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Abstract

Cunha, Thiago E. B.; Lamare, Rodrigo C. de (Advisor); Ferreira,
Tadeu N. (Co-Advisor). Joint Automatic Gain Control and
MMSE Receiver Design for Quantized Large-scale MU-
MIMO Systems in C-RANs. Rio de Janeiro, 2019. 121p. Dis-
sertação de mestrado – Departamento de Engenharia Elétrica, Pon-
tifícia Universidade Católica do Rio de Janeiro.

The joint employment of Cloud Radio Access Networks (C-RANs) and
large-scale multiple-input multiple-output (MIMO) systems is a key solution
to fulfill the requirements of the fifth generation (5G) of wireless networks.
However, some challenges are still open to be overcome such as the high
power consumption of large-scale MIMO systems which employs a large
number of analog-to-digital converters (ADCs), the capacity bottleneck of
the fronthaul links and the system cost reduction. Although its often affects
the system performance, the low-resolution quantization is proposed as a
solution for these problems. Therefore, techniques that improve the perfor-
mance of coarsely quantized systems are needed. In mobile applications, the
ADCs are usually preceded by an automatic gain control (AGC). The AGC
works shaping the received signal amplitude within the quantizer range to
efficiently use the ADC resolution. Then, the optimization of an AGC is
especially important. In order to present possible solutions for these issues,
this thesis presents a joint optimization of the AGC, which works in the re-
mote radio heads (RRHs), and a low-resolution aware (LRA) linear receive
filter based on the minimum mean square error (MMSE), which works in
the cloud unit (CU), for coarsely quantized large-scale MIMO with C-RAN
systems. We develop linear and successive interference cancellation (SIC)
receivers based on the proposed joint AGC and LRA MMSE (AGC-LRA-
MMSE) approach. An analysis of the achievable sum rates along with a
computational complexity study is also carried out. Simulations show that
the proposed design provides improved error rates and higher achievable
rates than existing techniques.

Keywords
coarse quantization; AGC; large-scale MIMO systems; C-RAN;

5G;



Resumo

Cunha, Thiago E. B.; Lamare, Rodrigo C. de ; Ferreira, Tadeu
N.. Joint Automatic Gain Control and Low-Resolution
Aware MMSE Receiver Design for Coarsely Quantized
MU-MIMO Systems in C-RANs. Rio de Janeiro, 2019. 121p.
Dissertação de Mestrado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

O emprego conjunto de Redes de Acesso por Rádio em Nuvem (C-
RANs) e sistemas de múltiplas entradas e múltiplas saídas (MIMO) de larga
escala é uma solução chave para atender aos requisitos da quinta geração
(5G) de redes sem fio. No entanto, alguns desafios ainda precisam ser su-
perados como a redução do consumo de energia do sistema, a capacidade
limitada dos links fronthaul e a redução dos custos de implantação e opera-
ção. Embora seja prejudicial para o desempenho do sistema, a quantização
em baixa resolução é proposta como uma solução para estes desafios. Por-
tanto, técnicas que melhoram o desempenho de sistemas quantizados gros-
seiramente são necessárias. Em sistemas móveis, os ADCs geralmente são
precedidos por um controle de ganho automático (AGC). O AGC trabalha
moldando a amplitude do sinal recebido dentro do intervalo do quantizador
para usar eficientemente a resolução. A fim de solucionar esses problemas,
esta dissertação apresenta uma otimização conjunta do AGC, que funci-
ona nas cabeças de rádio remotas (RRHs), e um filtro de recepção linear
de baixa resolução consciente (LRA) baseado no mínimo erro quadrático
médio (MMSE), que funciona na unidade de nuvem (CU), para sistemas
quantizados grosseiramente. Desenvolvemos receptores de cancelamento de
interferência lineares e sucessivos (SIC) com base na proposta conjunta de
AGC e LRA MMSE (AGC-LRA-MMSE). Uma análise da soma das ta-
xas alcançáveis juntamente com um estudo de complexidade computacional
também é realizadas. As simulações mostram que o projeto proposto fornece
taxas de erro reduzidas e taxas alcançáveis mais altas do que as técnicas
existentes.

Palavras-chave
Quantização grosseira; AGC; Sistemas MIMO em larga escala; C-

RAN; 5G;
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1
Introduction

This chapter presents the research background and the motivations of
this thesis. Additionally, the main contributions are also explained. At last,
this chapter outlines the thesis structure to provide access to readers with the
current state of the art.

1.1
Motivation and Problems

In recent years the world has experienced a technology revolution with
access to mobile broadband connections and with the increasing number of
connected devices. With the evolution and proliferation of smartphones as
well as various bandwidth-intensive applications and services, there is an ever-
increasing demand in wireless networks for higher capacity, higher reliability,
and increased coverage. However, the bandwidth resources are even more
scarce and everything is expected to have a reduced cost and a high energy
efficiency. The expectation is that the mobile data traffic will grow at a 53
percent compound annual growth rate (CAGR) from 2015 to 2020, reaching
30.6 exabytes per month by 2020 [1]. It is difficult to imagine our lives
without wireless communications. Hence, the development of new technologies
is necessary to meet the huge traffic demands and to improve energy efficiency
for the next generation of wireless communications networks.

The fifth generation (5G) of wireless networks has been developed to cope
with this impressive demand growth, improve the energy efficiency and, at the
same time, minimize the network capital and operating expenditures [2–4].
To achieve a 1,000-fold increase in capacity, a 10-fold increase in spectral and
energy efficiencies and a 25-fold increase in average cell throughput, solutions
such as cloud radio access networks (C-RANs) and large-scale multiple-input
multiple-output (MIMO) are proposed to be jointly deployed [5].

In the traditional radio access network (RAN), each base station (BS)
covers a cell, processes and transmits its own signal to and from the users [6].
In the future, the huge number of devices connected to the system will require
the dense deployment of BSs to meet the impressive data traffic demand.
However, the deployment of more BSs causes different challenges as the growth
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of inter-cell interference, and as the increase in energy consumption due to
the BS equipments and cooling systems. In this context, C-RAN is a novel
cellular architecture that has several promising features for next-generation
systems [6–9]. In this centralized architecture the conventional BSs are broken
down into low-cost Remote Radio Heads (RRHs) and a pool of Base Band
Units (BBUs) located within a cloud unit (CU). The RRHs consist of simple
radio antennas and active radio frequency (RF) components that work in the
frequency conversion and also on the analog-to-digital (A/D) and digital-to-
analog (D/A) conversion [7]. The signal processing functionalities of each BS
are migrated to the BBU pool, which is responsible for all the baseband signal
processing [8].

C-RAN has many benefits which make it a key contender for inclusion
in a 5G standard. Firstly, centralization aids network coordination and man-
agement. Furthermore, this architecture brings the reduction in the cost of
operating the network due to fewer site visits, easy upgrades, and also the
energy consumption required for air-conditioning and other on-site equipment
can be saved [9, 10]. At last, the centralized architecture has received a great
deal of attention in recent years thanks to its ability to improve the network
performance with joint signal processing techniques that span multiple base
stations and therefore, mitigate the inter-cell interference in an efficient way,
and in turn, allowing for higher spectral efficiency (SE) [11]. However, the
RRHs are required to convey their received signals, either in analog format
or in the form of digitized baseband samples, to the CU for processing. The
connection between RRHs and the CU is made by expensive high-capacity
low-latency links which are referred to as fronthaul (FH) links. With the ex-
plosive number of devices connected with the RRHs, the main roadblock to
the realization of the promise of C-RAN is the limited capacity of the FH links
for the huge amount of data that have to be transported. Therefore, the capac-
ity bottleneck of the FH links call for the development of advanced baseband
compression strategies.

Large-scale MIMO is a known technique that provides substantial gains
in both energy and spectral efficiency, improves link reliability and also reduces
the multiuser interference (MUI) [12]. Due to their many advantages, large-
scale MIMO regarded as a candidate technique for next-generation wireless
communication systems [13,14]. This technique consists of the employment of
a large number of antennas in the BS to fully exploit the degrees of freedom
and reduce the transmit power [15]. However, the high number of antenna
elements increases considerably the hardware cost and the energy consumption
due to the presence of several A/D and D/A converters [16–18]. The energy



Chapter 1. Introduction 16

consumption in an uplink receiver design is mainly from the analog-to-digital
converter (ADC) processing unit and the digital baseband processing unit,
which are both affected by the precision of the ADC. Specifically, ADC’s
energy consumption scales linearly with the sampling rate and exponentially
in the number of bits [16]. Therefore, low-resolution ADCs are a solution to
save energy in this kind of system. Furthermore, the adoption of lower bit-
precision ADCs allows complexity reduction, faster signal processing, costs
reduction, and also relieves the capacity bottleneck of the FH links by reducing
the amount of data that have to be transported [16–22].

Unfortunately, quantizing signals with a low number of bits reduces
the signal quality due to the severe nonlinear distortion introduced. The
quantization error is categorized into two kinds of distortions, the granular
distortion, and the clipping or overload distortion [23, 24]. The granular
distortion occurs when the input signal lies within the quantizer-permitted
range. The overload distortion occurs when the input signal exceeds this
allowed range, resulting in the clipping of the input signal.

In practical systems, the ADC is usually preceded by an automatic gain
control (AGC) variable gain amplifier, which aims to minimize the overload
distortion [19]. The AGC adjusts conveniently the analog signal level to the
dynamic range of the ADC. It is important in applications where the received
power varies over time, such as in mobile scenarios. Therefore, the AGC design
is key in systems which employ low-resolution ADCs in order to efficiently use
the quantizer range.

The impact of low-resolution ADCs on the performance of communica-
tion systems has been widely studied in the literature [16–21,23,25–31]. Never-
theless, few studies address the design of AGCs. In [20], the authors presented
a modified MMSE receiver that takes into account the quantization effects in a
MIMO system but they do not take into account the presence of an AGC. The
effects of an AGC on a quantized MIMO system with a standard Zero-Forcing
filter at the receiver were examined in [25]. However, the authors have not op-
timized the AGC nor used a detector that considers the quantization effects.
In [16] a suboptimal choice of the set of quantization labels and thresholds
was proposed with a rescheduling scheme of the set of labels found through
the Lloyd-Max algorithm. This analysis avoids the use of an AGC but the
Lloyd-Max algorithm requires the probability density function of the received
signal to compute the optimum set of labels, which is not practical. There-
fore, novel techniques for alleviating the quantization distortions in large-scale
MIMO systems with low-resolution ADCs and C-RANs are needed.
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1.2
Contributions

The contributions of this thesis are the development of a new framework
for jointly designing the AGCs that works in the RRHs and low-resolution
aware (LRA) linear receive filters according to the MMSE criterion that
works in the CU. We develop linear and successive interference cancellation
(SIC) receivers based on the proposed joint AGC and LRA MMSE (AGC-
LRA-MMSE) approach. We also derive expressions for the achievable sum
rates and evaluate the computational complexity of the proposed approaches.
Simulations show that the proposed design provides improved error rates and
higher achievable rates than existing techniques. The sum rates and BER
results achieved by proposed techniques are close to those of unquantized
systems, even with signals quantized with 5 or 6 bits. Therefore, with the
proposed AGC-LRA-MMSE-SIC scheme, low-resolution ADCs that are key to
reduce both the energy consumption and the amount of data that has to be
transported through the FH links can be employed in large-scale MIMO with
C-RAN systems without a significant performance loss.

1.3
Thesis Outline

The rest of the thesis is organized as follows:

– Chapter 2 presents an overview of the theory relevant to this thesis
and introduces the system models that are used. Firstly, an overview
of MIMO wireless communications systems with their advantages, the
traditional and cellular uplink signal models and a capacity analysis
are presented. Thereafter, some characterization parameters that are
important in performance measures such as modulation schemes, signal-
to-noise ratio, and detection schemes are defined. Lastly, the C-RAN
architecture that is key to meeting 5G requirements, is presented jointly
with the quantization model and the AGC concept.

– Chapter 3 presents the development of a joint optimization of an AGC
algorithm and a low-resolution aware linear minimum mean square error
(MMSE) receiver for multiuser multiple input multiple output (MU-
MIMO) systems with coarsely quantized signals. The optimization of
the AGC is based on the minimization of the mean square error (MSE)
and the proposed receive filter takes into account the presence of the
AGC and the effects due to quantization. Moreover, a lower bound on
the capacity of the MU-MIMO system by deriving an expression for
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the achievable rates is provided. The performance of the proposed Low-
Resolution Aware MMSE (LRA-MMSE) receiver and AGC algorithm is
evaluated by simulations, and compared with the conventional MMSE
receive filter and Zero-Forcing (ZF) receiver using quantization resolution
of 2, 3, 4 and 5 bits.

– Chapter 4 presents the development of a joint optimization of an AGC
algorithm, which works in the RRHs and a low resolution aware linear
MMSE receiver, which works in the CU, for large-scale multiple-input-
multiple-output (MIMO) systems with CRAN whose signals are coarsely
quantized. The development of linear and SIC receivers based on the
proposed joint AGC and LRA MMSE (AGC-LRA-MMSE) approach are
also in the context. Thereafter, an analysis of the achievable sum rates
along with a computational complexity study is also carried out. At
last, simulations are presented and they show that the proposed design
provides improved error rates and higher achievable rates than existing
techniques.

– Chapter 5 presents the conclusions of this thesis, and suggests directions
in which further research could be carried out.

1.4
Notation

In this thesis the vectors and matrices are denoted by lower and upper
case italic bold letters. The operators (·)T , (·)H and Tr(·) stand for transpose,
Hermitian transpose and trace of a matrix, respectively. 1 denotes a column
vector of ones and I denotes an identity matrix. The operator E[·] stands
for expectation with respect to the random variables and the operator �
corresponds to the Hadamard product. The operator | · | denote Euclidean
norm. n ∼ CN (0,C) means n is the zero mean complex Gaussian vector
with covariance matrix C. CN (0, σ2) denote the zero mean complex Gaussian
random variable with variance σ2. Finally, diag(A) denotes a diagonal matrix
containing only the diagonal elements of A and nondiag(A) = A − diag(A).
The operators Q(·) and D(·) represent respectively the quantization of a vector
with an arbitrary number of bits and the slicer used for detection.
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2
Literature Review

2.1
Introduction

This chapter provides an overview of the research in uplink wireless
communication systems, the multiple access channel associated with the uplink
and the principles and techniques upon which the contents of this thesis are
based. We first present some of the main aspects of MIMO communications
as well as the uplink MIMO channel models. In particular, the models for the
capacity of the uplink single-user MIMO system and the sum rates achieved
by uplink multiuser MIMO systems with deterministic and random channels
are also presented. After that, we discuss some system parameters such as
modulation schemes, signal-to-noise ratio (SNR), bit error rate (BER), MIMO
detection techniques covering the topics of linear filtering and SIC techniques,
and computational complexity. Thereafter, an overview on C-RAN such as its
architecture, its benefits, challenges, and current developments is presented.
At the end, we introduce the quantization model that will be used throughout
this thesis and the main concept about the AGC.

2.2
Overview of MIMO Wireless Communication Systems

With the proliferation of smart terminals and their applications, Internet
services such as social media, public transport, video and audio streaming, have
become urgent needs for the people’s daily life, not only on the traditional
wired networks but also on the wireless networks. Designers face nowadays
a number of challenges to develop future wireless communications systems.
The demands in terms of data rates and quality of service are increasing
exponentially and, at the same time, the radio frequency bandwidth is even
more scarce and a high energy efficient system is needed. The explosive growth
demand on higher transmission rates by the proliferation of smart-phones
as well as bandwidth-intensive applications and services makes MIMO a key
technology for future wireless communication systems. MIMO systems achieve
high data rates, increased channel reliability and improve the spectral efficiency



Chapter 2. Literature Review 21

in wireless communications systems without the need for additional spectral
resources [32]. Some of the technologies which rely on these systems are IEEE
802.11, Fourth Generation (4G) and Long Term Evolution (LTE) ones.

In MIMO systems multiple antenna elements are deployed at both trans-
mitter and receiver in order to exploit the transmission through different prop-
agation paths. With this technique, multiple data streams can be transmitted
per time slot using the same frequency band. Assuming that there is uncorre-
lated fading between the different transmission paths, it was shown that MIMO
systems increase the channel capacity (i.e. the upper bound on the amount of
information that can be reliably transmitted through the channel) by the small-
est between the numbers of transmit and receiver antennas in rich scattering
environments, and at sufficiently high signal-to-noise (SNR) ratios, [33]. This
increase in channel capacity can be referred to as the multiplexing gain [34].

MIMO diversity consists of transmitting two or more replicas of the same
data through independently fading channels, which will reduce the probability
that all components fade simultaneously. Thus, it improves transmission
reliability. On the other hand, the transmission of different portions of the
data on different propagation paths is called spatial multiplexing. Here, the
data streams are divided into different independent sub-streams before the
transmission, and then they are transmitted simultaneously via sufficiently
separated antennas (λ2 or more, to obtain highly uncorrelated and independent
signals). As a result, this can potentially increase the transmission data rate
due to the additional data streams. This thesis focuses on MIMO spatial-
multiplexing systems and low-resolution aware detection schemes in order to
meet the high throughput and the energy efficiency requirements of the 5G
wireless networks.

Advantages of MIMO Systems

MIMO technology can provide significant benefits for wireless commu-
nications. It can improve the system capacity or the link reliability, as an
example. Since multiple antennas are physically separated, the deployment of
MIMO creates additional degrees of freedom in the spatial domain which are
unavailable in a single-antenna system. With intelligently designed transceiver
and signal processing algorithms, the spatial degrees of freedom due to MIMO
can be exploited to significantly improve the spectral efficiency, suppress in-
terference, and combat channel fading in wireless communication. Some of the
advantages of MIMO techniques are listed in the following:

– Improve signal quality and link reliability: The transmitter can transmit
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multiple versions of a single data and then, the probability that at least
one of the copies is not experiencing a deep fade increases. Thereafter,
the receiver can recover the signal with a lower error rate, improving the
system performance.

– Achieve higher data throughput: By spatial multiplexing, independent
data streams can be simultaneously transmitted over the same spectrum.

– Increase the covered area or reduce the transmit power: As an example,
if we consider a receiver with NR receive antennas and a single antenna
transmitter, then the average SNR is approximately NR times the SNR
of a single antenna system. Therefore, this can be used to increase the
coverage area for a fixed transmitted power, or it can be used to reduce
the transmitted power for a given coverage area.

– Increase the channel capacity: By transmitting multiple data streams
via multiple antennas, MIMO systems have the ability to increase the
channel capacity by the factor min(NT , NR) where NT is the number
of transmit antennas and NR is the number of receive antennas, in
comparison to single-antenna systems [34]. This increase in channel
capacity can be referred to as the multiplexing or diversity gain.

It is important to mention that the use of MIMO technology brings all
above benefits by sharing the same spectrum, without requiring additional
bandwidth for the wireless system. However, the other side of the coin of
MIMO systems is that the simultaneous transmission of the multiple data
streams can interfere with each other, which can make the detection and the
decoding process at the receiver more complicated. Another point is when the
number of antennas that are employed increases and as the number of A/D
and D/A converters is twice the number of antennas, the energy consumption
of the system also grows [16–21].

2.3
Uplink System Models

2.3.1
Uplink Channel Modelling

In wireless networks, signals arrive at the destination via different prop-
agation mechanisms and through multiple scattered paths. These paths arise
from scattering, reflection, and diffraction of the radiated energy by objects in
the environment or refraction in the medium [35–37]. The different propagation
mechanisms influence path loss and fading models differently.
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In the models that are going to be presented in the following sections
the matrix H is defined as a matrix that represents the medium in which
signals travel through. This channel matrix represents two kinds of propagation
phenomena, the small-scale fading and the large-scale fading, whose are related
to the variations of the channel strength over time and over frequency. The
small-scale fading is due to the constructive and destructive interference of
multiple signal paths between the transmitter and the receiver. This kind of
fading refers to the rapid fluctuations of the received signal in space, time and
frequency, and occurs at the spatial scale of the order of the carrier wavelength.
The large-scale fading is due to the path loss, that is the result of signal
attenuation due to signal propagation over large distances, and shadowing due
to the presence of buildings or natural features in the propagation path. It
is virtually independent of frequency, and is strongly correlated over many
wavelengths of space.

The channel matrix H can be described as a product of the small-scale
coefficients and the large-scale coefficient as the following:

H = H̃
√
β. (2-1)

Assuming that the signal reaches the receiver via a large number of
paths of similar energy, the application of the central limit theorem yields that
the coefficients of H̃ are circularly complex random variables with zero mean
and given variance [38, 39]. To represent this scenario with a large number of
scatterers the Rayleigh fading model is considered. In this model, the envelope
of the channel coefficient, α = |hij|, has a Rayleigh probability density function
at any time instant [40], as described by

f(α) =


2α
σ2
α
e
−α2

σ2
α , α ≥ 0,

0 , α < 0,
(2-2)

whose first and second-order moments are

E[α] = σα

√
π

2 (2-3)

E[α2] = σ2
α (2-4)

The phase is uniformly distributed over the interval [0, 2π) [38]. As we assume
that fading is caused by the superposition of a large number of independent
scattered components, then the small-scale channel matrix H̃ is modelled as a
Rayleigh fading, thus H̃ contains uncorrelated complex Gaussian fading gains
with zero mean and variance E[|hij|2] = σ2

α = 1.
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The quantity β represents the geometric attenuation and shadow fading,
it changes slowly over time and can be easily tracked [31, 41–43]. This large
scale coefficient is given by

β = z(
d
r

)γ , (2-5)

where z represents the shadow fading and obeys a log-normal distribution
given by

z = 10(σzN (0,1)
10 ), (2-6)

where N (0, 1) represents a Gaussian distribution with zero mean and unit
variance and σshadow is the shadowing spread in dB. The value of σshadow is
a measure of the severity of the attenuation due to the shadow fading, that
is typically given between 0 and 9dB. The coefficient d corresponds to the
distance between the transmitter and the receiver, r is the cell radius, and γ
is the path-loss exponent. In real environments the path loss exponent varies
from 2.5 to 6 and depends on the terrain and foliage. Several empirically based
path loss models have been developed for macrocellular and microcellular
environments such as the Okumura, Hata, COST-231 and Erceg models
[44–47].

The transmitted signal is also modified by the noise presence. In commu-
nication systems, the noise is normally modelled as additive white Gaussian
noise (AWGN) [47]. The AWGN samples are obtained from a complex Gaus-
sian process with zero mean and a variance of σ2

n which represents its power,
as represented by:

n =
(
σn√

2

)
CN (0, 1), (2-7)

where CN(0,1) represents a complex normal or Gaussian distribution with zero
mean and unit variance, and σn is given by

σn =
√

1
SNR , (2-8)

where SNR denotes the signal-to-noise ratio in linear scale.
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2.3.2
Uplink MIMO System Model

The conventional point-to-point wireless MIMO system consists of a
transmitter equipped with NT transmit antennas and a receiver equipped with
NR receive antennas, as depicted in Fig. 2.1.

Figure 2.1: NT ×NR MIMO model

The received signal y ∈ CNR×1 at one time point at the BS, can be
described through the following equation:

y = H̃x + n, (2-9)
where x ∈ CNT×1 represents the transmitted data symbols which are uncorre-
lated, have zero mean, and are drawn independently from a complex constel-
lation set A, e.g., Quadrature Amplitude Modulation (QAM) constellation.
The coefficients from the matrix H̃ ∈ CNR×NT represent the fading channel
between the NT transmit antennas at the transmitter to the NR receive anten-
nas at the receiver. Each entry hij from H̃, i = 1, 2, ...NR and j = 1, 2, ...NT ,
is drawn from zero mean and unit variance Gaussian random variables. The
vector n ∈ CNR×1 represents AWGN samples, whose coefficients are drawn
from independent and identically distributed (i.i.d.) circular symmetric Gaus-
sian random variables with zero mean and variance σ2

n. The system model of
(2-9) is then given in a matrix form as follows:


y1
...

yNR

 =


h̃1,1 . . . h̃1,NT
... . . . ...

h̃NR,1 . . . h̃NR,NT




x1
...

xNT

+


n1
...

nNR

 (2-10)

2.3.3
Uplink Single-Cell System Model

The model for the uplink single-cell multiuser MIMO system consists
of a base station (BS) equipped with NR receive antennas and K users
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equipped with NT transmitter antennas each, as depicted in Fig. 2.2. At
each time instant, each user transmits NT symbols which are organized into
a vector xu ∈ CNT×1. Each entry of xu is a symbol taken from a modulation
alphabet A with variance, or signal power, σ2

xu . The symbol vector is then
transmitted through the flat fading channel and corrupted by the AWGN
which is represented by a vector n ∈ CNR×1. The coefficients of n are zero
mean complex circular symmetric Gaussian random variables with variance
σ2
n.

The received signal vector y ∈ CNR×1 collected by the receiver antennas
at the BS, is given by

y =
K∑
u=1

H̃u

√
βuxu + n =

K∑
u=1

Huxu + n (2-11)

= Hx + n (2-12)

where the matrix H̃u ∈ CNR×NT contains the small scale fading coefficients
from the NT transmitter antennas of the user k to the NR receiver antennas
of the BS. This matrix is normalized such as Tr(E[||H̃u||2]) = NRNT . The
quantity βu represents the geometric attenuation and shadow fading which
are assumed to be independent, over the receive antennas of the BS and the
transmit antennas of the u-th user [39]. Equation (2-11) can be written as
(2-12) where H is a NR × KNT matrix that contains the coefficients of the
flat fading channels between the transmitter antennas of the K users and
the receive antennas of the BS. The symbol vector x = [x1, ...,xu, ...,xK ]T

contains all symbols transmitted by the K users. In this model the data
are simultaneously transmitted by the users at the same frequency band.
Therefore, the signals can interfere with each other and its interference is
named as MUI or intra-cell interference.

,

Figure 2.2: MU-MIMO uplink system model comprised by K users equipped
with NT transmit antennas each and a single RRH equipped with NR receive
antennas.
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2.3.4
Uplink Large-Scale Multi-Cell System Model

A cellular large-scale MU-MIMO uplink system with C-RAN is a system
comprised of L cells where K users per cell are placed randomly, uniformly
distributed over each of these cells, as depicted in Fig. 2.3. In a C-RAN system
all RRHs of the cluster are connected by high capacity and low latency links
to the centralized signal processing pool. Therefore, all received signals are
treated in only one place.

Each user and each RRH are equipped with NT transmit antennas
and NR receive antennas, respectively. In this model all BS share the same
frequency band and all users simultaneously transmit data streams to their
base stations. Consequently, the signal transmitted by users in neighbouring
cells can interfere with each other and arrive at the receive antennas with
the inter-cell interference [39]. Therefore, to represent this scenario the NR-
dimensional received signal vector at the RRH in the l-th cell can be expressed
as

yl =
K∑
u=1

H̃(u)
ll

√
β

(u)

ll
x(u)
l +

L∑
i=1
i 6=l

K∑
u=1

H̃(u)
li

√
β

(u)

li
x(u)
i + nl, (2-13)

=
K∑
u=1

H(u)
ll x(u)

l︸ ︷︷ ︸
intracell

interference

+
L∑
i=1
i 6=l

K∑
u=1

H(u)
li x(u)

i

︸ ︷︷ ︸
intercell

interference

+nl, (2-14)

where H̃(u)
li ∈ CNR×NT contains the small-scale channel coefficients between

the NT transmit antennas of user u in the ith cell and the NR receive antennas
of the RRH in the l-th cell. The coefficient β(u)

li is the large-scale coefficient
of the u-th user in the ith cell to the NR receive antennas of the RRH in the
l-th cell. It is assumed that β(u)

li is independent over the receive antennas of
the l-th RRH and the transmit antennas of the u-th user. The elements of
x(u)
i are assumed to be i.i.d circularly symmetric complex Gaussian random

variables with zero mean and unit variance. The channel state information
(CSI) is unknown to the users (transmit side), and we assume the same energy
per user, and thus E[x(u)

i x(u)
i

H
] = σ2

xINT . nl ∈ CNR×1 is a vector that denotes
the AWGN at the BS in the lth cell with covariance matrix E[nlnHl ] = σ2

nINR .
We can write (4-1) in matrix form as

yl = Hlx + nl (2-15)

where Hl = [Hl1,Hl2, ...,HlL] is the CNR×LKNT matrix with the coefficients of
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the channels between each user in the cluster and the NR receive antenna of
the lth RRH. The vector x = [xT1 ,xT2 , ...,xTL]T is the CLKNT×1 transmit symbol
vector by all users of the cluster. Since the BBU pool has knowledge about the
received signals by all RRHs, the received symbol vector y ∈ CLNR×1 in the
CU can be written as

y = [yT1 , ...,yTl , ...yTL]T = Hx + n, (2-16)

where n ∈ CLNR×1 contains AWGN samples. H ∈ CLNR×LKNT is the propa-
gation matrix with the channel coefficients between all users and all receive
antennas of the cluster.

Figure 2.3: Large-scale MU-MIMO uplink system model comprised by L RRHs
equipped with NR receive antennas each and a total of K users equipped with
NT transmit each in each cell coverage area.

2.4
Capacity

The framework used for evaluating the performance limits of communi-
cation systems is based on information theory. Based on Shannon’s theorem,
capacity is a measure of the maximal transmission rate for which an arbitrarily
small error probability can be achieved on a given channel [35, 49–51]. In this
section, we review the capacity of deterministic and random MIMO channels.

2.4.1
Channel Capacity for the Uplink Single-User MIMO Communications

Let us start with the general MIMO system model where the transmitter
is equipped with NT transmit antennas and the receiver is equipped with NR
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receive antennas as described in Subsection 2.3.2. The received signal vector
y ∈ CNR×1 is given by

y = Hx + n, (2-17)

where the input signal x ∈ CNT×1 is subject to an average power constraint
equal to P. The noise vector n ∈ CNR×1 is assumed to be zero-mean circular
symmetric Gaussian with the covariance matrix Rnn = σ2

nINR .
By Shannon’s channel capacity theorem [35, 36, 49], the capacity of a

deterministic channel is defined by the maximum mutual information I(y; x)
between the input x and the output y, over all possible distributions for x
that satisfies the power constraint Tr(Rxx) ≤ P as given by

C = max
px(x)

I(x; y), (2-18)

where px(x) is the probability density function of the transmit signal vector
x. The mutual information I(x; y) describes the average information common
to the transmit signal x and the received signal y, and can be determined by

I(x; y) = H(y)−H(y|x), (2-19)

= H(y)−H(n), (2-20)

where H(y) denotes the differential entropy of the received signal y, and
H(y|x) the conditional differential entropy of y given x. Since the information
in y for known x can only stem from the noise n, mutual information in
(2-19) has the form (2-20). As the noise vector is assumed to be zero-mean
circularly symmetric complex Gaussian with covariance matrix Rnn = σ2

nINR ,
the differential entropy H(n) is given by

H(n) = log2(det(πeσ2
nINR)). (2-21)

The maximization of (2-20) with respect to px(x) only affects the
term H(y) because the noise, n, is independent of the transmitted signal.
Therefore, the maximization of I(x; y) implies maximizing H(x). In [33]
the following lemma was presented: circularly symmetric complex Gaussian
random variables are entropy maximizers. Thus, if x is a zero mean complex
random vector with covariance E[xxH ] = Rxx, we have H(x) ≤ log2(πeRxx)
with equality holding if and only if x has a circularly symmetric complex
Gaussian distribution. Thus, the assumption of Gaussian input signals leads
to an upper bound on the capacity for discrete input alphabets. Furthermore,
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the received signal y is zero-mean with covariance E[yyH ] = σ2
nINR+HRxxHH .

Consequently, we have

H(y) ≤ log2(det(πe(σ2
nINR + HRxxHH))), (2-22)

Substituting (2-21) and (2-22) in (2-20), the expression of the mutual
information is obtained as

I(y; x) = log2(det(πe(σ2
nINR + HRxxHH)))− log2(det(πeσ2

nINR)),(2-23)

= log2

[
det

(
INR + HRxxHH

σ2
n

)]
. (2-24)

By inserting (2-24) in (2-18) the deterministic capacity of a MIMO system
is given by

C = max
Tr(Rxx)=P

log2

[
det

(
INR + HRxxHH

σ2
n

)]
. (2-25)

2.4.1.1
Capacity of random MIMO channels

Due to the mobility of the transmitter and also due to the characteristics
of the propagation channel, the channel coefficients change randomly over the
transmission duration and, therefore, they are not deterministic.

The coefficients of the channel matrix H models both the fast fading and
the slowly fading. The fast fading coefficients are considered constant during
the transmission of one data packet, they change only in the transition of a
data packet to another data packet. On the other hand, the slowly fading
channel coefficients are considered constant during the transmission of several
data packets.

As the channel changes randomly, the channel capacity becomes a
random variable which is a function of the channel. Therefore, the random
MIMO channel capacity can be obtained by taking the average capacity across
time. Assuming the randomness of the channel is an ergodic process, the
Ergodic capacity is defined as the statistical average of the channel capacity
conditioned on a given channel matrix H [35,50,52]. Then, the ergodic capacity
is given by

Cergodic = E[C|H] = EH

{
max

Tr(Rxx=P)
log2

[
det

(
INR + HRxxHH

σ2
n

)]}
. (2-26)
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To illustrate the ergodic MIMO channel capacity we consider a system
without CSI at the transmitter. Therefore, the best strategy in this case is
that the each antenna transmits with the same average signal power σ2

x and
the ergodic maximum sum rate becomes

Cergodic = EH

{
log2

[
det

(
INR + σ2

x

σ2
n

|H|2
)]}

. (2-27)

Fig. 2.4 shows that the ergodic capacity grows linearly as more antenna pairs
are included.
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Figure 2.4: Ergodic channel capacity with different MIMO configurations. CSI
is known at the receiver, but not at the transmitter.

2.4.2
Channel Capacity in MU-MIMO Communications

As in the point-to-point case, the concept of maximal transmission
rate for reliable communication can be extended to the multiuser case with
the concept of capacity region C [35, 36, 49, 50]. In the multiuser case we
consider a system with a total of K users where an arbitrary user u transmits
signals at a rate Ru. Then, the capacity region consists of the set of all
pairs (R1, R2, ...., RK) such that the users can simultaneously and reliably
communicate at rates R1, R2, ...., and RK , respectively. However, as the
users share the same bandwidth, the values of the rates transmitted by each
user differ from each other. When one user transmits at a higher rate the
others transmit at lower rates. Therefore, a trade-off between the reliable
communication rates of the users occur in this case: if one user wants to
communicate at a higher rate, the other users may need to lower their rates [36].
The capacity region characterizes the optimal trade-off achievable by any
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multiple access scheme [36]. From this capacity region, the performance of
the sum capacity can be derived as a scalar performance measure by

Csum = max
(R1,R2,...,RNu )∈C

Nu∑
u=1

Ru (2-28)

which corresponds to the maximum total throughput that can be achieved.
We start the discussion with a simple multiuser AWGN channel model,

where both BS and users are each equipped with a single antenna element.
After that, this scenario is extended to a scenario where the flat fading channel
is also considered. At last, a scenario where both the BS and the users are
equipped with multiple antennas is studied.

2.4.2.1
Uplink multiuser single antenna AWGN channel

In this scenario, a total of K single antenna users and a single-antenna
receiver at BS are considered. As the Gaussian distribution maximizes entropy
[33], we consider that the users transmit independent complex Gaussian
symbols and they are subjected to the same average power constraint Pu = σ2

xu

[50]. The received symbol at the BS is given by the linear combination of the
symbols transmitted by the users with addition of the background noise as

y =
K∑
u=1

xu + n (2-29)

The users are considered to share the same bandwidth, then their signals
interfere with each other. Therefore, the performance of the multiuser systems
is limited by both the background noise and the multiuser interference. If we
neglect the presence of the multiuser interference we will have an ideal case
where the rate Ru achieved by an arbitrary user u is limited only by the
background noise [50]. Then, the capacity of an individual user u, limited by
the noise, can be expressed by (2-26) as

Ru ≤ Cu = log2(1 + SNRu) = log2

(
1 + σ2

xu

σ2
n

)
(2-30)

The sum of the individual rates achieved by (2-30) will result in optimistic
sum rate where the MUI is not considered. Then we can imagine this case as
an ideal case where a single user transmits with the power of all Nu users,
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leading to the maximum capacity or sum rate is given by

Nu∑
u=1

Ru ≤ Cmax = log2

(
1 +

∑Nu
u=1 σ

2
xu

σ2
n

)
(2-31)

For simplicity we consider the two-user case to illustrate the concept of
capacity region C [49, 50]. The capacity region of the two-transmitter single-
antenna uplink AWGN channel is given by the set (R1, R2) that satisfies the
following constraints [35,36,49,50]:

R1 ≤ log2

(
1 +

σ2
x1

σ2
n

)
, (2-32)

R2 ≤ log2

(
1 +

σ2
x2

σ2
n

)
, (2-33)

R1 +R2 ≤ log2

(
1 +

σ2
x1

σ2
n

+
σ2
x2

σ2
n

)
. (2-34)

However, in a realistic model, we have the MUI induced by the other users.
By using the logarithm property described by

logb(a ∗ c) = logb(a) + logb(c), (2-35)

we can write

logb(a+ c) = logb(a ∗ (1 + c/a)) = logb(a) + logb(1 + c/a), (2-36)

and then we can rewrite (2-34) as

log2

(
1 +

σ2
x1

σ2
n

+
σ2
x2

σ2
n

)
= log2

(
1 +

σ2
x1

σ2
x2 + σ2

n

)
+ log2

(
1 +

σ2
x2

σ2
n

)
(2-37)

= log2

(
1 +

σ2
x2

σ2
x1 + σ2

n

)
+ log2

(
1 +

σ2
x1

σ2
n

)
(2-38)

With (2-37) and (2-38) we conclude that a receiver that performs SIC
can achieve the maximum sum capacity defined in (2-31). In the first stage the
data of user 1 is decoded, treating user 2 as Gaussian interference. Then, the
maximum rate achieved by user 1 is given by

R1 = CMUI
1 = log2

(
1 +

σ2
x1

σ2
x2 + σ2

n

)
. (2-39)

If the symbol transmitted by user 1 is correctly detected, the interference
induced by it can be perfectly removed from the received signal y. Then, the
remaining signal of the second user is now only disturbed by the noise, leading
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to its maximum rate [50]

R2 = C2 = log2

(
1 +

σ2
x2

σ2
n

)
= I(y;x2|x1), (2-40)

which corresponds to the maximum mutual information between x2 and y if
the signal x1 is known to the receiver. The same procedure can be made if user
2 is the first detected user. In this case, we will have the following rates:

R2 = CMUI
2 = log2

(
1 +

σ2
x2

σ2
x1 + σ2

n

)
(2-41)

R1 = C1 = log2

(
1 +

σ2
x1

σ2
n

)
= I(y;x1|x2) (2-42)

Therefore, when SIC is used, the last detected user can achieve its single-
user bound while at the same time the other detected users can get a non-zero
rate. The capacity region is the pentagon shown in Figure 2.5. The rate pairs
(CMUI

1 , C2) and (C1, C
MUI
2 ) represent the maximum sum rate achievable when

the SIC receiver is employed.
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Figure 2.5: Capacity region for an uplink transmission with AWGN and K =
2.

Although we focused on the two-user case for simplicity, the results can be
extended to a system with an arbitrary number of users. The capacity region
for the K-user case describes a K-dimensional polymatroid. It considers all
possible sets K ⊂ (1, 2, ..., K) containing different subsets of users and the
corresponding sum rates. This region is described by 2K − 1 constraints, one
for each possible non-empty subset K of users:

∑
u∈K

Ru < log
(

1 +
∑
u∈K σ

2
xu

σ2
n

)
. (2-43)
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In the right hand term of (2-43) we have the maximum sum rate that can be
achieved by an arbitrary transmitter u with the total power of the users in K
and with absence of all other users in the system. The rates

Ru ≤ CMUI
u = log2

(
1 + σ2

xu∑K
i=u+1 σ

2
xi

+ σ2
n

)
, (2-44)

are valid if the symbols are detected with SIC in ascending order. Then, the
maximum sum rate amounts to

Cmax =
(

1 +
∑K
u=1 σ

2
xu

σ2
n

)
. (2-45)

Then, the capacity region can be described as

⋂
K⊂(1,2,...,K)

{Ru}u∈K|
K∑
u∈K

Ru ≤
(

1 +
∑K
u∈K σ

2
xu

σ2
n

) (2-46)

2.4.2.2
Uplink multiuser single antenna flat fading channel

In a more realistic point of view the flat fading channel coefficients are
included into the system. These coefficients represent the propagation channel
between the transmitter and the receiver, and thus, they affect the SNR at the
transmitter. The complex baseband representation of the uplink flat fading
channel with K single antenna users is given by

y =
K∑
u=1

huxu + n, (2-47)

where hu is the fading process of the u-th user. The fading process is assumed
to be independent and identically distributed among different users and
E[|hu|2] = 1. Assuming that each coefficient hu is a time-varying ergodic
process [35, 50, 52], the ergodic capacity can be obtained by the following
function:

Cmax = Eh
[
log2

(
1 +

∑K
u=1 |hu|2σ2

xu

σ2
n

)]
(2-48)

Jensen’s inequality [49] states that for any concave function f(x), where x is
a random variable, we have

E[f(x)] ≤ f(E[x]) (2-49)
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Applying Jensen’s inequality to the Ergodic capacity in (2-48) an upper bound
is obtained

Eh
[
log2

(
1 +

∑K
u=1 |hu|2σ2

xu

σ2
n

)]
≤ log2

(
1 +

∑K
u=1 E[|hu|2]σ2

xu

σ2
n

)
. (2-50)

If we consider a system without CSI at the transmitters, i.e σxu = σx for
1 ≤ u ≤ K, and that |E[|hu|2| = 1 holds for 1 ≤ u ≤ K, we have

Eh
[
log2

(
1 +

∑K
u=1 |hu|2σ2

xu

σ2
n

)]
≤ log2

(
1 + Kσ2

x

σ2
n

)
. (2-51)

The right hand side of (2-51) describes the maximum sum rate achieved
for the uplink channel with AWGN as in (2-45). We conclude that the Ergodic
capacity of a fading channel cannot exceed that of an AWGN channel with
constant gain and also that fast fading without channel knowledge at the
transmitter always decreases the capacity.

2.4.2.3
Uplink with both users and base station equipped with multiple antennas

Here, the MAC of a system with K users equipped with NT transmit
antennas each and one BS equipped with NR receive antennas is considered.
At the BS, the received signal y ∈ CNR×1 is given by

y =
K∑
u=1

Huxu + n. (2-52)

In the uplink, the users transmit independent data streams and each
one is subjected to an individual power constraint equal to Pu. The covariance
matrix for the u-th user is given by Rxuxu = E[xuxHu ], subject to the constraint
Tr(Ru) ≤ Pu. If we consider the absence of the multiuser interference, the
individual rates constraints can be obtained applying the results obtained in
(2-26) and then [50]

Ru ≤ Cu = log2 det
(

INR + HuRxuxuHH
u

σ2
n

)
. (2-53)

The maximum sum rate of the entire multiuser system is limited to

Cmax = log2 det
(

INR +
∑K
u=1 HuRxuxuHH

u

σ2
n

)
, (2-54)

and the capacity region is described by considering all possible subsets K ⊂
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{1, ..., K} as

⋂
K⊂(1,2,...,K)

{Ru}u∈K|
∑
u∈K

Ru ≤ log2 det
(

INR +
∑K
u=1 HuRxuxuHH

u

σ2
n

) (2-55)

2.5
Characterization and System Parameters

This section presents some characterization and system parameters that
are used to measure the performance of MIMO systems.

2.5.1
Modulation Schemes

Modulation schemes are techniques to carry digital data over analog
waveforms to be transmitted on a radio frequency [24]. The modulation process
maps digital information, in the form of sets of one or more bits, onto sine-wave
carriers while demodulation reverses the process at the receiving end. A group
of n bits of information, where n = log2m and m is called as the modulation
order [53], are mapped onto symbols that are represented by a complex number
in a complex plane. A set of possible symbols of a modulation scheme can be
plotted on a two-dimensional graph known as constellation diagram whose axes
are named as In-phase (the real part) and Quadrature (imaginary). The use
of M-ary symbols allow the transmission of an amount of information on the
channel k = log2m times faster, keeping the bandwidth used initially. Then,
the M-ary modulation schemes are appropriate for higher transmission rates
and more efficient bandwidth utilization [24].

Therefore, in a digital communication system, information bits are repre-
sented by symbols of a constellation diagram and then they are transmitted by
radio frequency through a channel that is corrupted by noise and interference.
The aim of the receiver is to demodulate and detect the signal that has been
received to recover the information that was transmitted. Unfortunately, due
to the noise, to the interference, and also to the imperfections in the detec-
tion and decoding process, the demodulated symbols are unlikely to be exactly
identical to the constellation points. Then, the received symbols are attributed
to the closest constellation point by an operator named as slicer, and the set
of bits that were associated with that constellation point is the received data
bits. In this thesis the slicer operator is defined as D(·).

In this thesis, we focus on binary phase-shift keying (BPSK), quadrature
phase-shift keying (QPSK) and 16 quadrature amplitude modulation (16-
QAM) schemes whose constellation diagrams are illustrated in Fig 2.6. In the
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modulation schemes presented by Fig. 2.6 the Gray code scheme was used to
map codewords to constellation points. The aim of this scheme is to minimize
the number of data bit errors when a symbol detection error occurs. The Gray
code consists of encoding each constellation point with an individual codeword,
and the adjacent symbols differ in only one bit position [24]. With this scheme,
each symbol error is most likely to cause only a single bit error.
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Figure 2.6: Constellation diagrams of BPSK, QPSK and 16-QAM modulation
schemes with unitary average power.

2.5.2
Signal-to-Noise Ratio (SNR)

The signal-to-noise ratio (SNR) is a measure widely used in communica-
tions engineering that compares the level of a desired signal to the level of the
background noise. This measure is defined as the ratio of signal power to the
noise power, usually expressed in logarithmic form in decibels (dB). A higher
SNR implies that the system should be less influenced by background noise
and signal distortion.
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2.5.2.1
SNR in MIMO Systems

In the single-user MIMO system the received signal at the receive
antennas is given by (2-9), where H̃ represents the channel coefficients. The
SNR in this model is given by

SNR = 10 log
(
E[||H̃x||2]
E[||n||2]

)
. (2-56)

The desired signal power in (2-56) can be computed as

E[||H̃x||2] = E[Tr((H̃x)(H̃x)H)]

= NTNRσ
2
x (2-57)

and the noise power is given as

E[||n||2] = NRσ
2
n (2-58)

Inserting (2-57) and (2-58) in (2-56) we get

SNR = 10 log
(
NTσ

2
x

σ2
n

)
(2-59)

2.5.2.2
Single-Cell MU-MIMO System SNR

In the single-cell MU-MIMO model the received signal at the receive
antennas of the RRH can be computed as (2-12). To compute the SNR in this
model, the following equation can be used:

SNRsingle−cell = 10 log
(
E[||Hx||2]
E[||n||2]

)
. (2-60)

The desired signal power of (2-60) can be computed as

E[||Hx||2] = E[Tr((Hx)(Hx)H)]

= E[
KNT∑
i=1
|hi|2|xi|2]

= E[
KNT∑
i=1
|h̃i|2βi|xi|2]

=
KNT∑
i=1

NRβiσ
2
xi

(2-61)

and the noise power is given by

E[||n||2] = NRσ
2
n (2-62)
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Inserting (2-61) and (2-62) in (2-60) we get

SNRsingle−cell = 10 log
(∑KNT

i=1 βiσ
2
xi

σ2
n

)
(2-63)

2.5.2.3
Large-Scale MU-MIMO System SNR

In the large-scale MU-MIMO system model the received signal at all
receive antennas of the cluster is given by (4-5). To compute the SNR in this
model, the following equation can be used

SNRlarge−scale = 10 log
(
E[||Hx||2]
E[||n||2]

)
. (2-64)

The signal power of (2-64) is given by

E[||Hx||2] = E[
L∑
l=1
||Hlx||2] = E[

L∑
i=1

Tr((Hlx)(Hlx)H)]

= E[
L∑
l=1

L∑
i=1

KNT∑
j=1
|h(j)
li |2|x

(j)
i |2]

= E[
L∑
l=1

L∑
i=1

KNT∑
j=1
|h̃(j)
li |2β

(j)
li |x

(j)
i |2]

=
L∑
l=1

L∑
i=1

KNT∑
j=1

NRβ
(j)
li σ

2
x

(j)
i

(2-65)

where h(j)
li corresponds to the fast fading coefficients between the j-th transmit

antenna at the i-th cell to the NR receive antennas from the RRH at the l-th
cell. The quantity β(j)

li models both geometric attenuation and shadow fading.
The noise power can be computed as

E[||n||2] = LNRσ
2
n (2-66)

Inserting (2-65) and (2-66) in (2-64) we get

SNRlarge−scale = 10 log


∑L
l=1

∑L
i=1

∑KNT
j=1 β

(j)
li σ

2
x

(j)
i

Lσ2
n

 (2-67)

2.5.3
Bit Error Rate

The bit error rate (BER) is a measure widely used in communication
systems to evaluate the performance of a detector. The BER is computed
by taking the number of bits that were incorrectly detected compared to the
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number of originally transmitted bits:

BER = Nerror

Ntotal
, (2-68)

where Nerror denotes the total number of bit errors seen at the receiver, and
Ntotal denotes the total number of the bits that were transmitted.

2.5.4
Receiver Design

Spatial Multiplexing is a promising solution to meet the higher data
rates that are required in the next generations of wireless networks. In this
technique, different portions of data are sent through multiple antennas and,
as a result, these additional data streams increase the transmission data rate
of the system. After data is sent through independent data streams they are
linearly combined by a channel with different propagation effects, and then,
arrives at the receiver. The main challenge at the receiver is to recover the
data that were sent.

The methods that attempt to recover the transmitted information from
a received signal are called detection techniques. The main task consists of
designing powerful signal processing techniques capable of separating those
transmitted signals with an acceptable complexity and desired performance.
The main mechanisms of detection methods are filtering, searches or algorith-
mic processes. Given perfect CSI at the receiver, a variety of techniques such
as linear, successive, tree search and the maximum likelihood, can be used to
cancel the effect of the channel and recover the transmitted signals. The linear
detection methods have a low complexity, however, they achieve a low perfor-
mance in comparison to the optimum performance achieved by the Maximum
Likelihood (ML) detector which has a high complexity.

The center of interest of this thesis is the large-scale MIMO systems
whose employs a high number of receive antennas at the BSs to serve multiple
users. Then, a low computational complexity algorithm is crucial due to a large
amount of data that have to be processed. In this case, the computational
complexity of some detectors like the ML detector is infeasible [52]. This
detector requires a brute-force search which has an exponential complexity
in the number of transmit antennas and constellation set size. For instance, in
a small system with 3 users, with 2 transmit antennas each, to send symbols
of a 16-QAM modulation scheme, a total of 166 = 16777216 comparisons per
symbol are required to be performed for each transmitted symbol.

In order to solve the detection problem in a C-RAN environment this
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research focuses on cost-effective linear detectors and detectors based on SIC.
Linear detection methods estimate each of the transmitted multiplexed data
streams as a linear combination of the received signals and they have a
computational complexity that grows linearly in the number of antennas. The
basic idea of these methods is to recover the transmitted information by linear
filtering of the received signal, as depicted in Fig. 2.7. After the linear filtering
process, the resulting signals are approximated to the closest constellation
points by a slicer. In this section we describe the ML, the Zero-Forcing (ZF),
the minimum mean square error (MMSE) and SIC receivers.

Figure 2.7: MIMO spatial multiplexing linear detection scheme

2.5.4.1
Maximum Likelihood receiver

The ML receiver is considered the optimum method to recover the
transmitted signal in MIMO systems when the messages are equiprobable [53].
The estimated symbols in this receiver are obtained by the exhaustive search
that compares all possible transmitted signal vectors to one that maximizes the
likelihood function, based on the knowledge of the received vector y and the
channel matrix H [53]. In most MIMO systems, the noise vector is considered
to be white, i.e. Rnn = σ2

nINR , and then, with the given channel matrix H,
this receiver computes the Euclidian distance J (x)Euclidian = ||y −Hx̂||2 for
each possible transmit signal vector [52]. The signal vector with the smallest
Euclidian distance is returned as the estimate of the transmitted signal vector,
as described by

x̂ML = arg max
x∈XNT

P(y|x,H),

= arg max
x∈XNT

1
(πσ2

n)NT exp
(
−||y−Hx̂||2

σ2
n

)
,

= arg min
x∈XNT

J (x)Euclidian, (2-69)

where XNT is the set space which contains all possible transmit signal vectors
when a total of NT transmit antennas is used. Although this receiver achieves
the best performance, its computational complexity scales exponentially higher
when the number of transmit antennas or the constellation size increases [38].
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Then, his use in the real world is impractical, except for very small systems
and constellations.

2.5.4.2
Zero-forcing receiver

The aim of the ZF receiver is to reduce the inter-symbol interference (ISI)
to zero by pre-multiplying the received signal y [51] by a conditioning matrix
WZF that is derived from the cost function:

ε = E[||y−Hx̂||2],

= E[(y−Hx̂)H(y−Hx̂)],

= E[yyH − yHHx̂− x̂HHHy + x̂HHHHx̂] (2-70)

where x̂ corresponds to the estimated transmitted symbols. To obtain the ZF
filter coefficients we compute the derivative of (2-70) with respect to x̂H , equate
the result terms to zero and solve for x̂H , as described by

∂ε

∂x̂H
= −E[HHy] + E[HHHx̂] = 0, (2-71)

whose solution is

x̂ = (HHH)−1HHy = WZFy, (2-72)

where WZF = (HHH)−1HH = H† is also known as the Moore-Penrose pseudo
inverse. This approach ensures that the effects of the propagation channel are
forced to zero to totally remove the ISI. However, it ignores the possibility that
some of the impairment is caused by noise. Thus, a noise-free environment is
the ideal case for using the ZF algorithm, although it does not occur in real
systems. Therefore, in a normal noisy channel, the ZF algorithm performance is
limited because the effects of noise that will tend to be amplified by multiplying
the ZF equalizer by the received signal vector y. This drawback is also indicated
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by the error covariance matrix given by

EZF = E[(x̂− x)(x̂− x)H ]

= E[(WZFy− x)(WZFy− x)H ]

= E[(x + WZFn− x)(x + WZFn− x)H ]

= WZFE[nnH ]WH
ZF

= σ2
nWZFWH

ZF = σ2
n(HHH)−1HHH(HHH)−1

= σ2
n(HHH)−1 (2-73)

The mean squared error (MSE) can be obtained by the trace of the error
covariance matrix, then MSEZF = Tr[σ2

n(HHH)−1] [38]. Hence, although the
ZF detector removes the interference between parallel streams, the power of
the noise increases which thereby leads to poor performance [38]. To mitigate
the noise enhancement introduced by the ZF detector, the MMSE detector
approach is proposed. In this approach, the noise variance is considered in the
construction of the filtering matrix WMMSE [35, 38,52].

2.5.4.3
Minimum Mean Square Error receiver

The MMSE approach minimizes the average square error function be-
tween the desired signal x and the estimated signal x̂ = WH

MMSEy as follows:

WMMSE = argmin
W∈CNT×NR

E[‖x−WHy‖2], (2-74)

where NT and NR corresponds to the total transmit and receive antennas of
the system, respectively, where the filter will be applied.

Again, a solution of this problem is found by setting the partial derivative
of the cost function with respect to W, equating the derivatives to zero and
solving for W:

∂ε

∂WH
E[Tr[(x−WHy)(x−WHy)H)]] =

∂ε

∂WH
E[Tr[xxH − xyHW−WHyxH + WHyyHW]] =

∂ε

∂WH
Tr[Rxx −RxyW−WHRH

xy + WHRyyW]] =

= RyyW−RH
xy = 0, (2-75)

leading to the well-known Wiener-Hopf [51,54,55] solution:
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WMMSE = R−1
yy RH

xy (2-76)

To determine the cross-correlation matrix Rxy and the autocorrelation
matrix Ryy some considerations from the MIMO model are taken into ac-
count. First, both the AWGN and the transmited symbols are i.i.d, complex
circular symmetric Gaussian random variables with zero mean and respective
variances σ2

n and σ2
x. Furthermore, the data symbols are assumed statistically

independent of the noise samples. It leads to the following set of equations:

Rnn = E[nnH ] = σ2
nINR , (2-77)

Rxx = E[xxH ] = σ2
xINT , (2-78)

Rxn = E[xnH ] = 0. (2-79)

With these results the autocorrelation matrix of the received signal can
be computed by

Ryy = E[yyH ] = σ2
xHHH + σ2

nINR , (2-80)

and the crosscorrelation matrix between the transmitted signal and the re-
ceived signal by

Rxy = E[xyH ] = σ2
xHH (2-81)

Inserting (2-80) and (2-81) in (2-76), we obtain the MMSE receive filter

WMMSE = (σ2
xHHH + σ2

nIm)−1σ2
xH = (HHH + σ2

n

σ2
x

Im)−1H (2-82)

Analyzing the result in (2-82), we see that both MMSE and ZF receive filters
have similarities, except for the MMSE that incorporates the variance of the
noise. The addition of the noise variance improves the accuracy of the MMSE
receiver at low SNR values. However, as the SNR grows large, then σn → 0
and the MMSE receive filter converges to the ZF receive filter.

2.5.4.4
Successive Interference Cancellation (SIC)

SIC is a non-linear approach that takes advantage of the diversity
potential of the additional receive antennas to achieve a better performance
than linear techniques at a cost of higher computational and more costly
complexity hardware implementation. The principle of this scheme consists
of decoding one data stream at each step and removing its contribution from
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the received signal to improve the accuracy of detection of the remaining data
streams. At each iteration, one reference data stream is decoded considering the
other streams as interference. The interference from the decoded stream is then
removed from the received signal vector, resulting in a modified received vector
in which, effectively, fewer interferers are present. At the following iteration, the
selected stream is decoded with one less interferer [32,52,56]. With this scheme
SIC improves the signal to interference plus noise ratio (SINR) of the remaining
data symbols, and then improve the BER in MIMO systems. The construction
of the filtering matrix can still be based on the aforementioned linear filters,
such as ZF or MMSE. Table 1 and Figure 2.8 describe the algorithm used for
the SIC process.

Algorithm 1 MMSE-SIC Detection Algorithm
1: Initialize parameters y0 = y,H0 = H,W0 = HH(HHH + σ2

n

σ2
x
Im)−1

2: for i = 1 to NT do
3: x̂i = wH

i−1yi−1;
4: x̃i = slicer(x̂i);
5: yi = yi−1 − x̃ihi−1;
6: hi−1 = 0;
7: wi = hHi (HiHH

i + σ2
n

σ2
x
Im)−1;

8: end for

Figure 2.8: SIC algorithm

Unfortunately, all SIC techniques suffer from error propagation. One er-
ror in previously computed steps impairs the subsequent estimates. Therefore,
it is indispensable to detect reliable signals in the early stages to avoid error
propagation. Then, detection nulling and cancellation order (NCO) has a sig-
nificant influence on the performance of SIC methods. A well-known technique
to improve performance of the SIC detector is ranking the data streams based
on certain reliability measure. One popular scheme is called Vertical-Bell Lab-
oratories Layered Space-Time (V-BLAST), whose detection is ordered by the
signal-to-noise ratio (SNR) and the estimators are based on MMSE or zero
forcing (ZF) estimation [35]. It detects data symbols with the greatest SNR
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Figure 2.9: Performance of the detection algorithms in a 4× 8 MIMO system
with QPSK modulation. CSI is perfectly known by the receiver, but not at the
transmitter.

first, and then cancels out its effect on the remaining data streams improving
the overall bit error rate in MIMO systems.

The curves presented in Fig. 2.9 represent the BER performance of the
ML, the ZF, the MMSE, and the MMSE based on SIC detection receivers.
In this simulation, a MIMO system with 4 transmit and 8 receive antennas
is used and QPSK symbols are transmitted through the flat fading channel.
The MMSE-SIC receiver is ordered by the channel norms. As expected, the
ML receiver outperforms the others receivers, but as previously mentioned
it has the highest computational cost. In addition, the MMSE based SIC
detection receiver achieves a better performance than both MMSE and linear
ZF receivers.
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2.5.5
Computational Complexity

The aim of detection techniques in MIMO systems is to detect the
information that was transmitted with the highest accuracy and also with the
lowest possible computational cost. The complexity is a measure to estimate
the computational cost of an algorithm. This measure can be computed
through the total complex additions and multiplications that are needed to
execute the algorithm. Some examples of computational complexities achieved
by some matrix operations are shown in Table 2.1. This table will be used as
a reference to compute the computational complexity of the algorithms that
are going to be presented in this thesis.

Table 2.1: Computational complexity of some matrix computations
Task Additions Multiplications
A︸︷︷︸
n×m

B︸︷︷︸
m×n

n2(m− 1) n2m

A︸︷︷︸
n×m

b︸︷︷︸
m×1

n(m− 1) nm

A︸︷︷︸
n×n

B︸︷︷︸
n×m

m(n2 − n) n2m

A︸︷︷︸
n×m

� B︸︷︷︸
n×m

0 nm

A︸︷︷︸
n×m

+ B︸︷︷︸
n×m

nm 0

A−1︸ ︷︷ ︸
n×n

O(n3) O(n3)
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2.6
C-RANs

Requirements for wireless communications have increased significantly
over the years. The growing number of devices connected into the network
forces the manufacturers to develop new solutions in order to provide higher
data rates and capacity. To address the requirements for the future wireless
networks a combination of technologies are proposed to be jointly employed
and the C-RAN architecture is envisioned as one of these technologies. The
main idea in C-RANs is to centralize a large number of BBUs within one only
physical location referred to as BBU pool [6–10, 57, 58]. With this, the signal
processing resources can be shared among different users and applications
corresponding to their actual demand.

In traditional RAN architecture the signal processing was performed at
each BS individually in dedicated BBUs. As those BBUs were rather large and
heavy, they were deployed at the base of the cell towers, with coaxial cables
connecting the BBU with analog radio frequency hardware (mixers, amplifiers,
and antennas) at the top of the tower. This architecture has several limitations
such as: first, each BS only covers a small area and only handles signals in its
coverage area; second, the system capacity is limited by interference, making
it difficult to improve spectrum capacity; third, the processing resources are
dedicated to meet the peak demand among the users in the coverage area.
Moreover, it can be expected that in most cases not all users or applications
require the peak resources during all time, and thus, the utilization rate is
low and part of the processing power remains without use. Last but not least,
the deployment of BBUs at the base of cell towers requires a large housing or
even a machine room, which have to be acquired or rented from the original
site owner, increasing the cost of the system when the deployment of a greater
number of BS is necessary.

The C-RAN concept splits the traditional BSs into a set of RRHs that
are distributed in the coverage area and into a centralized BBU pool within one
only physical location named as CU. The RRH is the access component of the
network and is responsible for radio functions, including frequency conversion,
amplification, and A/D and D/A conversion. They are connected to the CU
through the optical transport network which has high bandwidth and low-
latency. This connection network is known as the fronthaul network (FH). The
BBU acts as a digital unit implementing the base station functionality from
baseband processing to packet processing. With this configuration, RRHs can
be easily mounted on lampposts or rooftops [6]. The goal of this architecture
is the reduction of the size and the cost of the BSs for them to be densely
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deployed to provide better coverage for the end users. Some of the benefits of
C-RAN architecture are [9, 10,57,58]:

– Reduced Total Cost of Ownership (TCO): the TCO in mobile networks
includes CAPital EXpenditure (CAPEX) and OPerating EXpenditure
(OPEX). CAPEX mainly refers to expenditure relevant to network
construction, and OPEX covers the cost needed to operate the network
[58]. In contrast to the traditional RAN, that had a large number of
BS sites, C-RAN aggregates the BBUs in a large physical BBU pool
and this simplifies the operation and the management, saving a lot of
the O&M cost associated. Secondly, as the functionalities of the RRHs
are simplified in C-RAN, they have both size and energy consumption
reduced and also can sit on poles with minimum site support and
management. Furthermore, with centralized processing, the number of
base stations sites can be reduced and, as a consequence, the number
of air conditioning and other on site power-consuming equipment can
be reduced. The deployment of BBUs at the base of cell towers requires
a large housing or even machine room, which have to be acquired or
rented from the original site owner. Rather than renting several sites
to allocate the decentralized BBUs, it is more cost-efficient to locate a
large number of BBUs in a single location and share the BBUs with
the BSs in the coverage area. It also simplifies network upgrades and
maintenance. Then, all these benefits directly translate into CapEx and
OpEx reduction.

– Energy efficiency: with the BBU pool, the data processing that be-
fore was dedicated to meet a unique coverage area is centralized and
shared between more cells. Then, the number of BBUs can be reduced.
Furthermore, with centralization, the energy consumption required for
air-conditioning systems and other on-site equipment can be largely re-
duced [6]. Another point is that with the ability to sharing processing
resources among a large number of virtual BS a lower energy consump-
tion can be achieved. For instance, an idle virtual BS can be selectively
turned off without affecting the service commitment, especially at night
where there is not much traffic. Hence, the C-RAN is an eco-friendly
infrastructure.

– Adaptability to non-uniform traffic: C-RANs allow load-balancing capa-
bility due to the data processing resources shared between the RRHs,
and thus, the architecture can efficiently handle non-uniform data traf-
fic. Due to the user mobility, the traffic that can be supported by the
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serving RRH dynamically changes, while the serving BBU is still in the
same CU. Then, C-RANs can allocate resources depending on demand.

– Capacity and spectral efficiency improvement: In C-RANs, the RRHs
are connected together in the BBU pool and thus, they can easily
share signalling, data and CSI for active users in the system. Joint
processing is the key to achieve higher system spectrum efficiency. The
centralized signal processing simplifies the employments of algorithms
that mitigate inter-cell interference and improve spectral efficiency. For
example, Cooperative Multipoint Processing technology (CoMP in LTE-
Advanced) can easily be implemented within the C-RAN infrastructure.

Despite so many benefits, the centralized architecture also brings sub-
stantial challenges. First, the RRHs are distributed in the coverage area of
the cluster and their signals need to be transported to the CU over the FH
network, which has a heavy price. This requires that the fronthaul network
fulfils challenging requirements in terms of data rates, latency, and synchro-
nization. Despite the optical fiber links has a high transport capacity, they
may be insufficient to the huge amount of baseband sampling data that have
to be transported in real time. They are expensive and the deployment of more
links to suppress this necessity can be impracticable. Then, effective transfer
of the IQ signals on the fronthaul links becomes a key challenge. Therefore,
data compression techniques are proposed to solve the capacity bottleneck of
the FH links. One solution for this issue is the low-resolution quantization of
the signals that have to be transported. Low-resolution quantizers also helps
to reduce the energy consumption of the system and are key for the next
generations of wireless networks.

2.6.1
Quantization Model

Among the hardware components, the ADC has attracted growing in-
terest. It is due to the dissipated power by an ADC grows exponentially in
the number of bits and linearly in the sampling rate or bandwidth [19,61,72].
Then, the energy consumption of the ADCs directly interferes in the energy
consumption bottleneck of systems whose employs a high number of anten-
nas [16, 18]. Another point is that, the reduction of the quantization bits also
helps to reduce the hardware complexity and to alleviate the capacity bottle-
neck of the FH links in the C-RAN architecture.

In C-RANs the RRH forwards the received signals to the CU via a finite-
capacity link as depicted in Fig. 2.10. As a result of the big number of devices
connected to the network, the amount of data that has to be transported
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is huge. Specifically, the amount of baseband data scales linearly with the
numbers of antennas, the baud rate and the number of resolution bits. The
FH links will be bandwidth-limited due to the prohibitive costs involved in
establishing high-capacity links. Therefore, data need to be compressed before
being sent to the CU. The BBU decompresses the received signal from the
RRHs and then performs further processing. Low-resolution quantization is
an important mechanism to reduce the amount of data that have to be
transported. It is also possible that the large number of arithmetic operations
that have to be performed on the signals in the CU be simplified by the reduced
number of bits.

Before being forwarded to the BBU, the in-phase and quadrature compo-
nents of the received signal at each receive antenna of each RRH are quantized
separately by a low-resolution ADC of b bits.

Figure 2.10: Quantized C-RAN system model.

To illustrate the amount of data that have to be transported through
the FH links and the power consumption by the quantization step we consider
a large-scale MIMO system with C-RAN comprised by M = 4 cells where
each BS is equipped with NR = 64 receive antennas. In this model, the in-
phase and quadrature branches are quantized by separate ADCs and, thus,
each antenna element requires 2 ADCs. Considering that the full resolution
system uses b∞ = 12 bits of resolution and a bandwidth of B = 20 MHz. To
avoid aliasing we adopt a sampling rate of W = 2B in order to satisfied the
Nyquist theorem [24]. The relation between the required data transfer through
the FH links and the ADC resolution can be computed as

T (b) = 2MNRWb, (2-83)

which is illustrated, with the proposed example parameters, in Fig. 2.11.
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Figure 2.11: Data transfer required by a large-scale MIMO system with 20
Mhz bandwidth, 4 cells and NR = 64 receive antennas.

In this thesis we define the power consumption of each ADC as PADC
that is given by

PADC(b) = cW2b, (2-84)

where c is the power consumption per conversion step (conv-step), W is the
sampling rate and b is the number of quantization bits of the ADC. This
power consumption model of the ADC encompasses varying architecture and
implementations of ADCs which are described in [59–61].

By using (2-84) and considering a power cosumption per convertion step
c = 494 fJ [59, 61], the relation between the total power consumption by the
ADCs and the number of quantization bits of such system can be computed
by

P (b) = 2MNRcW2b, (2-85)

which is illustrated, with the proposed example parameters, in Fig. 2.12.



Chapter 2. Literature Review 54

1

2 4 6 8 10 12
0

10

20

30

40

50

ADC Resolution (b)

A
D

C
Po

w
er

C
on

su
m

pt
io

n
(W

/c
on

v-
st

ep
) ADC power consumption

Full Resolution b∞ = 12

Figure 2.12: Power consumption by a large-scale MIMO system with 20 Mhz
bandwidth [12], 4 cells and NR = 64 receive antennas.

In Fig. 2.11 is possible to see that the full resolution system has 614
Gbit/s of data to be transferred from all receive antennas to CU and in Fig. 2.12
the power consumption of the full resolution system is nearly to 103 W/conv-
tep. It is also possible to conclude that the reduction of b′ quantization bits
can provide a reduction of (b′/b) % in data transfer and can save (1 − 2−b′)
% of power. Therefore, there is a huge interest in reducing the resolution of
the ADCs as much as possible. However, the low-resolution leads to a system
performance loss due to the distortion produced by the quantization process.
In Fig. 2.13 we have a BER performance comparison between a full-resolution
system and a low-resolution system whose signals are quantized with only
5 bits. This simulation was performed in a 4 × 8 MIMO system where the
standard ZF and MMSE receivers are employed and can illustrate the poor
performance when signals are quantized with few bits.
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Figure 2.13: Performance comparison between standard receivers in both a
system whose signals are unquantized and a system whose signals are quantized
with 5 bits. A MIMO system with NT = 4 transmit and NR = 8 receive
antennas using QPSK modulation is considered.

In this thesis we examine a uniform symmetric mid-riser quantizer
characterized by a set of V = 2b quantization labels Vb = v1, v2, ..., vL where
vi ∈ (τi, τi+1], and a set of V + 1 quantization thresholds Tb = (τ1, τ1, ..., τL+1),
such that −∞ = τ1 < τ2, ..., τL+1 = ∞. Uniform quantization was chosen
because it allows for simple and tractable modeling and is close to the hardware
implementation reality [19, 62]. The quantizer output levels are assigned as
vi = −V∆

2 + (i− 1
2)∆, where ∆ is the quantizer step-size. The quantizer input

thresholds are given by τ1 = −∞, τL+1 =∞, and τi = vi+ ∆
2 , for i = 2, 3, ..., V .

Given a discrete input y[n], the input-output characteristic of the quantizer is
defined as

Q(y[n]) =


v1, y ≤ τ1,

vi, τi−1 < y ≤ τi,

vL, y > τL+1.

(2-86)
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Figure 2.14: Uniform symmetric mid-riser quantizer characteristic

If |y| > L∆/2, y is represented by one of the outer quantization levels
v1 or vV+1 and we say that the signal is "clipped". The result distortion of
this case is referred to as clipping or overload distortion. On the other side, if
|y| ≤ L∆/2 the resulting distortion is referred to as granular distortion.

granular distortion overloadingoverloading

error = Q(y)− y

τ1 τL+1

Figure 2.15: Error characteristic

The quantization, Q(yi,l), 1 ≤ i ≤ NR, l ∈ {R, I}, of the real or
imaginary parts of the input signal of the quantizer is a nonlinear mapping
of yi,l ∈ R to a discrete set that results in additive distortion. According to
the Bussgang theorem [63] the output of the nonlinear quantizer Q(yi,l) can
be decomposed into a desired signal component and an uncorrelated distortion
qi,l. Its quantization rule is

ri,l = Q(yi,l) = yi,l + qi,l. (2-87)

The quantization factor ρ(i,l)
q indicates the relative level of granular noise

that is generated when the analog signal is quantized. This factor was defined
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in [20] as follows

ρ(i,l)
q =

E[q2
i,l]

ryi,lyi,l
, (2-88)

where ryi,lyi,l = E[y2
i,l] is the variance of yi,l. This factor depends on the number

of quantization bits b, the quantizer type and the probability density function
of yi,l. Here, the uniform quantizer design is based on minimizing the MSE
between the input yi,l and the output ri,l. Under the optimal design of the scalar
finite resolution quantizer, the following equations hold for all 1 ≤ i ≤ Nr,
l ∈ {R, I}, [20]:

E[qi,l] = 0, (2-89)

E[ri,lqi,l] = 0, (2-90)

E[yi,lqi,l] = −ρ(i,l)
q ryi,lyi,l . (2-91)

Under multipath propagation conditions and for a large number of
antennas yi,l are approximately Gaussian distributed and we assume that they
undergo nearly the same distortion factor ρi,l = ρq, ∀i, ∀l. In this work the
scalar uniform quantizer processes the real and imaginary parts of the input
signal yi,l in a range ±

√
b

2 . Let qi = qi,R + jqi,I be the complex quantization
error and under the assumption of uncorrelated real and imaginary parts of yi
we obtain

rqiqi = E[qiq∗i ] = ρqryiyi ,

ryiqi = E[yiq∗i ] = −ρqryiyi . (2-92)

As shown in [23], the optimal quantization step ∆, for the uniform
midriser quantizer case and for a Gaussian source, decreases as

√
b2−b and

ρq is asymptotically well approximated by ∆2

12 .
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2.6.2
Automatic Gain Control (AGC)

In practical receivers, the ADC is usually preceded by an AGC variable
gain amplifier that is used to avoid clipping and to efficiently use the whole
ADC resolution. The AGC conveniently adjusts the dynamic range of the
analog signal such that it often stays just within the range of the quantizer.
The use of an AGC is important in applications where the signal power at
the receivers varies in wide range due to the fading and other transmission
effects, as is the case in mobile scenarios. The error introduced by the
quantizing process is categorized into two types: the granular distortion and
overloading (or clipping) [23]. The granular distortion is the contribution due
to the approximations of the analog signal into the discrete steps within the
quantizer-permitted range. On the other side, the overloading occurs when the
input signal exceeds the maximum allowed level (±V∆/2), resulting in the
input signal being clipped. The primary purpose of the AGC is to minimize
overload distortion. Proper AGC design becomes especially important for low
resolution ADCs, where the granular distortion becomes higher due to the
abrupt approximations.

In [25] the effects of an AGC algorithm with the Zero-Forcing linear
receiver was analyzed in a quantized MIMO system. The AGC described in [25]
considers the perfect CSI and consists of a diagonal matrix where the diagonal
coefficients are computed by

Gii = 1/k
max
x∈X
||∑NT

j=1 Hijxj||
, (2-93)

where X is the the transmit symbol alphabet (and also the receive symbol
alphabet after zero-forcing detection) and H ∈ CNR×NT is the fast-fading
MIMO channel matrix. The AGC gain Gii for the i-th receive antenna is scaled
so that the magnitude of the largest received constellation point is equal to 1

k
,

where k is the normalized clip level of the AGC. The received signal after the
AGC, the quantization and the application of the Bussgang theorem [63], is
given by

r = G(Hx + n) + q, (2-94)

where q is the quantization noise vector. This AGC algorithm is referred to as
a standard AGC in this thesis. This algorithm tries to minimize the overload
distortion by pre-multiplying the received signal by a diagonal matrix whose
coefficients are computed by an exhaustive search that involves all possible
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combinations of transmit signals. However, their computational complexity is
impractical in systems with a high number of transmit antennas, as is the
case of large-scale MIMO systems. For example, in a small system with 4
users equipped with 2 transmit antennas each and using QPSK modulation,
the alphabet has a total of 65536 possible transmit signal vectors. Therefore,
compute the standard AGC in this small system involves a search of an optimal
transmit signal vector in a alphabet with 65536 entries.

Taking into account the presence of the standard AGC, the ZF and the
MMSE receivers are computed by

AGC− ZF = ((GH)HGH)−1(GH)H

AGC−MMSE = ((GH)(GH)H + σ2
n

σ2
x

Im)−1(GH) (2-95)

It is shown in Fig. 2.16 the BER performance achieved by the joint employment
of the standard AGC algorithm and the AGC-ZF, the AGC-MMSE and the
AGC-MMSE-SIC receivers in a 4× 8 MIMO system with the Rayleigh fading
channel model. It is possible to see the performance gain achieved when the
AGC is considered. The receivers that consider the presence of the standard
AGC of 2-93 achieved a better performance than the receivers that do not
taking into account the AGC. However, despite the achieved gain performance,
the computation of the standard AGC and also the AGC-ZF and the AGC-
MMSE receivers does not takes into account the quantization noise. So, an even
more accurate AGC and receiver should be computed taking into account the
distortion produced by the quantization. In the next chapter, a new framework
to jointly compute the AGC and the receivers taking into account both the
presence of an AGC algorithm and the distortion produced by the quantization
are presented.
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Figure 2.16: Performance comparison between the standard receivers with and
without the standard AGC in both a system whose signals are unquantized
and a system whose signals are quantized with 5 bits. A MIMO system with
NT = 4 transmit and NR = 8 receive antennas using QPSK modulation is
considered.

2.6.3
Imperfect CSI

The information available about the channel is called CSI. The CSI is
essential to the performance in wireless communication systems. The perfor-
mance of MIMO communication is governed by the propagation channel that
suffer from different kinds of impairments such as noise, attenuation, distor-
tion, fading and interference. It is known that the system capacity is maximised
when there is full knowledge of CSI at both the receiver and the transmit-
ter [33]. However, it is not realistic to assume that the BS nor the users have
perfect CSI knowledge due to errors that occur during the channel estima-
tion. In order to estimate the channel coefficients, a widely employed scheme
consists in the transmission of orthogonal training sequences, or pilot signals,
embedded in the signal sent from the users to the BS [39]. The BS can estimate
the channel by the analysis of the received pilot signals in an uplink training
phase to obtain the CSI at the receiver (CSIR) [64].

In [25], the authors considered a MIMO configuration where the CSIR is
assumed to be perfectly known to compute the AGC coefficients and the ZF
receiver. The modified MMSE receiver for quantized MIMO systems presented
in [20] also consider perfectly CSIR in the computations. Some of the analysis
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presented in this thesis considers a scenario that is more realistic than that
presented in [20] and [25] since we consider imperfect CSIR.

In this thesis the imperfect CSIR is based on the additive error model
of the channel gain proposed in [65–69], were the channel estimation error
that perturb the channel gain is considered to be a zero-mean circularly
symmetric complex Gaussian variable with e ∼ CN (0, σ2

e). Here, σ2
e indicates

the estimation-error variance. The uplink CSIR can be expressed as

H = Ĥ + E, (2-96)

where Ĥ is the estimated channel matrix and E is the estimation error matrix.
The entries of H, Ĥ and E are i.i.d Gaussian random variables each with
CN (0, 1), CN (0, 1 − σ2

e) and CN (0, σ2
e) respectively. Moreover, the matrices

H̃ and ξ are assumed to be uncorrelated. The large-scale coefficients β are
assumed to be known a priori. As described in [70] they are easy to estimate.
This assumption is reasonable since the value of the large scale coefficients are
constant over the receive antennas and they changes very slowly with time.



3
Joint MMSE Automatic Gain Control and Low-Resolution
Aware Receiver Design for Quantized Multiuser MIMO sys-
tems

3.1
Introduction

Large-scale MU-MIMO systems are a promising technology to meet the
demands of exponentially growing traffic for next-generation wireless commu-
nications networks (e.g., 5G) [13, 14]. These systems can provide significant
improvements in wireless capacity, link reliability, achievable rates and energy
efficiency [12]. The huge number of transceiver chains required in large-scale
MIMO systems, however, increases their hardware complexity, cost and power
consumption [29,71]. Recently, one important component of such systems that
has attracted much interest is the ADC. It is because the energy consumption
of an ADC grows exponentially as a function of the quantization resolution and
linearly with the sampling rate or bandwidth [19,61,72]. To reduce circuit com-
plexity and save energy the use of low-resolution quantization is proposed [16].
However, low-resolution ADCs generate significant nonlinear distortion and,
thus, new signal processing techniques to provide reliable data transmission
are required.

Automatic gain control (AGC) is the process of adjusting the analog
signal level to the dynamic range of the analog to digital converter (ADC) in
order to minimize the signal distortion due to the quantization [73]. The use
of an AGC is important in applications where the received power varies over
time, as is the case in mobile scenarios. Proper AGC design becomes especially
important in systems whose signals are quantized with few bits. Although
there are many articles on quantization in MIMO systems in the literature,
few address the design of AGCs. In [20], the authors presented a modified
MMSE receiver that takes into account the quantization effects in a MIMO
system but they do not take into account the presence of an AGC. The effects
of an AGC on a quantized MIMO system with a standard Zero-Forcing filter
at the receiver were examined in [25]. However, the authors have not optimized
the AGC algorithm nor used a detector that considers the quantization effects.
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In this chapter, the large-scale MU-MIMO system model adopted is
described. Thereafter, we present a framework for jointly designing the AGC
and a linear receive filter according to the MMSE criterion operating with
coarsely quantized signals. The procedure consists of computing the modified
MMSE receiver presented in [20] and, after that, computing the derivative of
the cost function that takes into account the presence of the AGC in order to
obtain the optimal AGC coefficients. Then, a Low-Resolution Aware MMSE
(LRA-MMSE) receiver that considers both quantization effects and the AGC
is derived. To improve the detection accuracy we consider the SIC detection
scheme in a receiver that is named as LRA-MMSE-SIC receiver. Furthermore,
we provide a lower bound on the capacity of the MU-MIMO system by
deriving an expression for the achievable rate. At last, the performance of the
proposed LRA-MMSE and LRA-MMSE-SIC receivers with the AGC algorithm
is evaluated by simulations, and compared with the modified MMSE receive
filter [20] and the standard AGC algorithm with Zero-Forcing (ZF) receiver [25]
using quantization resolutions of 2, 3, 4 and 5 bits.

3.2
System Description

In this chapter, we consider an uplink MU-MIMO system which is
comprised of one BS and a total ofK users that are placed randomly, uniformly
distributed over the coverage area. The system is single-cell with no interference
from neighbouring cells. Each user is equipped with NT transmit antennas
and the BS is equipped with NR receive antennas. At each time instant,
each user transmits NT symbols which are organized into a NT × 1 vector
x(k) = [x(k)

1 , x
(k)
2 , ..., x

(k)
NT

]T . Each entry of the vector x(k) is a symbol taken
from the modulation alphabet A (e.g., QPSK). We assume that the users share
the same frequency band and simultaneously transmits their data streams.
Therefore, the transmitted signals interfere with each other in a phenomenon
known as MUI. The received signal collected by the receive antennas at the
BS is given by the following equation:

y = H̃(k)β(k)x(k)︸ ︷︷ ︸
desired
signal

+
K∑
u=1
u6=k

H̃(u)β(u)x(u)

︸ ︷︷ ︸
multiuser

interference

+n,

= H(k)x(k) +
K∑
u=1
u6=k

H(u)x(u) + n, (3-1)
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where H(u) ∈ CNR×NT is the channel matrix between the NT transmit antennas
of user u and the NR receive antennas of the BS whose coefficients model
independent fast fading, geometric attenuation, and log-normal shadow fading
[43]. Their coefficients are given by

H(u) = H̃(u)
√
β(u), (3-2)

where each entry h̃(u)
mn of H̃(u) represents the fast fading coefficient from the

nth transmit antenna of the uth user to the mth receive antenna of the BS.
The coefficients h̃(u)

mn are assumed to be independent and identically distributed
(i.i.d) circularly symmetric complex Gaussian random variables with zero mean
and unit variance. The quantity β(u) represents the geometric attenuation and
shadow fading which is assumed to be constant across the antenna array [71].
The large scale coefficients are given by

β(u) = z(u)

(d(u)/r)γ , (3-3)

where z(u) represents the shadow fading and obeys a log-normal distribution
with standard deviation σshadow (i.e 10 log

(
z(u)

)
follows a Gaussian distribution

with zero-mean and standard deviation σshadow), d(u) corresponds to the
distance between the uth user and the BS, r is the cell radius, and γ is
the path-loss exponent [31, 41–43]. In this model, we consider the time block
fading model, where the small-scale fading channel matrix H(u) remains
unchanged during the transmission of a data packet and the large-scale
coefficient β(u) remains unchanged during the transmission of a block of data
packets. The elements of x(u)

i are assumed to be i.i.d circularly symmetric
complex Gaussian random variables with zero mean and unit variance. The
channel state information (CSI) can be obtained at the receiver and we assume
the same energy per user, and Rxixi = σ2

xINT . n ∈ CNR×1 is a vector that
denotes AWGN with covariance matrix E[nnH ] = σ2

nINR . We can write (3-1)
in matrix form as

y = Hx + n, (3-4)

where H = [H(1),H(2), ...,H(K)] is the CNR×KNT matrix with the coefficients
of the channels between the users and the NR receive antennas of the BS. The
vector x is the CKNT×1 transmit signal vector with all symbols transmitted by
users.
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3.3
Joint AGC and LRA Receive Filter Design for Quantized MU-MIMO
Systems

The procedure for joint optimization of the AGC algorithm and the LRA-
MMSE receiver is illustrated in Fig.3.1. The first step consists in computing an
LRA-MMSE linear receive filter that considers the quantization effects. After
that, we compute the derivative of the cost function to obtain the optimal
AGC coefficients. Then, an updated LRA-MMSE receiver is computed. The
coefficient α represents the clipping level factor of the AGC.

Figure 3.1: AGC and LRA-MMSE detection scheme

3.3.1
Low-Resolution Aware Receive Filter (LRA-MMSE)

In the first step we do not consider the presence of the AGC in the
system. The received signal in the MU-MIMO system model is given by 3-
4. After the quantizer the received signal is expressed, with the Bussgang
decomposition [63], as a linear model

r = y + q. (3-5)

.
To develop the linear receive filter W that minimizes the MSE we use

the Wiener-Hopf [51, 54,55] equations:

W = RxrR−1
rr , (3-6)

where the auto-correlation matrix Rrr is given by

Rrr = E[rrH ] = Ryy + Ryq + RH
yq + Rqq, (3-7)

and the cross-correlation matrix Rxr can be expressed as

Rxr = E[xrH ] = Rxy + Rxq (3-8)

We get the auto-correlation matrix Ryy and the cross-correlation matrix Rxy
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directly from the MIMO model as

Ryy = E[yyH ] = HRxxHH + Rnn (3-9)

and,

Rxy = E[xyH ] = RxxHH (3-10)

To compute (3-7) and (3-8) we need to obtain the covariance matrices Ryq,
Rqq and Rxq as a function of the channel parameters and the distortion factor
ρq. The quantization model was described in Sec. 2.6.1 and the procedure of
how to obtain these matrices was developed in [20] and we will use some of
these results in this chapter. The cross-correlation between the received signal
vector and the quantization error is approximated by

Ryq ≈ −ρqRyy (3-11)

The covariance matrix of the quantization error is deduced from

Rqq ≈ ρq diag(Ryy) + ρ2
q nondiag(Ryy)

= ρqRyy − (1− ρq)ρq nondiag(Ryy), (3-12)

and the cross-correlation matrix between the desired signal vector and the
quantization error can be obtained by

Rxq = −ρqRxy (3-13)

Substituting (3-13) in (3-8) we get

Rxr = (1− ρq)Rxy (3-14)

and substituting (3-9), (3-11) and (3-12) in (3-7) we get

Rrr ≈ (1− ρq)(Ryy − ρq nondiag(Ryy)) (3-15)

At last, by substituting (3-14) and (3-15) in (3-6) we get the expression
of the LRA-MMSE receive filter for a quantized MU-MIMO system. As shown
in [20], we can write this solution as

W = Rxy(Ryy − ρq nondiag(Ryy))−1 (3-16)

With the presence of the AGC the expression of the received vector
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changes and is described by

z = Gy + q (3-17)

With the same procedure as before, the MMSE filter with AGC can be
computed through the Wiener-Hopf equations as

L = RxzR−1
zz (3-18)

The auto-correlation matrix Rzz and the cross-correlation matrix Rxz

can be computed similarly by

Rzz = E[zzH ] = GRyyG + GRyq + RH
yqG + Rqq

Rxz = E[xzH ] = RxyG + Rxq

3.3.2
AGC Design

In [25], the authors proposed a standard AGC algorithm by using a di-
agonal matrix G with real coefficients. This matrix is used to compensate
the gain differences of the propagation channel and involves a search over a
transmitted symbol alphabet. This approach is very computationally demand-
ing in an environment with a high number of transmit antennas. Writing G
as diag(g), where g is a column vector with the diagonal elements of G, the
proposed AGC algorithm is based on the minimization of the cost function:

ε = E[||x− x̂||2]

= E[||x−W(α diag(g)y + q)||2] (3-19)

and, since G is a diagonal matrix with real coefficients, we have diag(g)H =
diag(g). Then, we can rewrite the cost function in (3-19) as

ε = Tr(Rxx − αRxy diag(g)WH −RxqWH

− αW diag(g)RH
xy + α2W diag(g)Ryy diag(g)WH

+ αW diag(g)RyqWH −WRH
xq

+ αWRH
yq diag(g)WH + WRqqWH)

To obtain the optimum G matrix we compute the derivative of the MSE cost
function with respect to diag(g), equate the derivative terms to zero and solve
for g:
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∂ε

∂g
=− α ∂ Tr(Rxy diag(g)WH)

∂g︸ ︷︷ ︸
I

−α
∂ Tr(W diag(g)RH

xy)
∂g︸ ︷︷ ︸
II

)

+ α2 ∂ Tr(W diag(g)Ryy diag(g)WH)
∂g︸ ︷︷ ︸
III

)

+ α
∂ Tr(W diag(g)RyqWH)

∂g︸ ︷︷ ︸
IV

)

+ α
∂ Tr(WRH

yq diag(g)WH)
∂g︸ ︷︷ ︸
V

(3-20)

We have to take the derivative of each term of Eq. (3-20). Consider the
conversion between matrix notation and index notation and the quite involved
case of a diag(·) operator

[AB]ik =
∑
j

AijBjk (3-21)

f = Tr[A diag(g)B] =
∑
i

∑
j

AijgjBji (3-22)

Taking the derivative with respect to the coefficients gj of the diagonal
operator we have

∂f

∂gj
=
∑
i

AijBji = [(AT �B)1]j (3-23)

Therefore, we can write

∂ Tr[A diag(g)B]
∂g

= (AT �B)1 (3-24)

With these considerations we can take the derivative of terms I , II, III,
IV and V from Eq. (3-20). The derivatives of the terms I and II are given by

I = ∂ Tr[Rxy diag(g)WH]
∂g

= [(RT
xy �WH)1] (3-25)
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II =
∂ Tr[W diag(g)RH

xy]
∂g

= [(RH
xy �WT)1] (3-26)

To compute the derivative of term III we apply the chain rule

III = ∂ Tr[W diag(g)A]
∂g︸ ︷︷ ︸
III.1

+ ∂tr[B diag(g)WH ]
∂g︸ ︷︷ ︸
III.2

, (3-27)

where A = Ryy diag(g)WH and B = W diag(g)Ryy. The term III.1 can be
computed by

III.1 = [(WT � (Ryy diag(g)WH))1] (3-28)

and the term III.2 as

III.2 = [((RT
yy diag(g)WT)�WH)1] (3-29)

Substituting (3-28) and (3-29) in (3-30) we have

III = [(WT � (Ryy diag(g)WH))1]

+ [((RT
yy diag(g)WT )�WH)1] (3-30)

The derivative of the term IV is given by

IV = ∂ Tr[W diag(g)C]
∂g

= [(WT � (RyqWH))1] (3-31)

where C = RyqWH . Finally, the derivative of the term V can be computed by

V = ∂ Tr[D diag(g)WH]
∂g

= [((R∗yqWT)�WH)1] (3-32)

where D = WRH
yq. Substituting (3-25), (3-26), (3-30), (3-31) and (3-32) in
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(3-20) and equating the derivatives to zero we have

[WT � (Ryy diag(g)WH) + (RT
yy diag(g)WT )�WH ]1 =

1
α

([(RT
xy �WH)1] + [(RH

xy �WT )1]+

− [(WT � (RyqWH))1]− [((R∗yqWT )�WH)1]) (3-33)

To compute the desired g we have to do some manipulations with the
first term of (3-33). To do this we will write the first and second terms of g
with the index notation and after that we will return to the matrix notation.
We can write the first term as

[(WT � (Ryy diag(g)WH)1] =
KNT∑
j=1

NR∑
l=1

WjiRyy,ilglW
H
lj (3-34)

and the second term as

[(WH � (RT
yy diag(g)WT )1] =

KNT∑
j=1

NR∑
l=1

WH
ij Ryy,liglWjl (3-35)

With some manipulations we can isolate the vector g

[WT � (Ryy diag(g)WH) + WH � (RT
yy diag(g)WT )]1

=
KNT∑
j=1

NR∑
l=1

WjiRyy,ilglW
H
lj +

KNT∑
j=1

NR∑
l=1

WH
ij Ryy,liglWjl

=
NR∑
l=1

([(WTW∗)�Ryy + (WHW)�RT
yy]il)gl

= [(WTW∗)�Ryy + (WHW)�RT
yy]g (3-36)

Substituting (3-36) in (3-33) and solving with respect to g we have

g =[(WTW∗)�Ryy + (WHW)�RT
yy]−1

· 2
α

(Re([(RT
xy �WH)1])−Re([(WT �RyqWH)1])) (3-37)

and the optimum AGC matrix can be written as G = diag(g).

3.3.3
Clip-Level Adjustment

In the following we outline the computation of the clipping factor α based
on the signal power. This factor conforms the received signal power between the
quantizer range to reduce the overload distortion. The received signal power
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can be computed by

P = Tr(E[(y + q)(y + q)H ])

= Tr(Ryy + Ryq + RH
yq + Rqq) (3-38)

and received symbol energy by

Erx =

√√√√Tr(Ryy + Ryq + RH
yq + Rqq)

NR

(3-39)

Thus, the clipping factor α can be obtained from

α = β ·

√√√√Tr(Ryy + Ryq + RH
yq + Rqq)

NR

, (3-40)

where β is a calibration factor. In our simulations the value of β was set to
√
b

2 which corresponds to the quantizer output range, to ensure an optimized
performance.

3.4
AGC and LRA-MMSE with SIC receiver

SIC detectors can outperform linear detectors and achieve the sum-
capacity in the uplink of MU-MIMO systems [50]. At each stage, one data
stream is decoded and its contribution is removed from the received signal.
To minimize error propagation, data streams are ranked based on reliability
measures such as log-likelihood ratios or channel powers [38, 56]. In the a-th
stage the received signal vector, y(a) ∈ CNR×1 is given by

y(a) =


y(1), a = 1,

y(1) −
a−1∑
j=1

h̃Φ(j)x̂Φ(j), 2 6 a 6 LKNt,
(3-41)

where x̂Φ(j) is the symbol estimated in the j-th stage prior to the a-th stage
and hΦ(j) ∈ CNR×1 is the Φ(j)-th column of H. In this notation, Φ corresponds
to the ranking vector, whose entries indicates what symbol is detected in each
stage. After detection, the corresponding column hΦ(a) from the channel matrix
H(a) ∈ CNR×(KNT−a+1) is nullified and a new LRA-MMSE receive filter is
computed for the next stage. The quantized received signal vector r(a) ∈ CNR×1,
in the a-th stage, is given by

r(a) = Q(Gy(a)) = G(H(a)x(a) + n) + q(a). (3-42)
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To compute the LRA-MMSE linear receive filter we use the Wiener-Hopf
equations [51,54,55]

L(a) = R(a)
xr (R(a)

rr )−1, (3-43)

where the the cross-correlation matrix R(a)
xr ∈ C(KNT−a+1)×NR and autocorre-

lation matrix R(a)
rr ∈ CNR×NR are given by

R(a)
xr = R(a)

xy G + R(a)
xq , (3-44)

R(a)
rr = GR(a)

yy G + GR(a)
yq + (R(a)

yq )HG + R(a)
qq . (3-45)

3.5
Computational Complexity

In this subsection we examine the computational complexity of the
proposed joint AGC and LRA-MMSE receiver design in terms of the number
of complex operations. Assuming that W ∈ CNT×NR , Ryy ∈ CNR×NR ,
Ryq ∈ CNR×NR and Rxy ∈ CNT×NR we evaluate the computational complexity
of (3-37) and the result is presented in Table 3.1.

To initialize the AGC and LRA-MMSE receiver design, a linear receive
filter W ∈ CNT×NR is computed. The major part of the computational cost
to obtain the W coefficients comes from the matrix inversion of (Ryy −
ρq nondiag(Ryy)) ∈ CNR×NR . Considering that the inversion of a N × N

matrix by Gaussian elimination has a computational cost of O(N3
R) [74–76],

the computational cost to obtain W is, consequently, O(N3
R). After that, the

W coefficients are used to obtain the AGC coefficients in (3-37). In its turn,
(3-37) requires another NR×NR matrix inversion and, therefore, it also has a
computational cost of O(N3

R). At last, the LRA-MMSE linear receive filter is
computed by (3-18) that also requires another matrix inversion. Therefore, the
computational cost to obtain the LRA-MMSE linear receive filter is O(N3

R).
Summarizing these results, the joint AGC and LRA-MMSE receiver design has
a computational complexity of O(N3

R).
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Table 3.1: Computational complexity of the joint AGC and LRA-MMSE
receiver design in a MU-MIMO system.

Task Additions Multiplications

WLRA RxrR−1
rr O(N3

R) O(N3
R)

Step:
a (WTW∗)�Ryy N2

R(KNT − 1) N2
R(KNT + 1)

b (WHW)�RT
yy N2

R(KNT − 1) N2
R(KNT + 1)

c [a+b]−1 O(NR3)+N2
R(2KNT − 1) O(N3

R)+2N2
R(KNT + 1)

d Re([(RT
xy �WH)1]) NR(KNT − 1) 2NRKNT

f Re([(WT �RyqWH)1]) N2
RKNT −NR KNT (N2

R + 2NR)
g 2

α
(d−f) KNT (N2

R +NR)−NR KNT (N2
R + 4NR) +NR

AGC g = [a+b]−1 2
α

(d−f) O(N3
R) + 3N2

RKNT O(N3
R) + 3N2

R(KNT + 1)
LLRA RxzR−1

zz O(N3
R) O(N3

R)

When SIC detection is employed jointly with the proposed AGC and
LRA-MMSE receiver design a receive filter L(a) is computed at each stage.
Considering a system with a total of KNT interfering layers, a receive filter
L(a) has to be computed KNT times. Summarizing this results, the computa-
tional complexity of the AGC and LRA-MMSE receiver with SIC algorithm
is O(N3

RKNT ). Despite its high computational cost, the proposed design has
a lower computational cost than the standard AGC [25]. The standard AGC
requires an exhaustive search in a possible transmit signals alphabet which be-
comes impractical their employment in large-scale MIMO systems. Moreover,
the cost of the matrix inversion operation can be reduced by using efficient
signal processing algorithms.

3.6
Capacity Lower Bound

In [20] a lower bound on the mutual information between the input
sequence x and the quantized output sequence r of a quantized MIMO system
was developed, based on the MSE approach. We will use a similar procedure to
consider a capacity lower bound of our quantized MU-MIMO system with the
optimal AGC and to derive an expression for computing the achievable rates
for the proposed joint AGC and LRA-MMSE receiver. As described in [49] the
mutual information of this channel can be expressed as

I(x, r) = h(x)− h(x|r) (3-46)

Given Rxx under a power contraint tr(Rxx) ≤ PTr, we choose x to
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be Gaussian, which is not necessarily the capacity achieving distribution for
our quantized system. Then, we can obtain a lower bound for I(x, r) (in
bit/transmission) as

I(x, r) = log2 det(Rxx)− h(x|r)

= log2 det(Rxx)− h(x− x̂|r)

≥ log2 det(Rxx)− h(x− x̂︸ ︷︷ ︸
ε

) (3-47)

≥ log2
det(Rxx)
det(Rεε)

(3-48)

The second term in (3-47) is upper bounded by the entropy of a Gaussian
random variable whose covariance is equal to the error covariance matrix Rεε

of the LRA-MMSE estimate of x. Thus, we have to compute the expressions
of Rxx and Rεε for our system. Considering unknown CSI at the transmitter,
the autocorrelation matrix Rxx is given by

Rxx = σ2
xIKNT , (3-49)

and the error covariance matrix can be computed by

Rεε =E[(x− x̂)(x− x̂)H ]

=Rxx −RxyGWH −RxqWH −WGRH
xy+

+ WGRyyGWH + WGRyqWH −WRH
xq+

+ WRH
yqGWH + WRqqWH (3-50)

Substituting (3-49) and (3-50) in (3-48) we obtain an expression to com-
pute the achievable rates for the MU-MIMO system with coarsely quantized
signals.

3.7
Results and Discussions

To evaluate the results obtained in previous sections we consider large-
scale MIMO system with K = 8 users who are each equipped with NT = 2
transmit antennas and one BS with NR = 64 receive antennas. At each
time instant the users transmit data packets with 100 symbols using BPSK,
QPSK or 16-QAM modulation. The channel model used in the simulations
includes fast fading, geometric attenuation, and log-normal shadow fading.
The small-scale fading is modeled by a Rayleigh channel whose coefficients are
i.i.d complex Gaussian random variables with zero-mean and unit variance.
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The large-scale fading coefficients are obtained by (3-3), where the path-loss
exponent is γ = 3.7, and the shadow-fading standard deviation is σshadow = 8.0
dB. We consider a cell radius of rc = 1000 meters and the users are randomly
distributed in a covered area between a cell-hole radius of rh = 200 meters
and the cell edge. For each simulation 10000 packets are transmitted by each
transmit antenna.
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Figure 3.2: Joint AGC and LRA-MMSE receiver performance comparison with
BPSK modulation.

Fig. 3.2 shows the BER performance of the proposed joint AGC and
LRA-MMSE receiver design. As expected, the standard MMSE detector
achieved, even in a quantized environment, a better performance than the
ZF detector. This occurs because the MMSE filter incorporates the variance of
the receive antenna noise which improves the accuracy of the MMSE detector
at low SNR values. Moreover, we can see that, among all receivers, the LRA-
MMSE with the proposed AGC obtained the best performance. The design of
this receiver aggregates the gains by incorporating the AGC and the effects
due to the coarse quantization. The curves also show that, with the presented
approximations, the joint AGC and LRA-MMSE receiver design achieves a
performance very close to the performance of the Full Resolution standard
MMSE receiver (FR standard MMSE).

In order to compare the performance achieved by the proposed AGC
and LRA-MMSE receiver design and the performance achieved by the existing
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techniques in systems whose users transmit signals with higher modulation
orders we consider both the QPSK and the 16QAM modulation schemes. Fig.
3.3 depicts the BER performance when users transmit QPSK symbols and
Fig. 3.4 depicts the BER performance when users transmit 16QAM symbols.
In both cases we consider perfect CSIR. In these results we can appreciate
the performance gap between the BER achieved by the proposed AGC-LRA-
MMSE-SIC design and the BER achieved by existing techniques [20, 25]. In
both Fig. 3.3 and Fig. 3.4 we can see how BER performance achieved by AGC-
LRA-MMSE-SIC in a system whose signals are quantized with 5 or 6 bits is
close to the performance achieved by the standard MMSE computed by (2-
76) with SIC receiver in an unquantized system. The replacement of the full
resolution ADCs (b∞ = 12) by ADCs with b = 6 resolution bits represents
a reduction of 98% of the power consumption by the quantization step and
a reduction of 50% of the amount of data that have to be transported over
the FH links. Comparing the curves of the linear receivers and the curves
of the receivers that employs SIC detection is possible to see the additional
gain achieved by SIC. SIC improves detection accuracy canceling the effect of
the estimated symbol from the received signal and then improves the SNR of
each decoded layer [36]. It is also observed the worst performance of the system
whose users transmits 16QAM symbols in Fig. 3.4. This worst performance can
be justified by the fact that in this modulation the constellation symbols are
close to each other and, for this reason they are more sensitive to interference.
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Figure 3.3: AGC-LRA-MMSE-SIC receiver BER performance comparison with
QPSK modulation and perfect CSIR.
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Figure 3.4: AGC-LRA-MMSE-SIC receiver BER performance comparison with
16-QAM modulation and perfect CSIR.
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To investigate the BER performance achieved by the receivers in a sys-
tem without perfect CSIR we consider the imperfect CSI model presented in
Sec. 2.6.3. The curves depicted in Fig. 3.5 represents the BER performance
achieved by the receivers when users transmit QPSK symbols and the chan-
nel estimation error is modeled as a zero-mean circularly symmetric complex
Gaussian variable with variance σ2

e = 0.05. Comparing the curves depicted
in Fig. 3.3 which consider perfect CSIR and the curves depicted in Fig. 3.5 is
possible to note the worst performance of the system with imperfect CSIR. De-
spite this, the BER performance achieved by the proposed AGC-LRA-MMSE
with SIC receiver design remains near to the performance achieved by the full
resolution system and better than the performance achieved by the existing
techniques [20,25]. It is important to notice the poor performance achieved by
the existing techniques when a higher modulation order is considered.
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Figure 3.5: AGC-LRA-MMSE-SIC receiver BER performance comparison with
QPSK modulation and imperfect CSIR (σ2

e = 0.05).

In Fig. 3.6 a system whose users transmit 16QAM symbols and a vari-
ance of the channel estimation error equal to σ2

e = 0.02 is considered. In this
result, we jointly investigate the interference of a higher channel estimation
error and the higher modulation order. The green curves represents the BER
performance achieved by the standard MMSE receiver in an unquantized sys-
tem with perfect CSIR and the black curves represents the BER performance
achieved by the standard MMSE receiver in an unquantized system with CSIR
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and the black dotted curves represents the BER performance achieved by the
standard MMSE receiver in an unquantized system without CSIR. It is possi-
ble to observe through these curves the limitation induced by the estimation
errors and the importance of an accurate channel estimation.
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Figure 3.6: AGC-LRA-MMSE-SIC receiver BER performance comparison with
16-QAM modulation and imperfect CSIR (σ2

e = 0.2).

In Fig. 3.7 we illustrate the achievable sum rates of the MU-MIMO
system with the joint AGC and LRA-MMSE receiver design for different
numbers of quantization bits. This result shows that, as the number of
quantization bits increases, the sum-rate also increases approaching those
values obtained by the FR standard MMSE receiver in an unquantized
environment.



Chapter 3. Joint MMSE Automatic Gain Control and Low-Resolution Aware
Receiver Design for Quantized Multiuser MIMO systems 80

1

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

SNR (dB)

Su
m

-r
at

e
(b

its
/c

ha
nn

el
us

e)

FR-MMSE
AGC-LRA-MMSE 5 bits
AGC-LRA-MMSE 4 bits
AGC-LRA-MMSE 3 bits
AGC-LRA-MMSE 2 bits

Figure 3.7: Achievable sum-rate of the quantized MU-MIMO system with 32
users with 2 transmit antennas each and one BS with 64 receive antennas.

3.8
Summary

In this chapter we have discussed the joint design of an AGC and a LRA-
MMSE receive filter for coarsely quantized MU-MIMO systems. Simulations
results have shown that the joint AGC and the LRA-MMSE linear and SIC
receivers obtained a performance close to the full resolution MMSE receiver in a
quantized MU-MIMO system with 4, 5 or 6 bits of resolution. Furthermore, we
have derived an expression for computing the achievable rates for the system.
The results have shown that with 4 and 5 quantization bits we achieve a rate
very close to the capacity of an unquantized large-scale MU-MIMO system.



4
Joint AGC and MMSE Receiver Design in the CU

4.1
Introduction

With the evolution and proliferation of smartphones as well as various
bandwidth-intensive applications and services, the traffic demand for mobile
networks has been exponentially increasing in recent years. The expectation
is that the mobile data traffic will grow at a 53 percent CAGR from 2015
to 2020 [1]. The next generation of wireless networks has been developed to
cope with this impressive growth and, at the same time, minimize the network
capital and operating expenditures [2–4]. To achieve a 1,000-fold increase in
capacity, a 10-fold increase in spectral and energy efficiencies and a 25-fold
increase in average cell throughput, solutions such as C-RANs and large-scale
MIMO are proposed to be jointly deployed in 5G systems [5].

In the traditional cellular network model, each BS covers a cell, processes
and transmits its own signal to and from the users [6]. In the future, the
huge number of devices connected to the system will require the deployment
of more BSs to meet the impressive data traffic demand. However, the
deployment of more BSs causes different challenges because of the growth
of inter-cell interference, and the increase in power consumption due to
the BSs equipments and cooling systems. In this context, C-RANs are a
promising network architecture for next-generation systems. In this centralized
architecture the conventional BSs are broken down into low-cost RRHs and
a pool of BUs located within a cloud unit (CU). The RRHs consist of
simple radio antennas and active radio frequency components that work in
the frequency conversion and also on the A/D and D/A conversion [7]. The
signal processing functionalities of each BS are migrated to the BBU pool,
which is responsible for all the baseband signal processing [8]. Centralization
aids network coordination and management. Furthermore, this model brings
benefits such as the reduction in the cost of operating the network due to
fewer site visits, easy upgrades, and also the energy consumption required
for air-conditioning and other on-site equipment can be saved [10]. C-RANs
have received a great deal of attention in recent years thanks to its ability to
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improve the network performance with joint signal processing techniques that
span multiple base stations and therefore, mitigate the inter-cell interference
in an efficient way, and in turn, allowing for higher SE [11]. However, one of
the main challenges to implement C-RANs is the limited capacity of fronthaul
links.

Large-scale MIMO is a known technique that provides substantial gains
in both energy and spectral efficiency [12]. With this technique, a large number
of antennas are employed in the BS to fully exploit the freedom of space and
reduce the transmit power. However, the high number of antenna elements
increases considerably the hardware cost and the power consumption due to
the presence of several A/D and D/A converters [16–18]. The energy loss in
an uplink receiver design is mainly from the ADC processing unit and the
digital baseband processing unit, which are both affected by the precision of the
ADC. Specifically, ADC’s power loss scales linearly with the sampling rate and
exponentially in the number of bits [12]. Therefore, we can reduce the power
consumption in this kind of system using low-resolution ADCs. Furthermore,
the adoption of lower bit-precision ADCs allows complexity reduction, faster
signal processing, cheaper systems, and also relieves the capacity bottleneck of
the fronthaul reducing the amount of data to be transmitted.

Unfortunately, quantizing signals with a low number of bits reduces
the signal quality due to the severe nonlinear distortion introduced. The
quantization error is categorized into two kinds of distortions, the granular
distortion, and the clipping or overload distortion [19, 24]. The granular
distortion occurs when the input signal lies within the quantizer-permitted
range. The overload distortion occurs when the input signal exceeds this
allowed range, resulting in the clipping of the input signal. In practical systems,
the ADC is usually preceded by an AGC variable gain amplifier, which aims
to minimize the overload distortion [19]. The AGC adjusts conveniently the
analog signal level to the dynamic range of the ADC and is important in
applications where the received power varies over time, such as in mobile
scenarios. Therefore, the AGC design is key in large-scale MIMO systems which
employs low-resolution ADCs.

The impact of low-resolution ADCs on the performance of communica-
tion systems has been studied in the literature [16–21,23,25–31]. Nevertheless,
few studies address the design of AGCs. In [20], the authors presented a modi-
fied MMSE receiver that takes into account the quantization effects in a MIMO
system but they do not take into account the presence of an AGC. The effects
of an AGC on a quantized MIMO system with a standard Zero-Forcing filter
at the receiver were examined in [25]. However, the authors have not opti-
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mized the AGC nor used a detector that considers the quantization effects.
In [16] a suboptimal choice of the set of quantization labels and thresholds
was proposed with a rescheduling scheme of the set of labels found through
the Lloyd-Max algorithm. This analysis avoids the use of an AGC but the
Lloyd-Max algorithm requires the probability density function of the received
signal to compute the optimum set of labels, which is not practical. Therefore,
novel techniques to mitigate the quantization distortion in large-scale MIMO
systems with low-resolution ADCs and C-RANs are needed.

This chapter presents the development of a joint optimization of an AGC
algorithm that worksin the RRHs and LRA linear and SIC receive filters
according to the MMSE criterion that works in the CU for large-scale MU-
MIMO with C-RAN systems. The optimization of the AGC is based on the
minimization of the MSE and the proposed receive filter takes into account
both the presence of the AGC and the quantization distortion. Moreover,
this chapter presents an analysis of the achievable sum rates along with
computational complexity. The BER performance of the proposed joint AGC
and LRA-MMSE with SIC (AGC-LRA-MMSE-SIC) scheme is evaluated in
a coarsely quantized large-scale MU-MIMO with C-RAN system where users
transmit symbols using either QPSK or 16-QAM modulation and compared
with the existing techniques.

4.2
System Description and Problem Statement

In this chapter, we consider a large-scale MU-MIMO uplink system
equipped with a C-RAN configuration. The system contains L cells where K
users per cell are placed randomly, uniformly distributed over each cell. Each
mobile station (MS) and each RRH are equipped with NT transmit antennas
and NR receive antennas, respectively. We assume for simplicity that all BSs
share the same frequency band and all users simultaneously transmit data
streams to their base stations [77,78]. Consequently, the signal transmitted by
mobile stations in neighboring cells can interfere with each other and result in
intercell interference.

Therefore, in order to model this scenario the NR-dimensional received
signal vector at the RRH in the l-th cell can be expressed as

yl = H̃(k)
ll x(k)

l︸ ︷︷ ︸
desired
signal

+
K∑
u=1
u6=k

H̃(u)
ll x(u)

l

︸ ︷︷ ︸
intracell

interference

+
L∑
i=1
i 6=l

K∑
u=1

H̃(u)
li x(u)

i

︸ ︷︷ ︸
intercell

interference

+nl, (4-1)
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Figure 4.1: Large-scale MU-MIMO uplink system with centralized signal
process.

where H̃(u)
li ∈ CNR×NT is the channel matrix between the NT transmit antennas

of user u in the ith cell and the NR receive antennas of the RRH in the lth cell
whose coefficients model independent fast fading, geometric attenuation, and
log-normal shadow fading [43]. Their coefficients are given by

H̃(u)
li = H(u)

li

√
β

(u)
li , (4-2)

where each entry h(u)
limn of H(u)

li represents the fast fading coefficient from the
nth transmit antenna of the uth user in the ith cell to the mth receive antenna
of the lth RRH. The coefficients h(u)

limn are assumed to be independent and
identically distributed (i.i.d) circularly symmetric complex Gaussian random
variables with zero mean and unit variance. The quantity β(u)

li represents the
geometric attenuation and shadow fading which are assumed to be indepen-
dent, over m and n. The large scale coefficients are given by

β
(u)
li = z

(u)
li(

d
(u)
li /r

)γ , (4-3)

where z(u)
li represents the shadow fading and obeys a log-normal distribution

with standard deviation σshadow (i.e 10 log
(
z

(u)
li

)
follows a Gaussian distribution

with zero-mean and standard deviation σshadow), d(u)
li corresponds to the

distance between the uth user in the ith cell and the RRH in the lth cell,
r is the cell radius, and γ is the path-loss exponent [31,41–43]. In this model,
we consider the time block fading model, where the small-scale fading channel
matrix H(u)

li remains unchanged during the transmission of a data packet and
the large-scale coefficient β(u)

li remains unchanged during the transmission of
a block of data packets. Let x(u)

i ∈ CNT×1 as a vector of symbols transmitted
by the u-th user in the ith cell. The elements of x(u)

i are assumed to be
i.i.d circularly symmetric complex Gaussian random variables with zero mean
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and unit variance. The channel state information (CSI) can be obtained at
the receiver and we assume the same energy per user, and Rxixi = σ2

xINT .
nl ∈ CNR×1 is a vector that denotes the additive white Gaussian noise (AWGN)
at the BS in the lth cell with covariance matrix E[nlnHl ] = σ2

nINR . We can write
(4-1) in matrix form as

yl = H̃lx + nl, (4-4)

where H̃l = [H̃l1, H̃l2, ..., H̃lL] is the CNR×LKNT matrix with the coefficients of
the channels between each user in the cluster and the NR receive antennas of
the lth RRH. The vector x = [xT1 ,xT2 , ...,xTL]T is the CLKNT×1 transmit symbol
vector by all users of the cluster.

When the received signal is processed in the cloud we assume that the
BBU pool has knowledge about the received signals by all RRHs. Therefore,
the received symbol vector y ∈ CLNR×1 by all RRHs of the cluster can be
written as

y = [yT1 , ...,yTl , ...yTL]T = H̃x + n, (4-5)

where n ∈ CLNR×1 contains AWGN samples. H̃ ∈ CLNR×LKNT is the propaga-
tion matrix with the channel coefficients between each user and each receive
antenna of the cluster. The problem we are interested in solving is how to cost-
effectively design a receive processing approach for such systems when dealing
with coarsely quantized signals.

4.3
Joint AGC and LRA Receive Filter Design in the CU

Due to the need to reduce the distortions arising from the low-resolution
quantization, an AGC is used before the quantizers, to treat the received signals
at each cell of the cluster. After the quantized signals are sent to the BBU pool,
the desired symbols are estimated by a LRA-MMSE with SIC receive filter.
The proposed scheme is illustrated in Fig. 4.2.

Figure 4.2: Large-scale MIMO system with C-RAN and AGC.
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In this section, the proposed AGC-LRA-MMSE design for the system de-
scribed in Section 4.2 is presented. The AGC-LRA-MMSE design corresponds
to a procedure to compute the AGC matrix and the LRA receive filter based on
the MMSE criterion and alternating optimization [64,74]. In order to minimize
the distortion arising from the low-resolution quantization, an AGC is used be-
fore the quantizers to process the received signals at each cell of the cluster.
After the quantized signals are sent to the BBU pool, the desired symbols are
estimated by an LRA-MMSE receive filter.

We initialize the AGC-LRA-MMSE design by computing, for each cluster
cell, the LRA-MMSE receiver that takes into account quantization and a
standard AGC as an identity matrix. In order to obtain the optimal AGC
coefficients, the derivative of the cost function with respect to the AGC
coefficients that takes into account both the presence of an AGC and the
LRA-MMSE receive filter is computed in the following. At last, the LRA-
MMSE receive filter which considers both the quantization effects and the
presence of the AGCs to detect the received signals in the CU is derived.
No convergence problems were observed in this alternating optimization. The
procedure is illustrated in Fig. 4.3.

Figure 4.3: Steps of the proposed jointly AGC and LRA-MMSE receiver design.

4.3.1
Low-Resolution Aware Receive Filter (LRA-MMSE)

The received signal at the l-th cell after the quantizer can be described
with the help of the Bussgang decomposition [63] as the linear model

rl = yl + ql,

where ql ∈ CNR×1 is the quantization noise vector. Then, the linear receive
filter Wl ∈ CKNT×NR that minimizes the MSE

ε = E[||xl − x̂l||22] = E[||xl −Wlrl||22], (4-6)

is given by [51,54,55]

Wl = RxlrlR
−1
rlrl
. (4-7)
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where the cross-correlation matrix Rxlrl ∈ CKNT×NR , and the autocorrelation
matrix Rrlrl ∈ CNR×NR are expressed as

Rxlrl = Rxlyl + Rxlql , (4-8)

Rrlrl = Rylyl + Rylql + RH
ylql

+ Rqlql . (4-9)

We can obtain the autocorrelation matrix Rylyl and the cross-correlation
matrix Rxyl directly from the model in (4-1) as

Rylyl = E[ylyHl ] = H̃lRxxH̃H
l + Rnlnl , (4-10)

Rxlyl = E[xlyHl ] = RxlxlH̃
H
ll . (4-11)

To compute (4-8) and (4-9) we need to obtain the matrices Rxlql , Rylql

and Rqlql as a function of the channel parameters and the distortion factor ρq.
We follow the procedure developed in [20] to compute Rxlql , Rylql and Rqlql .
In particular, we use the fact that the quantization error qi, conditioned on yi,
is statistically independent from all other random variables of the system. To
obtain Rylql we have to first determine ryliqlj = E[yliq∗lj ] for i 6= j:

E[yliq∗lj] = Eylj [E[yliq∗lj|ylj]]

= Eylj [E[yli|ylj]E[q∗lj|ylj]]

≈ Eylj [ryliyljr−1
yljylj

yljE[q∗lj|ylj]]

= ryliyljr
−1
yljylj

E[yljq∗lj]

= −ρqryliylj . (4-12)

With the results of (4-12) and (2-92), we can express Rylql as

Rylql ≈ −ρqRylyl . (4-13)

To calculate the covariance matrix of the quantization error, Rqlql , we
compute rqliqlj for i 6= j:

E[qliq∗lj] = Eylj [E[qliq∗lj|ylj]]

= Eylj [E[qli|ylj]E[q∗lj|ylj]]

≈ Eylj [rqliyljr−1
yljylj

yljE[q∗lj|ylj]]

= r∗yljqlir
−1
yljylj

E[yljq∗lj]

= ρ2
qryliylj . (4-14)
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Using the results of (4-14) and (2-92) we have

Rqlql ≈ ρq diag(Rylyl) + ρ2
q nondiag(Rylyl)

= ρqRylyl − (1− ρq)ρq nondiag(Rylyl). (4-15)

Then, we have to compute Rxq which is described by

Rxlql = E[xlqHl ] = Eyl [E[xlqHl |yl]]

= Eyl [E[xl|yl]E[qHl |yl]]

≈ Eyl [RxlylR
−1
ylyl

ylE[qHl |yl]]

= RxlylR
−1
ylyl
E[ylqHl ]

= −ρqRxlyl . (4-16)

Substituting (4-16) in (4-8) we get

Rxlrl = (1− ρq)Rxlyl . (4-17)

With this procedure we can compute (4-8) and (4-9). To obtain the
expression of the LRA-MMSE receive filter in the lth cell, we substitute (4-8)
and (4-9) in (4-7) which yields

Wl ≈ Rxlyl(Rylyl − ρq nondiag(Rylyl))−1. (4-18)

4.3.2
AGC Design

In this section, we compute the optimum AGC matrix Gl by minimizing
the MSE using an iterative approach. At the l-th cell, we consider Gl as
a diagonal matrix with real coefficients and gl a vector with the diagonal
coefficients of Gl. Therefore, we can write Gl = diag(gl). Since Gl is a diagonal
matrix with real coefficients we have diag(gl)H = diag(gl). Then, the MSE cost
function in (4-6) that considers the LRA-MMSE receive filter and the AGC
can be rewritten as

ε = E[||xl −Wl(α diag(gl)yl + ql)||22], (4-19)

where α corresponds to the clipping factor of the AGC. This factor is a
commonly used rule to adjust the amplitude of the received signal in order
to minimize the overload distortion [24]. To solve this problem we compute
the derivative of (4-19) with respect to Gl while keeping Wl fixed. Therefore,
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we will have an initialization using the linear filter previously computed by (4-
18) to then obtain Gl. In the following, we obtain the optimum Gl matrix
computing the derivative of (4-19) with respect to diag(gl), equating the
derivative terms to zero and solving it for Gl:

∂ε

∂gl
= −α ∂

∂gl
Tr(Rxlyl diag(gl)WH

l︸ ︷︷ ︸
I

)

−α ∂

∂gl
Tr(Wl diag(gl)RH

xlyl︸ ︷︷ ︸
II

)

+α2 ∂

∂gl
Tr(Wl diag(gl)Rylyl diag(gl)WH

l︸ ︷︷ ︸
III

)

+α ∂

∂gl
Tr(Wl diag(gl)RylqlW

H
l︸ ︷︷ ︸

IV

)

+α ∂

∂gl
Tr(WlRH

ylql
diag(gl)WH

l )︸ ︷︷ ︸
V

. (4-20)

The details of the derivation are presented in (A). The results are given
by

∂I
∂gl

= [(RT
xlyl
�WH

l )1], (4-21)

∂II
∂gl

= [(RH
xlyl
�WT

l )1], (4-22)

∂III
∂gl

= [(WT
l � (Rylyl diag(gl)WH

l ))1]

+ [((RT
ylyl

diag(gl)WT
l )�WH

l )1], (4-23)
∂IV
gl

= [(WT
l � [RylqlW

H
l ])1], (4-24)

∂V
∂gl

= [((R∗ylqlW
T
l )�WH

l )1]. (4-25)

Substituting these results in (4-20) and solving for gl we have

gl = [(WT
l W∗

l )�Rylyl + (WH
l Wl)�RT

ylyl
]−1

· 2
α

(Re([(RT
xlyl
�WH

l )1])−Re([(WT
l � (RylqlW

H
l ))1])),

where the optimum AGC matrix can be written as Gl = diag(gl).
In the following we outline the computation of the clipping factor α based

on the received signal power. The received signal power at the l-th RRH can
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be computed by

Pl = Tr(Rylyl + Rylql + RH
ylql

+ Rqlql), (4-26)

and the received symbol energy by

Erx =

√√√√Tr(Rylyl + Rylql + RH
ylql

+ Rqlql)
NR

. (4-27)

Thus, the clipping factor α can be obtained from

α = β ·

√√√√Tr(Rylyl + Rylql + RH
ylql

+ Rqlql)
NR

, (4-28)

where β is a calibration factor. To ensure an optimized performance, the value
of β was set to

√
b

2 , which corresponds to the modulus of the last quantizer
label.

Before quantization, the received signals are processed by independent
AGCs. After that, the quantized signals are sent to the cloud and, at the same
time, the respective optimized AGC coefficients are transmitted. In the BBU
pool an AGC matrix that contains all AGC matrices of the cluster can be
organized as G = diag([gT1 , ...,gTl , ...,gTL]T ).

4.3.3
LRA-MMSE Linear Receiver in the CU

In the cloud the received signal vector with the received signals by the L
RRHs of the cluster is computed by (4-5). After the AGC matrices are applied,
we have a received vector, z ∈ CLNR×1, with the form

z = Gy = G(H̃x + n). (4-29)

Then, after quantization and application of the Bussgang theorem [63],
the quantized received signal vector is given by

r = Q(z) = G(H̃x + n) + q, (4-30)

where q ∈ CLNR×1 is the quantization noise vector. The MMSE receive
filter [51, 54,55] in the CU is then described by

WLRA = RxrR−1
rr , (4-31)

where the cross-correlation matrix Rxr ∈ CLKNT×LNR , and the autocorrelation
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matrix Rrr ∈ CLNR×LNR are given by

Rrr = GRyyG + GRyq + RH
yqG + Rqq, (4-32)

Rxr = RxyG + Rxq. (4-33)

Algorithm 2 details the procedure of the proposed AGC-LRA-MMSE
scheme.

Algorithm 2 AGC-LRA-MMSE linear receiver
1: Initialize parameters ρq, β,y,Rxx,Rxlxl ,Rnn,Rnlnl ;
2: for l = 1 to L do
3: Rylyl = H̃lRxxH̃H

l + Rnlnl ;
4: Rxlyl = RxlxlH̃H

ll ;
5: Rylql = −ρqRylyl ;
6: Rqlql = ρqRylyl − (1− ρq)ρq nondiag(Rylyl);
7: Wl = Rxlyl(Rylyl − ρq nondiag(Rylyl))−1;
8: α = β ·

√
Tr(Rylyl + Rylql + RH

ylql
+ Rqlql)/(NR);

9: gl = [(WT
l W∗

l )�Rylyl +(WH
l Wl)�RT

ylyl
]−1 · 2

α
(Re([(RT

xlyl
�WH

l )1])−
Re([(WT

l � (RylqlWH
l ))1]));

10: end for
11: G = diag([gT1 , ...,gTl , ...,gTL]T );
12: Ryy = H̃RxxH̃H + Rnn;
13: Rxy = RxxH̃H ;
14: Rxq = −ρqRxy;
15: Ryq = Ryy − (1− ρq)ρq nondiag(Ryy);
16: Rqq = ρqRyy − (1− ρq)ρq nondiag(Ryy);
17: Rrr = GRyyG + GRyq + RH

yqG + Rqq;
18: Rxr = RxyG + Rxq;
19: WLRA = RxrR−1

rr ;
20: x̂ = DISC(WLRAQ(Gy));

4.3.4
LRA-MMSE-SIC Receiver in the CU

SIC detectors can outperform linear detectors and achieve the sum-
capacity in the uplink of multiuser MIMO systems [36]. At each time, a data
stream is decoded and its contribution is removed from the received signal. SIC
detectors improve the SINR of the remaining data symbols. Unfortunately,
SIC techniques suffer from error propagation. To improve the performance
of the SIC detector, in this work data streams are ranked based on channel
powers [38,56]. In the BBU pool the received signal at the a-th stage of a SIC
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detector, y(a) ∈ CLNR×1, is given by

y(a) =


y(1), a = 1,

y(1) −
a−1∑
j=1

h̃Φ(j)x̂Φ(j), 2 6 a 6 LKNT ,
(4-34)

where x̂Φ(j) is the symbol estimated in the j-th stage prior to the a-th stage and
h̃Φ(j) ∈ CLNR×1 is the Φ(j)-th column of H̃. In this notation, Φ corresponds
to the ranking vector, whose entries indicate which symbol is detected in
each stage. After detection, the corresponding column h̃Φ(a) from the channel
matrix H̃(a) ∈ CLNR×(LKNT−a+1) is nullified and another LRA-MMSE receive
filter is computed for the next stage. The quantized received signal vector
r(a) ∈ CLNR×1, in the a-th stage, is given by

r(a) = Q(Gy(a)) = G(H̃(a)x(a) + n) + q(a). (4-35)

The LRA-MMSE linear receive filter of the SIC detector is given by

W(a)
LRA = R(a)

xr (R(a)
rr )−1, (4-36)

where the cross-correlation matrix R(a)
xr ∈ C(LKNT−a+1)×LNR and the autocor-

relation matrix R(a)
rr ∈ CLNR×LNR are given by

R(a)
xr = R(a)

xy G + R(a)
xq , (4-37)

R(a)
rr = GR(a)

yy G + GR(a)
yq + (R(a)

yq )HG + R(a)
qq . (4-38)

The procedure to obtain the AGCs and to obtain the LRA-MMSE linear
receive filter at each stage of SIC detection is illustrated in Algorithm 3.

4.3.5
Computational Complexity

The computational complexity of the proposed AGC-LRA-MMSE linear
and SIC receivers can be exactly computed as a function of the number of
receive and transmit antennas, NR and NT , respectively, the number of users
per cell K and the number of cells L, as depicted in Table 4.1. To assess
the computational complexity of the AGC-LRA-MMSE receivers we have
computed the number of arithmetic operations such as complex additions and
multiplications.

To initialize the AGC-LRA-MMSE algorithm, a linear receive filter Wl

is computed for each cell by (4-18). The largest contribution in terms of
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Algorithm 3 AGC-LRA-MMSE with SIC receiver
1: Initialize parameters ρq, β,y,Rxx,Rxlxl ,Rnn,Rnlnl ;
2: Ordering Φ = [Φ1,Φ2, ...,ΦLKNT ];
3: for l = 1 to L do
4: Rylyl = H̃lRxxH̃H

l + Rnlnl ;
5: Rxlyl = RxlxlH̃H

ll ;
6: Rylql = −ρqRylyl ;
7: Rqlql = ρqRylyl − (1− ρq)ρq nondiag(Rylyl);
8: Wl = Rxlyl(Rylyl − ρq nondiag(Rylyl))−1;
9: α = β ·

√
Tr(Rylyl + Rylql + RH

ylql
+ Rqlql)/(NR);

10: gl = [(WT
l W∗

l )�Rylyl +(WH
l Wl)�RT

ylyl
]−1 · 2

α
(Re([(RT

xlyl
�WH

l )1])−
Re([(WT

l � (RylqlWH
l ))1]));

11: end for
12: G = diag([gT1 , ...,gTl , ...,gTL]T );
13: for a = 1 to LKNT do
14: Ryy = H̃RxxH̃H + Rnn;
15: Rxy = RxxH̃H ;
16: Rxq = −ρqRxy;
17: Ryq = Ryy − (1− ρq)ρq nondiag(Ryy);
18: Rqq = ρqRyy − (1− ρq)ρq nondiag(Ryy);
19: Rrr = GRyyG + GRyq + RH

yqG + Rqq;
20: Rxr = RxyG + Rxq;
21: WLRA = RxrR−1

rr ;
22: x̂ = DISC(WLRA(Φ(a), :)Q(Gy));
23: y = y− H̃(:,Φ(a))x̂;
24: H̃(:,Φ(a)) = zeros(LNR, 1);
25: end for

computational complexity in the computation of Wl is due to the inversion of
Rrlrl ∈ CNR×NR . In this work we consider that the inversion of an N×N matrix
by Gaussian elimination costs O(N3) operations. Therefore, the computational
cost to obtain each Wl matrix is O(N3

R). After that, an AGC matrix diag(gl)
with a computational cost of O(N3

R) is computed for each RRH. Then, an
LRA linear receive filter WLRA is computed by (4-31), which requires the
inversion of the matrix Rrr ∈ CLNR×LNR . Thus, the computational complexity
to obtain WLRA is O(L3N3

R). Summarizing these results, the proposed AGC-
LRA-MMSE linear receive filter has a total cost of O (N3

R(L3 + 2L)). When
we employ SIC detection with the AGC-LRA-MMSE receiver filter an W (a)

LRA

matrix is computed to detect a symbol at each stage of the interference
cancellation. Thus, as we consider the transmission of LKNT streams, the
expression of the LRA-MMSE receive filter W (a)

LRA is computed LKNT times
to detect all data streams. Therefore, the computational complexity of the
proposed AGC-LRA-MMSE-SIC algorithm is O (L4N3

RKNT ). We remark that
these costs can be reduced by the use efficient signal processing algorithms,
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which can be investigated in future work.

Table 4.1: Computational complexity of algorithms.
Task Additions Multiplications
Wl O (N3

R) O (N3
R)

gl O(N3
R) O(N3

R)
WLRA O (L3N3

R) O (L3N3
R)

FR Standard MMSE O(L3N3
R) O(L3N3

R)
AGC-LRA-MMSE O (N3

R(L3 + 2L)) O (N3
R(L3 + 2L))

AGC-LRA-MMSE-SIC O (L4N3
RKNT )) O (L4N3

RKNT )

4.4
Sum Rate Analysis

In this section, we compute and analyse the achievable sum rate of the
proposed AGC-LRA-MMSE design in large-scale MIMO with C-RAN systems
assuming both linear and SIC receivers, and Gaussian signaling.

4.4.1
Sum Rate of Linear Receivers

The ergodic sum rate Rsum of the system with the AGC-LRA-MMSE
linear receive filter is given by the sum of the achievable rates of each user in
the cluster, averaged over channel realizations as described by

Rsum =
L∑
l=1

K∑
k=1

EH[R(k)
l ]. (4-39)

The achievable rate R(k)
l of the kth user in the lth cell is calculated as

R(k)
l = log2 det(INT + Λ(k)

l ), (4-40)

where Λ(k)
l denotes a matrix associated with the post-processing SINR of the

kth user in the lth cell given by

Λ(k)
l = Υ(k)

l (Γ(k)
l )−1, (4-41)

where Υ(k)
l represents the covariance matrix of the desired signal and Γ(k)

l

represents the covariance matrix of the noise plus interference [?, 35, 49]. At
the BBU pool, the received signals of the cluster can be computed by (4-5).
Assuming that the BBU pool employs the LRA-MMSE receiver to detect the
symbols transmitted by the users, we can compute the estimated symbol of
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the k-th user at the l-th cell by

x̂(k)
l = W(k)

LRA,lGH̃(k)
l x(k)

l +
K∑
u=1
u6=k

W(k)
LRA,lGH̃(u)

l x(u)
l

+
L∑
j=1
j 6=l

K∑
u=1

W(k)
LRA,lGH̃(u)

j x(u)
j + W(k)

LRA,lGn

+ W(k)
LRA,lq. (4-42)

In (4-42), the first term corresponds to the estimate of the desired symbol
and the other terms are interferences. Thus, the covariance matrix of the
desired signal is given by

Υ(k)
l = σ2

x(W
(k)
LRA,lGH̃(k)

l )(W(k)
LRA,lGH̃(k)

l )H . (4-43)

The other terms of (4-42) are the interferences present in the system
such as the intracell interference, the intercell interference, the AWGN and
the quantization distortion. Therefore, the covariance matrix of the noise plus
interference part of the estimated signal can be calculated as

Γ(k)
l =σ2

x

K∑
u=1
u6=k

(W(k)
LRA,lGH̃(u)

l )(W(k)
LRA,lGH̃(u)

l )H

− ρqσ2
x

K∑
u=1
u6=k

(W(k)
LRA,lH̃

(u)
l )(W(k)

LRA,lGH̃(u)
l )H

− ρqσ2
x

K∑
u=1
u6=k

(W(k)
LRA,lGH̃(u)

l )(W(k)
LRA,lH̃

(u)
l )H

+ σ2
x

L∑
j=1
i 6=l

K∑
u=1

(W(k)
LRA,lGH̃(u)

j )(W(k)
LRA,lGH̃(u)

j )H

− ρqσ2
x

L∑
i=1
i 6=l

K∑
u=1

(W(k)
LRA,lH̃

(u)
j )(W(k)

LRA,lGH̃(u)
j )H

− ρqσ2
x

L∑
i=1
i 6=l

K∑
u=1

(W(k)
LRA,lGH̃(u)

j )(W(k)
LRA,lH̃

(u)
j )H

+ σ2
n(W(k)

LRA,lG)(W(k)
LRA,lG)H

− ρqσ2
n(W(k)

LRA,l)(W
(k)
LRA,lG)H

− ρqσ2
n(W(k)

LRA,lG)(W(k)
LRA,l)H

+ W(k)
LRA,lρq(Ryy − (1− ρq) nondiag(Ryy))W(k)H

LRA,l. (4-44)
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Substituting (4-43) and (4-44) in (4-41) we get the expression of the
matrix associated with the post processing SINR of the kth user in the lth
cell. Then, we can substitute (4-41) in (4-40) to get the achievable rate R(k)

l of
the kth user in the lth cell. Using (4-40) the corresponding ergodic sum rate
Rsum of the system is the sum of achievable rates for each user in the cluster
of L cells, averaged over channel realizations as described by

Rsum =
L∑
l=1

K∑
k=1

EH[log2 det(INT + Υ(k)
l (Γ(k)

l )−1)]. (4-45)

4.4.2
Sum Rate of SIC Receivers

The uplink sum rate of the SIC receivers based on the proposed AGC-
LRA-MMSE design in a system with LKNT interfering layers is equal to the
sum of the achievable rate of the a-th stream after the linear receiver with
the AGC-LRA-MMSE design, and the achievable rate of the reduced size
(LKNT − a) × LNR MIMO system after removal of the a-th stream, given
by

Rsum =
MKNT∑
a=1

EH

[
log2

(
1 + ΥΦ(a)

ΓΦ(a)

)]
, (4-46)

where ΥΦ(a) is the desired signal power and ΓΦ(a) is the interference plus noise
power. The expectation is taken over the channel coefficients.

In the a-th stage, the estimated symbol is given by

x̂
Φ(a)
l =wΦ(a)

LRA,lGh̃Φ(a)
l x

Φ(a)
l +

KNT∑
u=1

u6=Φ(a)

wΦ(a)
LRA,lGh̃(u)

l x
(u)
l

+
L∑
j=1
j 6=l

KNT∑
u=1

wΦ(a)
LRA,lGh̃(u)

j x
(u)
j + wΦ(a)

LRA,lGn

+ wΦ(a)
LRA,lq, {xΦ(a)

l , x
(u)
l , x

(u)
j } 6⊂ Ω, (4-47)

where Ω is a set of symbols estimated at prior stages. The coefficients of the
receive filter wΦ(a)

LRA,l are obtained from the Φ(a)-th row of the filter matrix
W(a)

LRA. Given a channel realization H̃, the desired signal power is computed
by

ΥΦ(a) = σ2
x(w

Φ(a)
LRA,lGh̃Φ(a)

l )(wΦ(a)
LRA,lGh̃Φ(a)

l )H , (4-48)
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where h̃Φ(j)
l is the Φ(j)-th column of H̃(a). Then, h̃Φ(a)

l becomes null and the
interference plus noise power is given by

ΓΦ(a) =σ2
x(w

Φ(a)
LRA,lGH̃(a))(wΦ(a)

LRA,lGH̃(a))H

− ρqσ2
x[(w

Φ(a)
LRA,lH̃

(a)
l )(wΦ(a)

LRA,lGH̃(a)
l )H

+ (wΦ(a)
LRA,lGH̃(a)

l )(wΦ(a)
LRA,lH̃

(a)
l )H

+
L∑
j=1
j 6=l

(wΦ(a)
LRA,lH̃

(a)
j )(wΦ(a)

LRA,lGH̃(a)
j )H

+
L∑
j=1
j 6=l

(wΦ(a)
LRA,lGH̃(a)

j )(wΦ(a)
LRA,lH̃

(a)
j )H ]

+ σ2
n(wΦ(a)

LRA,lG)(wΦ(a)
LRA,lG)H

− ρqσ2
n[(wΦ(a)

LRA,l)(w
Φ(a)
LRA,lG)H

+ (wΦ(a)
LRA,lG)(wΦ(a)

LRA,l)H ]

+ wΦ(a)
LRAρq(Ryy − (1− ρq) nondiag(Ryy))wΦ(a)H

LRA , (4-49)

where H̃(a)
l is the channel matrix between the users in the l-th cell and all

receive antennas. Substituting (4-48) and (4-49) in (4-46) we get the achievable
sum rateRsum of the system when SIC receivers with the proposed AGC-LRA-
MMSE design are employed.

4.5
Results and Discussions

In this section, the bit error rate (BER) performance and the achievable
sum rate associated with the proposed AGC-LRA-MMSE design with linear
and SIC receivers are evaluated. An uplink C-RAN system composed of one
CU and 4 RRHs which share the same frequency band is considered. Each
cell contains one centralized RRH equipped with NR = 64 receive antennas
in the covered area, and a total of K = 8 users that are each equipped
with NT = 2 transmit antennas. The channel model used in the simulations
includes fast fading, geometric attenuation, and log-normal shadow fading.
The small-scale fading is modeled by a Rayleigh channel whose coefficients are
i.i.d complex Gaussian random variables with zero-mean and unit variance.
The large-scale fading coefficients are obtained by (4-3), where the path-loss
exponent is γ = 3.7, and the shadow-fading standard deviation is σshadow = 8.0
dB. We consider a cell radius of rc = 1000 meters and the users are randomly
distributed in a covered area between a cell-hole radius of rh = 200 meters and
the cell edge. For each channel realization, the users transmit data packets
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with 1000 symbols using either quadrature phase-shift keying (QPSK) or 16-
ary quadrature amplitude modulation (16-QAM). The BER is obtained by
averaging over the transmission of 100 packets, by each transmit antenna
of each user. In each RRH the received signals are treated by independent
AGCs and then quantized by b-bit resolution uniform quantizers before signal
transmission to the BBU. In these results, SIC detection is ordered by the
channel norm.

In Fig. 4.4 we investigate the advantages of the proposed AGC-LRA-
MMSE design with SIC receivers (AGC-LRA-MMSE-SIC) in terms of BER
performance when users transmit QPSK symbols. Comparing the performance
achieved by the Modified MMSE receiver in a system whose signals are
quantized with 6 bits and the performance achieved by the full-resolurion
(FR) standard MMSE receiver in a C-RAN system with unquantized signals
we can see the performance loss due to the distortion introduced by the
quantization. We also consider the Modified MMSE receiver presented in [20]
and the standard AGC from [25] with the standard ZF receiver. To achieve a
better performance, we employ [20] with the SIC detection and the achieved
performance was plotted by the orange curve. The results reveal that, for
signals quantized with 6 bits, the proposed AGC-LRA-MMSE-SIC approach
achieves a very close performance to the performance achieved by the FR
Standard MMSE-SIC receiver in an unquantized C-RAN system [79] and also
has a significantly better performance than the other analysed techniques.
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Figure 4.4: AGC-LRA-MMSE-SIC receiver BER performance comparison with
QPSK modulation.

In order to investigate the BER performance of the proposed AGC-LRA-
MMSE-SIC receiver in a system without perfect CSIR we use the imperfect
CSI model presented in Sec. 2.6.3. Fig. 4.5 illustrates the BER performance
achieved by the receiver algorithms in a scenario where the variance of
the channel estimation error is considered to be σ2

e = 0.1. Comparing the
performance achieved by the FR MMSE-SIC receiver with perfect CSIR
and the performance achieved by the FR MMSE-SIC receiver without CSIR
is possible to notice the performance gap due to the channel estimation
errors. This result also shows the close BER performance of the AGC-LRA-
MMSE-SIC in a scenario whose signals are quantized with 5 or 6 bits to the
performance achieved by the FR MMSE-SIC receiver. Moreover, this confirms
that there are not convergence problems in the proposed joint optimization of
the AGC and the LRA-MMSE receiver design when the channel is imperfectly
known. Moreover, the proposed AGC-LRA-MMSE linear and SIC receiver
still having a better performance than existing techniques even when the
imperfectly CSIR is considered.
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Figure 4.5: AGC-LRA-MMSE-SIC receiver BER performance comparison with
QPSK modulation and imperfect CSIR (σ2

e = 0.1).

We consider next the BER performance of the proposed AGC-LRA-
MMSE-SIC scheme using 16-QAM modulation, as shown in Fig. 4.6. By
comparing the BER performance achieved using QPSK symbols and the
performance achieved using 16-QAM symbols we can notice a significant
performance loss due to the higher modulation order. The 16-QAMmodulation
symbols are closer to each other and thus, detection is more sensitive to
the inter-cell interference, the intra-cell interference, the AWGN and the
quantization distortion. In the BER curves from Fig. 4.6, we observe a
very small loss among the BER values of the FR standard MMSE-SIC
scheme and by the LRA-AGC-MMSE-SIC scheme in a C-RAN system whose
signals are quantized with 5 or 6 bits. Furthermore, we see the effects of
coarse quantization due to the performance loss comparing the FR Standard
MMSE-SIC and the Standard MMSE-SIC in a system whose signals are
quantized with 6 bits. Therefore, the proposed AGC-LRA-MMSE-SIC also
improves performance in systems whose users transmit symbols using a higher
modulation order.
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Figure 4.6: AGC-LRA-MMSE-SIC receiver BER performance comparison with
16-QAM modulation.

The improved performance achieved by the proposed AGC-LRA-MMSE-
SIC scheme in both Fig. 4.4 and Fig. 4.6 is justified by the optimization of
the AGC and the LRA-MMSE receive filter. The proposed design of the AGC
adjusts the analog signal level into the dynamic range of the ADC in order
to reduce the granular and the overload distortions, and the LRA-MMSE-
SIC scheme takes into account the quantization distortion and also has the
additional gain achieved by SIC detection.

We further investigate the sum rates achieved by the proposed AGC-
LRA-MMSE that uses linear receivers and the AGC-LRA-MMSE-SIC scheme.
Fig. 4.7 compares the achievable sum rates by the AGC-LRA-MMSE linear
receiver and the sum rates achieved by the FR Standard MMSE receiver.
We can see that, the proposed AGC-LRA-MMSE scheme achieves a sum rate
similar to that of the FR Standard MMSE receiver, even in a system whose
signals are quantized with 6 bits. In Fig. 4.8 we investigate achievable sum
rates when SIC detection is employed in the proposed AGC-LRA-MMSE-SIC
scheme. As expected, the AGC-LRA-MMSE-SIC scheme achieves a higher
sum rate than that of the linear AGC-LRA-MMSE receiver due to the
SIC technique that improves the SINR of each stream by the interference
removal of the streams already detected. However, SIC detection increases the
computational cost of detection due to the extra computations required at each
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stage of the interference cancellation, as we analyze in table 4.1. Similarly to
the linear case, the sum rates achieved by the AGC-LRA-MMSE-SIC scheme
in a system whose signals are quantized with 5 bits is close to the sum rates
achieved by the FR Standard MMSE-SIC receiver with unquantized signals.
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Modified MMSE 6 bits

Figure 4.7: Achievable sum rates of the proposed AGC-LRA-MMSE linear
receiver.
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Figure 4.8: Achievable sum rates of the proposed AGC-LRA-MMSE-SIC
receiver.

Fig. 4.9 illustrates the sum rates achieved by the receivers when the chan-
nel is imperfectly known. In this case, the variance of the channel estimation
error is considered to be σ2

e = 0.1. Comparing the sum rates achieved when the
BS has perfectly CSIR in Fig. 4.7 and the sum rates achieved when the BS has
imperfectly CSIR in Fig. 4.9 it is possible to observe a 20% performance loss
due to the channel estimation erros. However, the proposed AGC-LRA-MMSE-
SIC receiver design still having a sum-rate very close to the FR MMSE-SIC
receiver even in a scenario where the received signals are quantized with 5 or
6 bits.
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Figure 4.9: Achievable sum rates of the proposed AGC-LRA-MMSE-SIC
receiver.
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4.6
Summary

In this chapter we have proposed the AGC-LRA-MMSE design that
jointly optimizes the AGCs that work in the RRHs and the receive filters
that work in the CU for large-scale MIMO systems in C-RANs with quantized
signals. The proposed AGC-LRA-MMSE scheme adjusts the dynamic range
of the analog signals into the range of the quantizer, takes into account the
presence of the receive filter and the impact of quantization. Moreover, the
proposed AGC-LRA-MMSE design has been incorporated into the design of
linear and SIC receivers for C-RANs, resulting in substantial performance
advantages over existing approaches. In particular, for QPSK modulation the
AGC-LRA-MMSE design can save up 3 dB in SNR in comparison the best
known approach [20] using a standard AGC for the same BER performance,
whereas the gains in achievable sum rate are up to about 60% over the best
known approach [20]. Furthermore, the sum rates and the BER achieved are
very close to those of unquantized systems for signals quantized with 5 or 6
bits. The computational complexity of the proposed AGC-LRA-MMSE design
is roughly twice that of existing approaches since it requires the inversion
of an additional matrix for the design of the AGC. Therefore, the proposed
AGC-LRA-MMSE design allows the use of low-resolution ADCs in large scale
MU-MIMO systems with C-RANs that are important to improve the energy
efficiency of wireless system and to compress signals, alleviating the capacity
bottleneck of the fronthaul links.



5
Conclusions and Future Work

Large-scale MIMO wireless communications systems have the potential
to replace today’s base stations and enhance our wireless communication
systems. They can also enable the increasing data traffic load, allow for higher
user densities and meet new functionality requirements that are surging over
the years. Exploiting extra degrees of freedom provided by the excess of service
antennas, this technique can increase the data rate that users are served
without using more frequency spectrum, and possibly also without using more
energy. These qualities make large-scale MIMO a promising technology for
the evolution of today’s wireless communication systems to meet the new and
greater demands of the future.

At the same time, the radio access network is also changing to a new
centralized architecture. To cope with the huge demand of the future wireless
communications systems for capacity, BSs need to be densely deployed. C-RAN
is a promising architecture where the traditional BSs are replaced by more
simple RRHs, which only has antennas and few other active RF components
that are responsible for essential functionalities such as radio frequency and
analog-to-digital conversion. The main signal processing functionalities are
carried out by a cloud data center and shared between the RRHs distributed
in the coverage area. This new architecture has potential benefits such as
operating cost reduction, lower site lease costs, easy upgrades, improves energy
efficiency and network performance with joint signal processing techniques
whose can mitigate interference in a more efficient way.

However, large-scale MIMO systems, having a large number of antennas
and the same number of RF chains at the BS, face the issue of high power con-
sumption and hardware complexities. Among hardware components of each RF
chain, the ADC has attracted the most interest. It stands to reason that power
consumption of an ADC is growing exponentially by increasing the quantiza-
tion resolution, and linearly by an increase in sampling rate or bandwidth.
Therefore, several studies propose the use of low-resolution quantization to
solve this issue. Reducing the bit-resolution of ADCs brings the benefits of im-
proved energy efficiency, hardware simplification and the chips can be smaller
and cheaper. On the other hand, the C-RAN architecture is realized by trans-
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porting the baseband cellular signals over dedicated high-speed fiber links from
the antennas at the cell site to the central location. Although the many benefits
of the centralized architecture, the costs of transporting the baseband signals
need to be taken into account while evaluating the advantages of centralized
processing. The amount of data that have to be transported will be huge due
to the number of connected devices and also because the BBU pool should
support 10-1000 base station sites. The fronthaul capacity is envisioned to be
approximately 50 times higher [8]. To address this both academic research and
cellular industry are actively considering to compress the huge amount of data
by using low-resolution quantizers. Therefore, quantize signals with few bits
is key for employment of both large-scale MIMO systems and C-RAN. One
of the challenges of deploying coarsely quantized large-scale MIMO with C-
RAN systems resides in designing signal processing techniques, i.e., detection
techniques that are capable of compensating for all system impairments and
recovering the transmitted signals with acceptable computational complexity
and achieved performance.

This thesis has focused on providing the development of a new framework
to jointly optimize an AGC, which works in the RRHs, and LRA linear and SIC
receive filters based on the MMSE criterion, which works in the CU, for large-
scale MU-MIMO with C-RAN systems whose signals are coarsely quantized.
Specifically, the proposed framework tries to reduce the effects due to the
coarse quantization and, at the same time, improve detection in a challenging
scenario where multiple kinds of interference and impairments such as channel
fading, quantization distortion, the intra-cell interference, and the inter-cell
interference are present. The proposed optimization focuses on treating the
distortions that are resulted by the low-resolution quantization improving
the system performance when the received signals are quantized with few
bits. Low-resolution ADCs are promised as a key solution to improve energy
efficiency, to reduce costs, to simplifies the hardware and the computations
that are made in the CU, and also to alleviate the capacity bottleneck of the
FH links of C-RAN systems. The proposed AGC is computed by taking into
account the effects of the low-resolution quantization and by minimizing the
MSE. It works in the RRHs by adjusting the received signal power into the
quantizer range in order to efficiently use the quantizer range reducing both
the overload distortion and the granular distortion. After quantization, the
received signals are sent to the CU through the FH links for being detected. In
the CU, the LRA-MMSE receive filter considers both the presence of the AGC
at the RRHs and the quantization effects in order to improve performance.

An overview of the principles involved in the joint AGC and LRA
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receiver design proposed by this work have been presented in Chapter 2.
A general explanation about MIMO wireless communications systems with
their traditional and cellular uplink signal models and the derivation of the
expressions for the capacity, when the channel is known at the receiver
side, but not at the transmitter side and considering both deterministic and
random channels have been presented. Moreover, this chapter contains a
review of the parameters that are important on performance measures such as
modulation schemes, signal-to-noise ratio, and the major classes of detection
algorithms. The detectors included the optimal ML detector and three sub-
optimal algorithms (ZF, MMSE, and SIC). Then, the C-RAN architecture that
is key to meet 5G requirements is presented jointly with the quantization model
and the AGC concept. This chapter also presents expressions to measure the
ADC power consumption and the amount of data that has to be transported
through the FH links as a function of the number of bits of the ADC resolution.
Last but not least, the model of the imperfect CSIR is presented.

Chapter 3 has presented the development of a joint optimization of
AGC algorithm and a LRA linear MMSE receiver for MU-MIMO systems
with coarsely quantized signals. The optimization of the AGC is based on the
minimization of the MSE and the proposed receive filter takes into account
both the presence of the AGC and the effects due to coarse quantization.
Moreover, we provided a lower bound on the capacity of the MU-MIMO system
by deriving an expression for the achievable rate. Simulation results have shown
that the BER performance achieved by the proposed joint AGC and LRA-
MMSE receiver design, in a system whose signals were quantized with only 5
bits, was very close to the performance achieved by the full-resolution MMSE
receiver. Moreover, the lower bound on the capacity also have shown a rate
very close to the capacity of an unquantized MU-MIMO system. At last, its
computational complexity has been analysed in terms of the number of complex
operations.

In chapter 4 the scenario has been extended to a coarsely quantized
large-scale MU-MIMO with a C-RAN system. In this extended scenario we
consider the channel fading, both the intra-cell and the inter-cell interferences,
and also the quantization noise. To treat these impairments and to recover the
transmitted signals we have developed the joint optimization of the AGC and
a LRA linear receive filter, and derive expressions to jointly optimize them
according to the MMSE criterion using SIC receivers. An expression for the
achievable sum rates of the proposed AGC-LRA-MMSE based on SIC (AGC-
LRA-MMSE-SIC) receive filter has also been presented. The proposed scheme
was examined in a scenario where users transmit symbols with QPSK or 16-
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QAM modulations and the achievable BER have shown that ADCs with 5
or 6 resolution bits are sufficient to achieve performances near to that of the
unquantized system. An upper-bound on the achievable sum-rates have been
also examined and the proposed scheme achieves a sum-rate near to that of the
full-resolution standard MMSE-SIC receiver, even in a scenario whose signals
are quantized with only 5 bits. Therefore, the proposed scheme improves the
performance of coarsely quantized systems, allowing the use of low-resolution
ADCs to improve the energy efficiency and to compress signals, alleviating the
capacity bottleneck of the fronthaul links.

The proposed joint optimization of an AGC and a LRA receiver pre-
sented by this thesis have never seen described in the literature. Simulation
results that were presented have shown the importance of such innovation for
improving the performance of coarsely quantized systems. The BER perfor-
mance and the sum-rates achieved by the proposed AGC-LRA-MMSE linear
and SIC receivers were evaluated in two different scenarios that are considered
important for 5G wireless communications systems. The first considered sce-
nario was the single-cell MU-MIMO scenario where the fast-fading, the large-
scale fading, the MUI and the distortions that are result of the low-resolution
quantization are present. After that, a more challenge scenario was considered.
The performance of the proposed design was evaluated in a large-scale MIMO
system. In this scenario, the inter-cell interference is also present. The results
have shown that the AGC-LRA-MMSE receiver employed with SIC detection
scheme achieve performance very close to the full-resolution system even when
the received signals are quantized with 5 or 6 bits in both considered scenar-
ios. Moreover, the BER and the sum-rates achieved by the proposed design
are better than the existing techniques [20,25]. In chapter 2 was exposed that
the reduction of the full resolution system, where the ADCs are considered to
have b∞ = 12 bits of resolution, to ADCs with b = 5 resolution bits signifies a
reduction of 58% of data that has to be transported through the FH links and
a reduction of 99% of power consumption of the quantization step. Despite
the high computational cost of the AGC-LRA-MMSE-SIC receiver, it has a
lower cost than the AGC presented by [25]. Furthermore, their computational
complexity can be reduced by the use of efficient signal processing algorithms.
Therefore, the AGC-LRA-MMSE with SIC receiver design can be proposed
to be employed in coarsely quantized MU-MIMO and also large-scale MIMO
with C-RAN systems that are envisioned to be scenarios of 5G communication
systems.

Some suggestions for possible future works are:

– In this work, we evaluate the performance of the proposed AGC-LRA-
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MMSE and the AGC-LRA-MMSE-SIC receivers in scenarios whose both
perfectly and imperfectly CSIR are considered. However, as this thesis
not focuses in the development of low-resoltion channel estimators, an
imperfectly CSI model that models the channel estimation erros as a
zero-mean circularly symmetric complex Gaussian random variable with
variance σ2

e was considered. The development of a channel estimation
scheme based on the MMSE criterion for coarsely quantised systems
using the models presented in this thesis can be proposed as a future
work.

– The AGC-LRA-MMSE-SIC scheme leads to high computational com-
plexity. Specifically, it is due to the matrix inversions that are required
in each stage of SIC detection. As low-latency applications are presented
in 5G wireless communication systems, this higher computational cost
can be critical. Then, a study focusing in reduce this computational com-
plexity using efficient signal processing techniques becomes necessary.
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A
AGC derivatives

In this appendix we compute the derivatives of the cost function used
to obtain the optimum AGC matrices that were presented in section IV.
To compute the derivative of each term of (4-20) we consider the following
property:

∂ Tr[A diag(g)B]
∂g

= (AT �B)1, (A-1)

where A and B are complex matrices, g is a vector with real coefficients and
1 is a vector of ones. With this property we can take the derivative of terms
I, II, III, IV and V from (4-20). The derivative of the term I can be computed
by

∂I
∂gl

= ∂ Tr[Rxy diag(gl)WH
l ]

∂gl
= [(RT

xy �WH
l )1], (A-2)

and the derivative of the term II as

∂II
∂gl

=
∂ Tr[Wl diag(g)RH

xy]
∂gl

= [(RH
xy �WT

l )1]. (A-3)

To compute the derivative of term III we apply the chain rule

∂III
∂gl

= ∂ Tr[Wl diag(gl)A]
∂gl︸ ︷︷ ︸
III.1

+ ∂ Tr[B diag(gl)WH
l ]

∂gl︸ ︷︷ ︸
III.2

, (A-4)

where A = Rylyl diag(gl)WH
l and B = Wl diag(gl)Rylyl . The derivatives of

terms III.1 and III.2 are computed by

∂III.1
∂gl

= [(WT
l � [Ryy diag(gl)Wl])1], (A-5)

∂III.2
∂gl

= [(RT
yy diag(gl)WT

l )�WH
l )1]. (A-6)
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Then

∂III
∂gl

= [(WT
l � (Ryy diag(gl)WH

l ))1]

+[((RT
yy diag(gl)WT

l )�WH
l )1]. (A-7)

The derivative of the term IV can be computed by

∂IV
gl

= ∂ Tr[Wl diag(gl)RyqWH
l ]

gl
= [(WT

l � [RyqWH
l ])1], (A-8)

and the derivative of the term V by

∂V
∂gl

=
∂ Tr[WlRH

yq diag(gl)WH
l ]

∂gl
= [((R∗yqWT

l )�WH
l )1]. (A-9)

Substituting the results in (4-20) and equating the derivatives to zero we
obtain

[(WT
l � (Ryy diag(gl)WH

l )) + ((RT
yy diag(gl)WT

l )�WH
l )]1

= 1
α

([(RT
xy �WH

l )1] + [(RH
xy �WT

l )1]

− [(WT
l � (RyqWH

l ))1]− [((R∗yqWT
l )�WH

l )1]). (A-10)

To compute gl we have to manipulate the first term of the equation. Thus,
we write the first and second terms of the equation with the index notation,
manipulate the terms and then we return to the matrix notation. We can write
the first term as

[(WT
l � (Rylyl diag(gl)WH

l )1] =
KNT∑
j=1

NR∑
a=1

WljiRylyliaglaW
H
laj
,

and the second term as

[(WH
l � (RT

ylyl
diag(gl)WT

l )1] =
KNT∑
j=1

NR∑
a=1

WH
lij
RylylaiglaWlja .
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With some manipulations we can isolate the vector gl

[(WT
l � (Rylyl diag(gl)WH

l ) + WH
l � (RT

ylyl
diag(gl)WT

l ))1]

=
KNT∑
j=1

NR∑
a=1

WljiRylyliaglaW
H
laj

+
KNT∑
j=1

NR∑
a=1

WH
lij
RylylaiglaWja

=
NR∑
a=1

gla([(WT
l W∗

l )�Rylyl + (WH
l Wl)�RT

ylyl
]ia)

= [(WT
l W∗

l )�Rylyl + (WH
l Wl)�RT

ylyl
]gl. (A-11)

Substituting (A-11) in (A-10) and solving with respect to gl we have

gl = [(WT
l W∗

l )�Ryy + (WH
l Wl)�RT

yy]−1

· 2
α

(Re([(RT
xy �WH

l )1])−Re([(WT
l � (RyqWH

l ))1])),

and the optimum AGC matrix can be written as Gl = diag(gl).
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