further analysis to be carried out in future works includes investigation
in scenarios for which correlated sources are considered, with correlation
coefficients of different magnitudes and phases, sources with substantially
different power levels, and fractional beamwidth separations.

Another case of interest is the development of a method to decrease the
coherence of the dictionary B. This can be done in several ways, such as the
introduction of random matrices in the sparse model for difference coarray
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DoA estimation and optimum placement of sensors, similar to what was done
in [59].

Furthermore, the match between algorithm and geometry must be
investigated in order to theoretically explain some of the results empirically
found in Subsection 3.5.2.

One of the premises of the development performed in this thesis is that
the sources are fixed. However, the algorithms could be extended for a moving
source case with different noise characteristics for each snapshot. Accounting
for different measurement vector noise powers from snapshot to snapshot is a
relevant matter. An interesting starting point would be the method described
in [60].

A further topic of investigation is related to efficient ways of estimating
the error term η′ for the developed EDCTM model, so that the use of
the proposed model cost-effectively assumes a practical form. A preliminary
approach would be to try to develop an ML estimator for this term based
on the ML estimator of the signal covariance matrix given in [2] and some
denoising technique as RandOMP [21].
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