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Blind Adaptive and Iterative Algorithms for
Decision-Feedback DS-CDMA Receivers

in Frequency-Selective Channels
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Abstract—In this paper, we examine blind adaptive and iter-
ative decision-feedback (DF) receivers for direct-sequence code-
division multiple-access systems in frequency-selective channels.
Code-constrained minimum variance and constant modulus de-
sign criteria for DF receivers based on constrained optimization
techniques are investigated for scenarios subject to multipath.
Computationally efficient blind adaptive stochastic gradient and
recursive least squares algorithms are developed for estimating the
parameters of DF detectors along with successive, parallel, and
iterative DF structures. A novel successive parallel arbitrated DF
scheme is presented and combined with iterative techniques for
use with cascaded DF stages in order to mitigate the deleterious
effects of error propagation. Simulation results for an uplink sce-
nario assess the algorithms and the blind adaptive DF detectors
against linear receivers and evaluate the effects of error propaga-
tion of the new cancellation techniques against previously reported
approaches.

Index Terms—Blind adaptive algorithms, decision feedback
receivers, direct-sequence-code-division multiple access (DS-
CDMA) systems, multiuser detection.

I. INTRODUCTION

CODE-DIVISION multiple access (CDMA) implemented
with direct-sequence (DS) spread-spectrum signaling is

among the most promising multiple-access technologies for
current and future communication systems. Such services in-
clude third-generation cellular telephony, indoor wireless net-
works, and terrestrial and satellite communication systems. The
advantages of CDMA include good performance in multipath
channels, flexibility in the allocation of channels, increased
capacity in bursty and fading environments, and the ability
to share bandwidth with narrow-band communication systems
without deterioration of either’s systems performance [1], [2].

Demodulating a desired user in a DS-CDMA network re-
quires processing the received signal in order to mitigate dif-
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ferent types of interference, namely narrow-band interference,
multiaccess interference (MAI), intersymbol interference (ISI),
and noise at the receiver. The major source of interference in
most CDMA systems is MAI, which arises due to the fact that
users communicate through the same physical channel with
nonorthogonal signals. The conventional (single-user) receiver
that employs a filter matched to the signature sequence does
not suppress MAI and is very sensitive to differences in power
between the received signals (near–far problem). Multiuser
detection has been proposed as a means to suppress MAI,
increasing the capacity and the performance of CDMA systems
[1], [2]. The optimal multiuser detector of Verdu [3] suffers
from exponential complexity and requires the knowledge of
timing, amplitude, and signature sequences. This fact has mo-
tivated the development of various suboptimal strategies: the
linear [4] and decision-feedback (DF) [5] receivers, the suc-
cessive interference canceller [6], and the multistage detector
[7]. For uplink scenarios, DF detection, which is relatively
simple and performs linear interference suppression followed
by interference cancellation, was shown to provide substantial
gains over linear detection [5], [8], [10], [11].

When used with short code or repeated spreading codes,
adaptive signal processing methods are suitable to CDMA
systems because they can track the highly dynamic conditions
often encountered in such systems due to the mobility of mobile
terminals and the random nature of the channel access. Adap-
tive techniques can also alleviate the computational complexity
required for parameter estimation. In particular, blind adaptive
signal processing is an interesting alternative for situations
where a receiver loses track of the desired user and/or a training
sequence is not available. In this context, blind linear receivers
for DS-CDMA have been proposed in the last years to supress
MAI [13]–[18]. Blind linear solutions for flat channels have
been reported for the first time in [13], where the blind detector
was designed on the basis of the minimum output energy or
minimum variance (MV). Following the initial success of the
MV receiver [13], blind receivers using the constant modulus
(CM) criterion, which outperformed their MV counterparts,
were reported in [14], [16], and [17]. In this context, the work
by Tugnait and Li [17] is an inverse filtering criterion and does
not exploit the energy contained in the signal copies available
in multipath, leading to performance degradation as compared
to supervised solutions. In order to improve performance and
close the gap between blind and trained solutions, Xu and
Tsatsanis [15] exploited the multipath components through
a constrained MV (CMV) method [15] that treats different
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signal copies as variables and jointly optimizes the receiver
and channel parameters. Another solution that outperforms the
CMV technique of [15] was proposed by Xu and Liu [18] for
multipath environments, in which constrained adaptive linear
receivers are derived based upon the joint optimization of
channel and receiver parameters in accordance with the CM
criterion. Recently, a code-constrained CM design for linear
receivers and a recursive least squares (RLS) algorithm, which
outperform previous approaches, were presented in [21] for a
downlink scenario.

Although relatively simple, DF structures can perform sig-
nificantly better than linear systems, and the existing work
on blind adaptive DF receivers was restricted to single-path
channel solutions [22]–[24] and has to be modified for mul-
tipath. Detectors with DF are especially interesting because
they offer the possibility of different types of cancellation,
namely successive [8], [9], parallel [10], and iterative [11],
[12], which lead to different performances and degrees of ro-
bustness against error propagation. This paper addresses blind
adaptive DF detection for multipath channels in DS-CDMA
systems based on constrained optimization techniques using the
MV and CM criteria. The CMV and constrained CM (CCM)
solutions for the design of blind DF CDMA receivers are
presented, and then, computationally efficient blind adaptive
algorithms are developed for MAI, ISI suppression, and channel
estimation. The second contribution of this paper is a novel
successive parallel arbitrated (SPA) DF structure based on
the recent concept of parallel arbitration [25]. The new DF
detector is then combined with iterative cascaded DF stages,
resulting in an improved DF receiver structure that is compared
with previously reported methods. Computer simulation exper-
iments show the effectiveness of the proposed blind DF system
for refining soft estimates and mitigating the effects of error
propagation.

This paper is organized as follows: Section II briefly de-
scribes the DS-CDMA communication system model. The
constrained DF receivers and the blind channel estimation
procedure are described in Section III. Section IV is devoted
to the SPA and iterative DF cancellation techniques, whereas
Section V is dedicated to the derivation of adaptive stochastic
gradient (SG) algorithms and RLS-type algorithms. Section VI
presents and discusses the simulation results, and Section VII
gives the conclusions of this paper.

II. DS-CDMA SYSTEM MODEL

Let us consider the uplink of a symbol synchronous binary
phase-shift keying (BPSK) DS-CDMA system with K users,
N chips per symbol, and Lp propagation paths. It should be
remarked that a synchronous model is assumed for simplicity,
although it captures most of the features of more realistic
asynchronous models with small to moderate delay spreads.
The baseband signal transmitted by the kth active user to the
base station is given by

xk(t) = Ak

∞∑
i=−∞

bk(i)sk(t− iT ) (1)

where bk(i) ∈ {±1} denotes the ith symbol for user k, and the
real-valued spreading waveform and the amplitude associated
with user k are sk(t) andAk, respectively. The spreading wave-
forms are expressed by sk(t) =

∑N
i=1 ak(i)φ(t− iTc), where

ak(i) ∈ {±1/
√
N}, φ(t) is the chip waveform, Tc is the chip

duration, and N = T/Tc is the processing gain. Assuming that
the receiver is synchronized with the main path, the coherently
demodulated composite received signal is

r(t) =
K∑

k=1

Lp−1∑
l=0

hk,l(t)xk(t− τk,l) + n(t) (2)

where hk,l(t) and τk,l are, respectively, the channel coefficient
and the delay associated with the lth path and the kth user.
Assuming that τk,l = lTc, the channel is constant during each
symbol interval, and the spreading codes are repeated from
symbol to symbol, the received signal r(t) after filtering by a
chip-pulse matched filter and sampled at chip rate yields the
M -dimensional received vector

r(i) =
K∑

k=1

Hk(i)AkSkbk(i) + n(i) (3)

where M = N + Lp − 1, n(i) = [n1(i) · · ·nM (i)]T is the
complex Gaussian noise vector with E[n(i)nH(i)] = σ2I,
where (·)T and (·)H denote transpose and Hermitian transpose,
respectively, E[·] stands for expected value, the user sym-
bol vector is bk(i) = [bk(i+ Ls − 1) · · · bk(i) · · · bk(i− Ls +
1)]T , the amplitude of user k isAk, the channel vector of user k
is hk(i) = [hk,0(i) · · ·hk,Lp−1(i)]T , (2Ls − 1) is the ISI span,
and the ((2Ls − 1) ×N) × (2Ls − 1) diagonal matrix Sk with
N -chip shifted versions of the signature of user k is given by

Sk =



sk 0 . . . 0

0 sk
. . . 0

...
...

. . .
...

0 0 . . . sk


 (4)

where sk = [ak(1) · · · ak(N)]T is the signature sequence for
the kth user, and the M × ((2Ls − 1) ×N) channel matrix
Hk(i) for user k is

Hk(i)=



hk,0(i) . . . hk,Lp−1(i) . . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 . . . hk,0(i) . . . hk,Lp−1(i)




(5)

where hk,l(i) = hk,l(iTc). The MAI comes from the
nonorthogonality between the received signature sequences,
whereas the ISI span Ls depends on the length of the channel
response, which is related to the length of the chip sequence.
For Lp = 1, Ls = 1 (no ISI), for 1 < Lp ≤ N , Ls = 2, and for
N < Lp ≤ 2N , Ls = 3.

III. BLIND DF CONSTRAINED RECEIVERS

Let us describe the design of synchronous blind DF con-
strained detectors, as the one shown in Fig. 1. It should be



DE LAMARE AND SAMPAIO-NETO: ALGORITHMS FOR DS-CDMA RECEIVERS IN FREQUENCY-SELECTIVE CHANNELS 607

Fig. 1. Block diagram of a blind multiuser DF receiver.

remarked that portions of the material presented here were
presented in [19]. Consider the received vector r(i), and let us
introduce the M × Lp constraint matrix Ck that contains one-
chip shifted versions of the signature sequence for user k, i.e.,

Ck =




ak(1) 0
...

. . . ak(1)

ak(N)
...

0
. . . ak(N)



. (6)

The input to the hard decision device, as depicted in Fig. 1,
corresponding to the ith symbol is

z(i) = WH(i)r(i) − FH(i)b̂(i) (7)

where the input z(i) = [z1(i) · · · zK(i)]T , W(i) =
[w1 · · ·wK ] is the M ×K feedforward matrix, and b̂(i) =
[b1(i) · · · bK(i)]T is the K × 1 vector of estimated symbols,
which are fed back through the K ×K feedback matrix
F(i) = [f1(i) · · · fK(i)]. Generally, the DF receiver design is
equivalent to determining for user k a feedforward filter wk(i)
with M elements and a feedback one fk(i) with K elements
that provide an estimate of the desired symbol

zk(i) = wH
k (i)r(i) − fH

k (i)b̂(i), k = 1, 2, . . . ,K (8)

where b̂(i) = sgn[�(WH(i)r(i))] is the vector with initial
decisions provided by the linear section, and wk and fk are
optimized by the MV or the CM cost functions, which are
subject to a set of multipath constraints given by CH

k wk(i) =
hk(i) for the MV case or by CH

k wk(i) = νhk(i) for the CM
case, where ν is a constant to ensure the convexity of the CM-
based receiver and hk(i) is the kth user channel vector. In
particular, the feedback filter fk(i) of user k has a number of
nonzero coefficients corresponding to the available number of
feedback connections for each type of cancellation structure.
The final detected symbol is obtained with

b̂fk(i)=sgn (� [zk(i)]) = sgn
(
�
[
wH

k (i)r(i) − fH
k (i)b̂(i)

])
k = 1, 2, . . . ,K (9)

where �(·) selects the real part, and sgn(·) is the signum
function. For successive DF (S-DF) [8], theK ×K matrixF(i)

is strictly lower triangular, whereas for parallel DF (P-DF) [10],
[11], F(i) is full and constrained to have zeros on the main
diagonal in order to avoid canceling the desired symbols. The
S-DF structure is optimal in the sense of that it achieves the
sum capacity of the synchronous CDMA channel with additive
white Gaussian noise [9]. In addition, the S-DF scheme is
less affected by error propagation, although it generally does
not provide uniform performance over the user population,
which is a desirable characteristic for uplink scenarios. In this
context, the P-DF system can offer uniform performance over
the users, but it suffers from error propagation. In order to
design the DF receivers and satisfy the constraints of S-DF and
P-DF structures, the designer must obtain the vector with initial
decisions b̂(i) = sgn[�(WH(i)r(i))] and then resort to the
following cancellation approach: The nonzero part of the filter
fk corresponds to the number of used feedback connections
and to the users to be cancelled. For the S-DF, the number of
feedback elements and their associated number of nonzero filter
coefficients in fk (where k goes from the second detected user to
the last one) range from 1 toK − 1. For the P-DF, the feedback
connections used and their associated number of nonzero filter
coefficients in fk are equal toK − 1 for all users, and the matrix
F(i) has zeros on the main diagonal to avoid cancelling the
desired symbols.

In what follows, constrained CM and MV design criteria for
DF detectors are presented. The CMV design for DF receivers
generalizes the work on linear structures of Xu and Tsatsanis
[15], whereas the CCM design is proposed here for both linear
and DF schemes.

A. DF-CCM Receivers

To describe the DF-CCM receiver design, let us consider the
CM cost function

JCM(i) =E

[(∣∣∣wH
k (i)r(i) − fH

k (i)b̂(i)
∣∣∣2 − 1

)2
]

=E
[(

|zk(i)|2 − 1
)2
]

(10)

subject to CH
k wk(i) = νhk(i), where zk(i) = wH

k (i)r(i) −
fH
k (i)b̂(i). Assuming that the channel vector hk is known,

let us consider the unconstrained cost function J ′
CM(i) =

E[(|wH
k (i)r(i) − fH

k (i)b̂(i)|2 − 1)2] + 2�[(CH
k wk(i) −

νhk(i))Hλ], where λ is a vector of complex Lagrange multi-
pliers. The function J ′

CM(i) is minimized with respect to wk(i)
and fk(i) under the set of constraints CH

k wk(i) = νhk(i).
Taking the gradient terms of JCM(i)′ with respect to wk(i) and
setting them to zero, we have ∇JCM(i)′ = 2E[(|wH

k (i)r(i) −
fH
k (i)b̂(i)|2 − 1)r(i)(rH(i)wk(i)− b̂H(i)fk(i))]+ 2Ckλ= 0;

then, rearranging the terms, we obtain E[|zk(i)|2 r(i)rH(i)] ×
wk(i) = E[z∗k(i)r(i)] + E [|zk(i)|2r(i)b̂H(i)]fk(i) − Ckλ,
and consequently, wk(i) = R−1

k (i)[dk(i) + Tk(i)fk(i) −
Ckλ], where Rk(i) = E [|zk(i)|2 r(i)rH(i)], Tk(i) =
E[|zk(i)|2r(i)b̂(i)], dk(i) = E[z∗k(i)r(i)], and the asterisk de-
notes complex conjugation. Using the constraint CH

k wk(i) =
νhk(i), we arrive at the expression for the Lagrange



608 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 2, MARCH 2007

multiplier λ = (CH
k R−1

k (i)Ck)−1(CH
k R−1

k (i)Tk(i)fk(i) +
CH

k R−1
k (i)dk(i) − νhk(i)). By substituting λ into wk(i) =

R−1
k (i)[dk(i) +Tk(i)fk(i) −Ckλ], we obtain the solution for

the feedforward section of the DF-CCM receiver, i.e.,

wk(i)=R−1
k (i)

[
dk(i) +Tk(i)fk(i) −Ck

(
CH

k R−1
k (i)Ck

)−1

× (CH
k R−1

k (i)Tk(i)fk(i) +CH
k R−1

k (i)dk(i) − νhk(i))
) ]

(11)

where the expression in (11) is a function of previous values of
wk(i) and the channel hk(i). To obtain the CCM solution for
the parameter vector fk of the feedback section, we compute the
gradient terms of J ′

CM with respect to fk, and by setting them
to zero, we have ∇J ′

CM(i) = 2E[(|zk(i)|2 − 1)b̂(i)(rH(i) ×
wk(i) − b̂H(i)fk(i))] = 0; then, rearranging the terms, we get
E[|zk(i)|2b̂(i)b̂H(i)]fk(i) = E[|zk(i)|2b̂(i)rH(i)]wk(i) −
E[z∗k(i)b̂(i)], and consequently, we have

fk(i) = I−1
k

[
TH

k (i)wk(i) − vk(i)
]

(12)

where Ik = E[|zk(i)|2b̂(i)b̂H(i)], and vk = E[z∗k(i)b̂(i)]. We
remark that (11) and (12) should be iterated in order to estimate
the desired user symbols. The CCM linear receiver solution
proposed in [21] is obtained by making fk(i) = 0 in (11). An
analysis of the CCM method in Appendix I examines its conver-
gence properties for the linear receiver case, extending previous
results on its convexity for both complex and multipath signals.
Since the optimization of the CCM cost function for a linear
receiver (fk(i) = 0) is a convex optimization, as shown in
Appendix I, it provides a good starting point for performing the
cancellation of the associated users by the feedforward section
of the DF-CCM receiver.

B. DF-CMV Receivers

The DF-CMV receiver design resembles the DF-CCM de-
sign and considers the following cost function:

JMV = E

[∣∣∣wH
k (i)r(i) − fH

k (i)b̂(i)
∣∣∣2] (13)

subject to CH
k wk(i) = hk(i). Given the channel vector hk(i),

let us consider the unconstrained cost function J ′
MV(i) =

E[ |wH
k (i)r(i) − fH

k (i)b̂(i)|2] + 2�[(CH
k wk(i) − hk(i))Hλ],

where λ is a vector of complex Lagrange multipliers, and
minimize J ′

MV(i) with respect to wk(i) and fk(i) under the set
of constraints CH

k wk(i) = hk(i). By taking the gradient terms
of J ′

MV(i) with respect to wk(i) and setting them to zero, we
have ∇J ′

MV(i)=E[r(i)(rH(i)wk(i)−b̂H(i)fk(i))]+2Ckλ=0;
then, rearranging the terms, we obtain E[r(i)rH(i)]wk(i)=
E[r(i)b̂H(i)]fk(i)−2Ckλ, and consequently, wk(i)=
R−1(i)[T(i)fk(i) − 2Ckλ], where the covariance matrix is
R = E[r(i)rH(i)] and T(i) = E[r(i)b̂(i)]. Using the cons-
traintCH

k wk(i) = hk(i), we arrive at the expression for the La-
grange multiplier λ = (CH

k R−1(i)Ck)−1(CH
k R−1(i)T(i) ×

fk(i) − hk(i))/2. By substituting λ into wk(i) = R−1(i) ×

[T(i)fk(i) − 2Ckλ], we obtain the solution for the feedforward
section of the DF-CMV receiver, i.e.,

wk(i) = R−1(i)
[
T(i)fk(i) −Ck

(
CH

k R−1(i)Ck

)−1

× (CH
k R−1(i)T(i)fk(i) − hk(i)

) ]
. (14)

Next, we compute the gradient terms of J ′
MV(i) with re-

spect to fk(i) and set them to zero to get ∇J ′
MV(i) =

E[b̂(i)(rH(i)wk(i) − b̂H(i)fk(i))] = 0; then, rearranging the
terms, we have E[b̂(i)b̂H(i)]fk(i) = E[b̂(i)rH(i)]wk(i), and
consequently, we obtain

fk(i) = B−1(i)
[
TH(i)wk(i)

]
(15)

where B(i) = E[b̂(i)b̂H(i)]. At this point, the designer can
avoid the inversion of B(i) by using a judicious approximation,
that is, I ≈ E[b̂(i)b̂H(i)] [2], which is verified unless the error
rate is high. Hence, the feedback section filter can be designed
as given by fk(i) ≈ TH(i)wk(i). It should also be noted that by
making fk(i) = 0, we arrive at the solution of Xu and Tsatsanis
in [15].

C. Blind Channel Estimation

The solutions for the CCM and CMV DF receivers assume
the knowledge of the channel parameters. However, in appli-
cations where multipath is present, these parameters are not
known, and thus, channel estimation is required. To blindly
estimate the channel, we use the method of Xu and Tsatsanis
[15] and Doukopoulos and Moustakides [26], i.e.,

ĥk(i) = arg min
hk

hT
k C

T
k R

−p(i)Ckhk (16)

subject to ‖ĥk‖ = 1, where p is an integer and whose solution
is the eigenvector corresponding to the minimum eigenvalue of
the Lp × Lp matrix CT

k R
−p(i)Ck [28]. For the CCM receiver,

we employ Rk(i) in lieu of R(i) (used for the CMV) for
channel estimation. The use of Rk(i) instead of R avoids the
estimation of both R(i) and Rk(i) and shows no performance
loss as verified in our studies and explained in Appendix IV.
The values of p are restricted to 1, although the performance of
the channel estimator and, consequently, of the receiver can be
improved by increasing p.

IV. SPA AND ITERATIVE DF DETECTION

In this section, we present novel iterative techniques, which
are based on the recently introduced concept of parallel ar-
bitration [25] and combine them with iterative cascaded DF
stages [11], [12]. The motivation for the novel DF structures
is to mitigate the effects of error propagation often found
in P-DF structures [11], [12], which are of great interest for
uplink scenarios due to their capability of providing uniform
performance over the users. The basic idea is to improve the
S-DF structure using parallel searches and then combine it with
an iterative technique, where the second stage uses a P-DF
system to equalize the performance of the users.
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Fig. 2. Block diagram of the proposed blind SPA-DF receiver.

A. SPA-DF Detection

The idea of parallel arbitration is to employ successive
interference cancellation (SIC) to rapidly converge to a local
maximum of the likelihood function, and by running parallel
branches of SIC with different orders of cancellation, one can
arrive at sufficiently different local maxima [25]. In order to
obtain the benefits of parallel search, the candidates should
be arbitrated, yielding different estimates of a symbol. The
estimate of a symbol that has the highest likelihood is then
selected at the output.

Unlike the work of Barriac and Madhow [25] that em-
ployed matched filters as the starting point, we adopt blind
DF receivers as the initial condition. The concept of parallel
arbitration is thus incorporated into a DF detector structure
that applies linear interference suppression followed by SIC
and yields improved starting points as compared to matched
filters. It is also worth noting that our approach does not require
regeneration as occurs with the original PASIC in [25] because
the blind adaptive filters automatically compute the coefficients
for interference cancellation. A block diagram of the proposed
scheme, which is denoted SPA-DF, is shown in Fig. 2.

Following the schematics of Fig. 2, the user k output of
the parallel branch l (l = 1, . . . , L) for the SPA-DF receiver
structure is given by

zl
k(i) = wH

k (i)r(i) − [MlF]Hk b̂(i) (17)

where the vector with initial decisions is b̂(i) =
sgn[�(WH(i)r(i))], and the matrices Ml are permutated
square identity (IK) matrices with dimension K whose
structures for an L = 4-branch SPA-DF scheme are given by

M1 = IK

M2 =
[
0K/4,3K/4 I3K/4

IK/4 0K/4,3K/4

]

M3 =
[
0K/2 IK/2

IK/2 0K/2

]

M4 =


 0 . . . 1

... . . .
...

1 . . . 0


 (18)

where 0m,n denotes anm× n-dimensional matrix full of zeros,
and the structures of the matrices Ml correspond to phase
shifts regarding the cancellation order of the users. Indeed,
the purpose of the matrices in (18) is to change the order of

cancellation. When M = I, the order of cancellation is a simple
successive cancellation (S-DF) based upon the user powers (the
same as [8] and [9]). Specifically, the above matrices perform
the cancellation with the following order with respect to user
powers: M1 with 1, . . . ,K; M2 with K/4,K/4 + 1, . . . ,
K, 1, . . . ,K/4 − 1;M3 with K/2,K/2 + 1, . . . ,K, 1, . . . ,
K/2 − 1; and M4 with K, . . . , 1 (reverse order). For more
branches, additional phase shifts are applied with respect to
user cancellation ordering. It is also worth noting that different
update orders have been tried, although they did not result in
performance improvements. For the proposed SPA-DF, the
number of feedback elements used and their associated number
of nonzero filter coefficients in fk (where k goes from the
second detected user to the last one) range from 1 to K − 1,
according to the branch l and the matrix Ml.

The final output b̂fk(i) of the SPA-DF detector chooses the
estimate of the L candidates as described by

b̂
(f)
k (i) = sgn

[
arg max

1≤l≤L

∣∣� (zl
k(i)

)∣∣] (19)

where the selected estimate is the one with the largest real
magnitude, which forms the vector of final decisions b̂(f)

k (i) =
[b̂(f)

1 (i) · · · b̂(f)
K (i)]T . The number of parallel branches L that

yield detection candidates is a parameter that must be chosen
by the designer. Our studies and computer simulations indicate
that L = 4 achieves most of the gains of the proposed structure
and offers a good tradeoff between performance and complex-
ity. In terms of complexity, the SPA-DF system employs the
same filters, namely W(i) and F(i), of the traditional S-DF
and requires additional arithmetic operations to compute the
parallel arbitrated candidates. As occurs with S-DF receivers,
a disadvantage of the SPA-DF detector is that it generally does
not provide uniform performance over the user population.
Specifically, in a scenario with tight power control, successive
techniques tend to favor the last detected users, resulting in
nonuniform performance. To equalize the performance of the
users, an iterative technique with multiple stages can be used.

B. Iterative SPA-DF Detection

In [11], Woodward et al. presented an iterative detector with
an S-DF in the first stage and P-DF or S-DF structures, with
users being demodulated in reverse order, in the second stage.
The work of [11] was then extended to account for coded sys-
tems and training-based reduced-rank filters [12]. Differently
from [11] and [12], we focus on blind adaptive receivers and
uncoded systems and combine the proposed SPA-DF structure
with iterative detection. An iterative receiver with hard DF is
defined by the recursion

z(m+1)(i) = WH(i)r(i) − FH(i)b̂(m)(i) (20)

where the filters W and F can be S-DF or P-DF structures, and
b̂m(i) is the vector of tentative decisions from the preceding
iteration, where we have

b̂(1)(i) = sgn
(� [WH(i)r(i)

])
(21)

b̂(m)(i) = sgn
(
�
[
z(m)(i)

])
, m > 1 (22)
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Fig. 3. Block diagram of the two-stage DF receiver with SPA-DF scheme
in the first stage. The second stage can employ S-DF or P-DF structures to
demodulate users in reverse order relative to the first branch of the first stage,
which uses S-DF detection.

where the number of stages m depends on the application.
Additional stages can be added where the order of the users
is reversed from stage to stage.

To equalize the performance over the user population, we
consider the two-stage structure shown in Fig. 3. The first stage
is an SPA-DF scheme with filters W1 and F1. The tentative
decisions are passed to the second stage, which consists of an
S-DF or a P-DF detector with filters W2 and F2. The users in
the second stage are demodulated successively and in reverse
order relative to the first branch of the SPA-DF structure (a
conventional S-DF). The resulting iterative receiver system is
denoted ISPAS-DF when an S-DF scheme is deployed in the
second stage, whereas for a P-DF filter in the second stage, the
overall scheme is called ISPAP-DF. The output of the second
stage of the resulting scheme is expressed by

z
(2)
j (i) =

[
MW2(i)

]H
j
r(i) − [MF2(i)

]H
j
b̂(2)(i) (23)

where zj is the jth component of the soft output vector z,
M is a square permutation matrix with ones along the reverse
diagonal and zeros elsewhere [similar to M4 in (18)], [·]j
denotes the jth column of the argument (a matrix), and b̂mj (i) =
sgn[�(zm

j (i))]. Note that additional stages can be included or
the SPA-DF scheme can be used in the second stage, although
our studies indicate that the gains in performance are marginal.
Hence, the two-stage structure is adopted for the rest of this pa-
per. It should also be remarked that, due to the difficulty of theo-
retically analyzing parallel arbitrated and iterative schemes, our
analysis in Section VI is mainly focused on computer simula-
tion experiments. A theoretical analysis of iterative DF schemes
constitutes an open topic that is beyond the scope of this paper.

V. ADAPTIVE ALGORITHMS

In this section, we describe SG and RLS algorithms for the
blind estimation of the channel, i.e., the feedforward and feed-
back sections of DF receivers using the CM and MV criteria
along with constrained optimization techniques, as illustrated
in Fig. 1. The CMV-based algorithms are extensions for DF
detection of the techniques proposed by Xu and Tsatsanis in
[15]. The CCM-SG recursions represent an extension of [18]
for complex signals and DF receivers, whereas the CCM-RLS
algorithms are novel for both linear and DF structures.

It should be emphasized that the SG solutions presented in
this section differ from those reported in a previous work [20]
in the sense that the blind channel estimation is decoupled from
the feedforward and feedback recursions. Indeed, we adopt the
SG blind channel estimation reported in [27], which has been

shown to outperform the one proposed in [15]. Our studies also
reveal that when the system deals with high loads (K is large)
and the performance is poorer, a decoupled SG blind channel
estimator, such as [27], is significantly less affected than the
approach that optimizes wk, fk, and ĥk, as in [20]. In addition,
the deployment of the SG blind estimator of [27] with SG
CCM-based algorithms considerably improves its performance
because blind channel estimators that rely on the CM criterion
show poor performance and depend on other methods for
initialization, as pointed out in [18].

In terms of performance, RLS recursions have the potential
to achieve good performance independently of the spread of
the eigenvalues of the input signal autocorrelation matrix, have
faster convergence performance, show superior performance
under fast frequency-selective fading channels, and can cope
with larger systems [29] than SG techniques.

In terms of complexity, SG algorithms require a number of
operations that grow linearly with M and additional users in
order to suppress MAI and ISI and estimate the channel [27],
whereas RLS techniques have quadratic complexity implemen-
tation for MAI and ISI suppression and channel estimation.

A. SG and RLS Blind Channel Estimation

The channel estimate ĥk(i) is obtained through the power
method and the SG and RLS techniques described in [26].
The methods are SG and RLS adaptive version of the blind
channel estimation algorithms described in (16) and introduced
in [27]. The SG recursion requires only O(L2

p) arithmetic
operations to estimate the channel, againstO(L3

p) of its singular
value decomposition (SVD) version [28]. For the RLS version,
the SVD on the Lp × Lp matrix CH

k R−1(i)Ck, as stated in
(16) and that requires O(L3

p), is avoided and replaced by a
single matrix–vector multiplication, resulting in the reduction
of the corresponding computational complexity on one order
of magnitude and no performance loss. For the CCM-RLS
algorithms, Rk can be employed instead of R (used for the
CMV) for channel estimation to avoid the estimation of both
R and Rk. The use of Rk instead of R shows no performance
loss, as verified in our studies and as explained in Appendix IV.

B. CCM-SG Algorithm

An SG solution to (10) and (11) can be devised by using in-
stantaneous estimates and taking the gradient terms with respect
to wk(i) and fk(i), which should adaptively minimize JCM

with respect to wk(i) and fk(i). The recursions of [27] are used
to obtain channel estimates. If we consider the set of constraints
CH

k wk(i) = ĥk(i), we arrive at the update equations for the
estimation of wk(i) and fk(i), i.e.,

wk(i+ 1) =Pk (wk(i) − µwek(i)z∗k(i)r(i))

+ νCk

(
CH

k Ck

)−1
ĥk(i) (24)

fk(i+ 1) = fk(i) − µfek(i)z∗k(i)b̂(i) (25)

where zk(i)=wH
k (i)r(i) − fH

k (i)b̂(i), ek(i)=(|zk(i)|2 − 1),
and Pk = I−Ck(CH

k Ck)−1CH
k is a matrix that projects the
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receiver’s parameters onto another hyperplane in order to en-
sure the constraints.

It is worth noting that, for stability and to facilitate tuning of
parameters, it is useful to employ normalized step sizes when
operating in a changing environment. A normalized version of
this algorithm can be devised by substituting (24) and (25) into
the CM cost function, differentiating the cost function with
respect to µw and µf , setting it to zero, and solving the new
equations, as detailed in Appendix II. Hence, the normalized
CCM-SG algorithm proposed here adopts variable step-size
mechanisms described by µw = [µ0w

(|zk(i)| − µf |zk(i)| ×
ek(i)b̂H(i)b̂(i) + 1)]/[|zk(i)|ek(i)rH(i)Pr(i)] and µf =
[µ0f

(|zk(i)| −µw|zk(i)|ek(i)rH(i)Pr(i)+ 1)]/[|zk(i)|ek(i) ×
b̂H(i)b̂(i)], where µ0w

and µ0f
are the convergence factors for

wk and fk, respectively.

C. CMV-SG Algorithm

An SG solution to (13) and (14) can be developed in an
analogous form to the previous section by taking the gradient
terms with respect towk(i) and fk(i). The recursions in [27] are
used again to obtain channel estimates. The update rules for the
estimation of the parameters of the feedforward and feedback
sections of the DF receiver are

wk(i+ 1) =Pk (wk(i) − µwz
∗
k(i)r(i))

+Ck

(
CH

k Ck

)−1
ĥk(i) (26)

fk(i+ 1) = fk(i) − µfz
∗
k(i)b̂(i). (27)

A normalized version of this algorithm can also be ob-
tained by substituting (26) and (27) into the MV cost function,
differentiating it with respect to µw and µf , setting it to
zero, and solving the new equations, as described in Appen-
dix III. Hence, µw = (µ0w

(1 − µf b̂H(i)b̂(i))/rH(i)Pr(i)),
and µf = (µ0f

(1 − µwrH(i)Pr(i))/b̂H(i)b̂(i)).

D. CCM-RLS Algorithm

Given the expressions for the feedforward (wk) and feed-
back (fk) sections in (11) and (12) of the blind DF receiver,
we need to estimate R−1

k (i), I−1
k (i), and (CT

k R
−1
k (i)Ck)−1

recursively to reduce the computational complexity required to
invert these matrices. Using the matrix inversion lemma and
Kalman RLS recursions [29], we have

Gk(i) =
α−1R̂−1

k (i− 1)z∗k(i)r(i)

1 + α−1rH(i)zk(i)R̂−1
k (i− 1)z∗k(i)r(i)

(28)

R̂−1
k (i) =α−1R̂−1

k (i− 1)

− α−1Gk(i)zk(i)rH(i)R̂−1
k (i− 1) (29)

and

V(i) =
α−1Î−1

k (i− 1)z∗k(i)b̂(i)

1 + α−1b̂H(i)zk(i)Î−1
k (i− 1)z∗k(i)b̂(i)

(30)

Î−1
k (i) =α−1Î−1

k (i− 1)

− α−1V(i)zk(i)b̂H(i)Î−1
k (i− 1) (31)

where 0 < α < 1 is the forgetting factor. The algorithm can
be initialized with R̂−1

k (0) = δI and Î−1
k (0) = δI, where δ is

a scalar to ensure numerical stability. Once R−1
k (i) is updated,

we employ another recursion to estimate (CH
k R−1

k (i)Ck)−1, as
described by

Γ−1
k (i) =

Γ−1
k (i− 1)
1 − α − Γ−1

k (i− 1)γk(i)γH
k (i)Γ−1

k (i− 1)
(1−α)2

α + (1 − α)γH
k (i)Γ−1

k (i)γk(i)
(32)

where Γk(i) is an estimate of (CH
k R−1

k (i)Ck), and γk(i) =
CH

k r(i)zk(i). The RLS channel estimation procedure described
in [27] with Γk in lieu of Θk is employed for estimating hk,
saving computational resources and resulting in no performance
loss for channel estimation. Finally, we construct the DF-CCM
receiver as described by

ŵk(i) = R̂−1
k (i)

[
d̂k(i) + T̂k(i)f̂k(i) −CkΓ̂

−1
(i)

×
(
CH

k R̂−1
k (i)T̂k(i)fk(i)

+CH
k R̂−1

k (i)d̂k(i) − νĥk(i)
)]

(33)

f̂k(i) = I−1
k (i)

[
T̂H

k (i)ŵk(i) − v̂k(i)
]

(34)

where dk(i) is estimated by d̂k(i+ 1) = αd̂k(i) + (1 − α) ×
z∗k(i)r(i), T̂k(i+ 1) = αT̂k(i) + (1 − α)b̂k(i)rH(i)|zk(i)|2,
and v̂k(i+ 1) = αv̂k(i) + (1 − α)z∗k(i)b̂(i). In terms of com-
putational complexity, the CCM-RLS algorithm requires
O(M2) (feedforward section) and O(K2) (feedback section)
to suppress MAI and ISI and O(L2

p) to estimate the channel,
against O(M3), O(K3), and O(L3

p) required by (11), (12), and
(16), respectively.

E. CMV-RLS Algorithm

Similarly to the CCM-RLS, the expressions for the DF-CMV
receiver given in (14) and (15) are employed, and the matrices
R−1(i), B−1(i), and (CT

k R
−1(i)Ck)−1 are recursively esti-

mated with the aid of the matrix inversion lemma in order to
reduce the computational complexity as given by

G(i) =
α−1R̂−1(i− 1)r(i)

1 + α−1rH(i)R̂−1(i− 1)r(i)
(35)

R̂−1(i) =α−1R̂−1(i− 1) − α−1G(i)rT (i)R̂−1(i− 1) (36)

and

Q(i) =
α−1B̂−1(i− 1)b̂(i)

1 + α−1b̂H(i)B̂−1
k (i− 1)b̂(i)

(37)

B̂−1(i) =α−1B̂−1(i− 1) − α−1Q(i)b̂H(i)B̂−1(i− 1) (38)
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where 0 < α < 1 is the forgetting factor. The algorithm can be
initialized with R̂−1(0) = δI and B−1(0) = δI, where δ is a
positive constant. Once R̂−1(i) is updated, we employ another
recursion to estimate (CH

k R̂−1(i)Ck)−1, as described by

Θ−1
k (i) =


Θ−1

k (i− 1)
1 − α

− Θ−1
k (i− 1)θk(i)θH

k (i)Θ−1
k (i− 1)

(1−α)2

α + (1 − α)θH
k (i)Θ−1

k (i)θk(i)


 (39)

where Θk(i) is an estimate of (CH
k R−1(i)Ck), and θk(i) =

CH
k r(i). For estimating the channel hk, the RLS algorithm

described in [27] is employed. Finally, we construct the DF-
CMV receiver as given by

ŵk(i) =R−1(i)
[
T̂(i)f̂k(i) −CkΘ−1

k (i)

×
(
CH

k R̂−1(i)T̂(i)f̂k(i) − ĥk(i)
)]

(40)

f̂k(i) = B̂−1(i)
[
T̂H(i)ŵk(i)

]
(41)

where T̂(i+ 1) = αT̂(i) + (1 − α)b̂k(i)rH(i). It should be
remarked that the approximation on B̂, that is, I ≈ E[b̂b̂H ],
can be used when the error rate is low in order to avoid the
matrix computations in (37) and (38). Otherwise, in the case
of moderate to high error rate, it is preferable to employ (37)
and (38) in order to guarantee adequate performance of the
algorithm.

VI. SIMULATIONS

In this section, we evaluate the performance of the itera-
tive arbitrated DF structures introduced in Section IV and the
blind adaptive algorithms presented in Section V. Due to the
extreme difficulty of theoretically analyzing such scheme, we
adopt a simulation approach and conduct several experiments
in order to verify the effectiveness of the proposed techniques.
In particular, we have carried out experiments under stationary
and nonstationary scenarios to assess convergence performance
in terms of the bit error rate (BER) of the proposed structure
and algorithms and compared them with other recently reported
algorithms and structures. Moreover, BER performance of the
receivers employing the analyzed techniques is assessed for
different loads, channel paths (Lp) and profiles, and fading
rates. The DS-CDMA system employs Gold sequences of
length N = 31.

Because we focus on uplink scenarios, users experiment
different channels. All channels assume Lp = 6 as an upper
bound. We use three-path channels with relative powers pk,l

given by 0, −3, and −6 dB, where, in each run and for
each user, the second path delay (τ2) is given by a discrete
uniform random variable between 1 and 4 chips and the third
path delay is taken from a discrete uniform random vari-
able between 1 and 5 − τ2 chips. It is also assumed here

that the channels experienced by different users are statisti-
cally independent identically distributed (i.i.d.). The sequence
of channel coefficients for each user k (k = 1, . . . ,K) is
hk,l(i) = pk,lαk,l(i) (l = 0, 1, 2, . . .), where αk,l(i) is a com-
plex Gaussian random sequence obtained by passing complex
white Gaussian noise through a filter with approximate transfer
function c/

√
1 − (f/fd)2, where c is a normalization constant,

fd = v/λ is the maximum Doppler shift, λ is the wavelength
of the carrier frequency, and v is the speed of the mobile [30].
This procedure corresponds to the generation of independent
sequences of correlated unit power complex Gaussian random
variables (E[|α2

k,l(i)|] = 1) with the path weights pk,l normal-

ized so that
∑Lp

l=1 p
2
k,l = 1. The phase ambiguity derived from

the blind channel estimation method in [27] is eliminated in our
simulations by using the phase of g(0) as a reference to remove
the ambiguity, and for fading channels, we assume ideal phase
tracking and express the results in terms of the normalized
Doppler frequency fdT (cycles/symbol). Alternatively, differ-
ential modulation can be used to account for the phase rotations.

In the following experiments, we indicated the type of adap-
tive algorithms used (SG or RLS), the design criterion (CCM
or CMV), and the structure [linear (L) or decision feedback
(DF)]. For linear receivers (L) and their algorithms, we make
fk(i) = 0 and µf = 0. Among the analyzed DF structures, we
consider the following:

• S-DF: the successive DF detector of [8] and [9];
• P-DF: the parallel DF detector of [10] and [11];
• ISS-DF: the iterative system of Woodward et al. [11] with

S-DF in the first and second stages;
• ISP-DF: the iterative system of Woodward et al. [11] with

S-DF in the first stage and P-DF in the second stage;
• SPA-DF: the proposed successive parallel arbitrated

receiver;
• ISPAS-DF: the proposed iterative detector with the novel

SPA-DF in the first stage and the S-DF in the second stage;
• ISPAP-DF: the proposed iterative receiver with the SPA-

DF in the first stage and the P-DF in the second stage.

For the CCM-based algorithms, we employ ν = 1 in or-
der to ensure convexity. The experiments are averaged over
200 experiments, and the parameters of the algorithms are
optimized for each scenario. We stress that the results are shown
in Figs. 4–8 in terms of the average BER [1] and average BER
among the K users in the system, except for Figs. 9 and 10,
where the individual BER performance of each user is shown.

A. BER Convergence Performance

In what follows, we assess the average BER convergence per-
formance of the analyzed adaptive DF receiver techniques and
algorithms. The BER convergence performance of the receivers
is shown for SG and RLS algorithms, as in Figs. 4 and 5, respec-
tively. We consider a nonstationary scenario, where the system
starts with K = 8 users and at time i = 800, four additional
users enter the system, totaling K = 12 users, and the blind
adaptive algorithms are subject to new interferers/users in the
environment. For the sake of comparison, we also include the
curves for supervised normalized least mean square and RLS
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Fig. 4. BER convergence performance of SG algorithms.

Fig. 5. BER convergence performance of RLS algorithms.

Fig. 6. BER convergence performance of RLS algorithms with iterative
receivers for different numbers of parallel branches L at Eb/N0 = 15 dB in
a slow fading environment. (a) CCM. (b) CMV (L = 2, dashed line; L = 4,
solid line; L = 8, dash-dotted line).

Fig. 7. Performance of CMV-RLS algorithms in a dynamic environment in
terms of BER versus (a) Eb/N0 with K = 10 users and (b) number of users
K at Eb/N0 = 15 dB.

Fig. 8. Performance of CCM-RLS algorithms in a dynamic environment in
terms of BER versus (a) Eb/N0 with K = 10 users and (b) number of users
K at Eb/N0 = 15 dB.

Fig. 9. Performance of the receivers in a fading environment in terms of
individual BER versus user index for (a) SG and (b) RLS algorithms.
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Fig. 10. Performance of the receivers in terms of individual BER versus user
index for (a) CCM-RLS and (b) CMV-RLS algorithms.

[29] adaptive algorithms, which are trained with 200 symbols
provided by a pilot channel (at i = 1, . . . , 200, and i =
801, . . . , 1000) and then switch to decision-directed mode. It is
assumed that the system has an ideal power control, and signals
of the different users reach the base station with the same
average Eb/N0. Note that given the performance of current
power control algorithms, ideal power control is not far from
a realistic situation.

The algorithms for DF receivers are initialized with a feedfor-
ward filter wk equal to the signature sequence and a feedback
filter fk with zeros, and they gradually adapt in order to cancel
the interference. Note that they do not lock to an undesired user
because of the blind channel estimation that allows the receiver
to use the effective signature sequence. The results indicate that
the CCM design criterion is superior to the CMV approach for
both the SG and RLS algorithms. Another conclusion from the
curves in Figs. 4 and 5 is that CCM-based blind algorithms
achieve a performance very close to the trained algorithms,
leading to significant savings in spectral efficiency. Regarding
the structures of the receivers, we note that DF receivers are
significantly better than linear detectors. In fact, we attack the
problem of the receivers presented in [15] and [18], which
operate well in lightly loaded systems but do not perform well
in moderate and heavily loaded situations, by cancelling the
interferers with the DF section. In particular, P-DF schemes
outperform S-DF in low BER situations, whereas for moderate
to higher BER levels, S-DF systems are less affected by error
propagation.

Another important conclusion from our studies is that RLS
algorithms can deal with faster fading rates and effectively
accommodate more users in the system at the cost of a quadratic
complexity, whereas SG techniques cannot deal with large
systems or very high load (K/N close to 1). Because the sce-
nario in the experiments assumed ideal power control, the SG
algorithms present a good convergence performance, although
for scenarios without power control (near–far situations), the
performance of these algorithms is subject to the eigenvalue
spread of the covariance matrix of the received vector r(i).
Specifically, when the eigenvalue spread of the covariance ma-

trix of the received vector r(i) is large, SG algorithms perform
poorly, whereas the rate of convergence of RLS algorithms is
invariant to such situation [29]. Hence, for large systems or
those that do not have good power control, RLS recursions are
the most appropriate.

Let us now consider the proposed SPA-DF and the com-
bined iterative DF system, namely ISPAP-DF and ISPAS-DF.
Simulation experiments with RLS algorithms were conducted
to determine how many arbitrated branches should be used
and to account for the impact of additional branches upon per-
formance. We designed the novel DF receivers with L = 2, 4,
and 8 parallel branches and compared their BER performance
with the existing ISS-DF and ISP-DF structures, as depicted
in Fig. 6. The results show that the novel SPA-DF, ISPAP-DF,
and ISPAS-DF significantly outperform the ISS-DF and ISP-
DF structures, and their performances improve as the number
of parallel branches increases. In this regard, we also notice that
the gains of performance obtained through additional branches
decrease as additional branches are added, resulting in marginal
improvements for more than L = 4 branches. For this reason,
we adopt L = 4 for the remaining experiments because it
presents a very attractive tradeoff between performance and
complexity. Another conclusion from the curves in Fig. 6 is
that the proposed SPA-DF, ISPAP-DF, and ISPAS-DF receiver
techniques obtain substantial gains in performance over ex-
isting iterative DF techniques, namely the ISP-DF and the
ISS-DF of [11].

B. BER Performance versus Eb/N0, k, and User Index

In this part, the BER performance of the different receiver
techniques is further investigated, and the receivers process
2000 symbols to obtain the curves. In particular, the average
BER performance of the receivers versus Eb/N0 and number
of users K is depicted in Figs. 7 and 8, whereas the individual
BER performance versus the user indexes is shown in Figs. 9
and 10.

A comparison of the CMV and the CCM design criteria with
RLS algorithms is carried out in experiments whose results are
shown in Figs. 7 and 8. The curves reveal that DF detectors
are significantly superior to linear receivers and that the CCM-
RLS algorithm outperforms the CMV-RLS techniques in all
situations. With respect to the performance, the best results
are obtained with the ISPAP-DF receiver structure, which can
save up to 2.5 dB for the same BER as compared to the
iterative receivers of [11] (ISP-DF and ISS-DF). In comparison
with linear receivers, the proposed ISPAP-DF system obtains
savings of up to 7 dB for the BER performance. In general, the
curves in Figs. 7 and 8 reveal that the novel iterative arbitrated
DF schemes, namely the SPA-DF, ISPAP-DF, and ISPAS-DF,
can offer considerable gains as compared to existing DF and
linear receivers and support systems with higher loads through
mitigation of the effects of error propagation.

The last two scenarios, as shown in Figs. 9 and 10, consider
the individual BER performance of the users. From the results,
we observe that a disadvantage of S-DF relative to P-DF is that
it does not provide uniform performance over the user popula-
tion. We also notice that for the S-DF receivers, user 1 achieves
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the same performance of their linear receiver counterparts, and
as the successive cancellation is performed, users with higher
indexes benefit from the interference cancellation. The same
nonuniform performance is verified for the proposed SPA-DF,
the existing ISS-DF, and the novel ISPAS-DF. Conversely, the
new ISPAP-DF, the existing P-DF, and the existing ISP-DF pro-
vide uniform performance over the users, which is an important
goal for the uplink of DS-CDMA systems. In particular, the
novel ISPAP-DF detector achieves the best performance of the
analyzed structures and is significantly superior to the ISP-DF
and to the P-DF, which suffers from error propagation.

VII. CONCLUSION

Blind adaptive SG- and RLS-type algorithms based on the
CMV and CCM performance criteria were developed for es-
timating the parameters of DF receivers in uplink scenarios
with multipath. The CCM-based blind algorithms have shown
a performance that is very close to that of trained algorithms
without the need for pilot channels. A novel SPA-DF struc-
ture was presented and combined with iterative techniques
for use with cascaded DF stages, resulting in new iterative
DF schemes, namely the ISPAS-DF and the ISPAP-DF, that
can offer substantial gains in performance over existing linear
and DF detectors and mitigate more effectively the deleterious
effects of error propagation. In particular, the proposed ISPAP-
DF structure has achieved the best performance among all
analyzed receivers and is able to provide uniform performance
over the user population.

APPENDIX I
CONVERGENCE PROPERTIES

In what follows, an analysis of the CCM method and its
convergence properties is carried out for the linear receiver case
(fk = 0), extending previous results on its convexity for both
complex and multipath signals. We believe that it provides a
good starting point (better than the CMV design) for perform-
ing the cancellation of the associated users by the feedforward
section of the DF-CCM receiver.

Let us express the cost function JCM = E[(|wH
k r|2 − 1)2]

as JCM = (E[|zk|4] − 2E[|zk|2] + 1), drop the time index (i)
for simplicity, and assume a stationary scenario that bk, k =
1, . . . ,K are statistically i.i.d complex random variables with
zero mean and unit variance and that bk and n are statistically
independent. Let us also define x =

∑K
k=1Akbks̃k, Ckhk =

s̃k, Q = E[xxH ], P = E[ηηH ], and R = Q+P + σ2I and
alternatively express the received vector by r(i) = x(i) +
η(i) + n(i), where η(i) is the ISI. Considering user 1 as the
desired one, we let w1 = w and define uk = A∗

ks̃
H
k w, u =

AH S̃Hw = [u1 . . . uK ]T , where S̃ = [s̃1 . . . s̃K ], A =
diag(A1 . . . Ak), and b = [b1 . . . bK ]T . Using the constraint
CH

1 w = νĥ1, we have for the desired user the condition u1 =
(A∗

1s̃
H
1 )w = A∗

1hC
H
1 w = νA∗

1h
H
1 ĥ1. In the absence of noise

and neglecting ISI, the (user 1) cost function can be expressed
as JCM(w) = E[(uHbbHu)2] − 2E[(uHbbHu)] + 1 = 8 ×
(
∑K

k=1 uku
∗
k)2 − 4

∑K
k=1(uku

∗
k)2 − 4

∑K
k=1 uku

∗
k + 1 = 8 ×

(D +
∑K

k=2 uku
∗
k)2 − 4D2 − 4

∑K
k=2(uku

∗
k)2 − 4D −

4
∑K

k=2(uku
∗
k) + 1, where D = u1u

∗
1 = ν2|A1|2|ĥH

1 h1|2. To
examine the convergence properties of the optimization prob-
lem in (10), we proceed similarly to [16]. Under the constraint
CH

1 w = νĥ1, we have

JCM(w) = J̃CM(ū)

= 8(D + ūH ū)2 − 4D2 − 4
K∑

k=2

(uku
∗
k)2

− 4D − 4(ūH ū) + 1 (42)

where ū = [u2, . . . , uK ]T = Bw, B = A′H S̃′H , S̃′ =
[s̃2 · · · s̃K ], and A′ = diag(A2 · · ·AK). To evaluate the
convexity of J̃CM(·), we compute its Hessian H using the rule
H = (∂/∂ūH)(∂(J̃CM(ū))/∂ū), which yields

H =
[
16(D − 1/4)I + 16ūH ūI+ 16ūūH

− 16 diag
(|u2|2 . . . |uK |2)] . (43)

Specifically, H is positive definite if aHHa > 0 for all
nonzero a ∈ CK−1×K−1 [29]. The second, third, and fourth
terms of (46) yield the positive definite matrix 16(ūūH +
diag(

∑K
k=3|uk|2

∑K
k=2,k �=3|uk|2· · ·

∑K
k=3,k �=K |uk|2)), where-

as the first term provides the condition ν2|A1|2|ĥH
1 h1|2 ≥ 1/4

that ensures the convexity of J̃CM(·) in the noiseless case.
Because ū = Bw is a linear function of w, then J̃CM(ū), being
a convex function of ū, implies that JCM(w) = J̃CM(Bw) is
a convex function of w. Since the extrema of the cost function
can be considered for small σ2, which is a slight perturbation
of the noise-free case [16], the cost function is also convex
for small σ2 when ν2|A1|2|ĥH

1 h1|2 ≥ 1/4. If we assume ideal
channel estimation (|ĥH

1 h1| = 1) and ν = 1, our result reduces
to |A1|2 ≥ 1/4, which is the same with that found in [31]. For
larger values of σ2, we remark that the term ν can be adjusted in
order to make the cost function JCM in (10) convex, as pointed
out in [16].

APPENDIX II
DERIVATION OF NORMALIZED STEP SIZE: CCM-SG CASE

To derive a normalized step size for the algorithm in (24) and
(25), let us drop the time index (i) for simplicity and write the
CM cost function JCM = (|wH

k r− fH
k b̂|2 − 1)2 as a function

of (24) and (25), i.e.,

JCM =

(∣∣∣Pk (wk − µwrekz∗k)H r− fH
k b̂− µfe

∗
kzkb̂

H b̂

+
(
Ck

(
CH

k Ck

)−1
hk

)H

r
∣∣∣∣
2

− 1

)2

. (44)

If we substitute Pk = I− (Ck(CH
k Ck)−1CH

k into the first
term of (44) and use CH

k wk = hk, we can simplify (44) and
obtain

JCM =
(
|zk−µwekzkrHPkr−µfekzkb̂H b̂|2−1

)2

. (45)
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Next, if we take the gradient of JCM with respect to µw and
equal it to zero, we have

∇Jµw
= 2

(
|zk − µwekzkrHPkr− µfekzkb̂H b̂|2 − 1

)

× d

dµw
|zk − µwekzkrHPkr− µfekzkb̂H b̂|2 = 0. (46)

From the above expression, it is clear that this minimization
leads to four possible solutions, namely

µn.1
w =µn.2

w =
1 − µfekb̂H b̂
ekrHPkr

µn.3
w =

(|zk| − 1) − µf |zk|ekb̂H b̂
|zk|ekrHPkr

µn.4
w =

(|zk| + 1) − µf |zk|ekb̂H b̂
|zk|ekrHPkr

. (47)

By computing the second derivative of (44), one can verify
that it is always positive for the third and fourth solutions
above, indicating the minimum point. It should be remarked
that the solution for µf is analogous to µw and leads to the
same relations. Hence, we choose µw = ((|zk| + 1) − µf ×
|zk|ekb̂H b̂/|zk|ekrHPkr) and introduce again the conver-
gence factors µ0w

and µ0f
, so that the algorithms can operate

with adequate step sizes that are usually small to ensure
good performance, and thus, we have µw = µ0w

((|zk| + 1) −
µf |zk|ekb̂H b̂/|zk|ekrHPkr) and µf = µ0f

((|zk| + 1) −
µw|zk|ekrHPkr/|zk|ekb̂H b̂).

APPENDIX III
DERIVATION OF NORMALIZED STEP SIZE: CMV-SG CASE

To derive a normalized step size for the SG algorithm in (26)
and (27), let us again drop the time index (i) for simplicity and
write the MV cost function J = |wH

k r− fH
k b̂|2 as

JMV =
∣∣∣Pk (wk − µwrx∗k)H r− fH

k b̂− µfxkb̂H b̂

+Ck

(
CH

k Ck

)−1
hk)Hr

∣∣∣2 . (48)

If we take the gradient of JMV with respect to µw and equal it
to zero, we get

∇Jµw
= 2

∣∣∣Pk (wk − µwrx∗k)H r− fH
k b̂− µfxkb̂H b̂

+Ck

(
CH

k Ck

)−1
hk)Hr

∣∣∣× (−Pkrx∗k)H r = 0. (49)

If we substitute Pk = I− (Ck(CH
k Ck)−1CH into the first

term of (49) and use Ckwk = hk, we can eliminate the third
term of (49) and obtain the solution

µw =
xk(1 − µf b̂H b̂)
xk(rHPkr)

=
(1 − µf b̂H b̂)

rHΠkr
. (50)

Note that we again introduce a convergence factor µ0w
so

that the algorithm can operate with adequate step sizes that are

usually small to ensure good performance, and thus, we have
µw = µ0w

((1 − µf b̂H b̂)/rHPkr). Next, we take the gradient
of JMV with respect to µf and equal it to zero, i.e.,

∇Jµf
= 2

∣∣∣Pk (wk − µwrx∗k)H r− fH
k b̂− µfxkb̂H b̂

+Ck

(
CH

k Ck

)−1
hk)Hr

∣∣∣× (−xkb̂H b̂)Hr = 0 (51)

where it is noticed that the conditions are the same as for µw.
Thus, we proceed similarly to obtain the step size µf , which
is given by µf = ((1 − µwrHPkr)/b̂H b̂). Remark again that
a convergence factor µ0f

is applied so that the algorithm can
operate with adequate step sizes that are usually small to
ensure good performance, and thus, we employ µf = µ0f

((1 −
µwrHPkr)/b̂H b̂).

APPENDIX IV
ON THE USE OF Rk FOR CHANNEL ESTIMATION

Here, we discuss the suitability of the matrix Rk, which
arises from the CCM method, for use in channel estimation.
From the analysis in Appendix I for the linear receiver, we
have for an ideal and asymptotic case that uk = (A∗

1s
H
k )w1 ≈

0, for k = 2, . . . ,K. Then, wH
1 r ≈ A1b1wH

1 s1 +wH
1 n,

and |wH
1 r|2 ≈ A2

1|wH
1 s1|2 +A1b1(w1s1)nHw1 +A1b

∗
1 ×

(sH
1 w1)wH

1 n+wH
1 nnHw1. Therefore, we have for the de-

sired user (i.e., user 1)

R1 =E
[∣∣wH

1 r
∣∣2 rrH

]
∼=A2

1

∣∣wH
1 s1

∣∣2 R+A1wH
1 s1E

[
b1nHw1rrH

]
+A1sH

1 w1E
[
b∗1w

H
1 nrrH

]
+ E

[
wH

1 nnHw1nnH
]
+ σ2QwH

1 w1

∼=A2
1

∣∣wH
1 s1

∣∣2 R+A1wH
1 s1E

[
b1nHw1rrH

]
+ E

[∣∣wH
1 n
∣∣2 nnH

]
+A1sH

1 w1E
[
b∗1w

H
1 nrrH

]
+ σ2(R− σ2I)wH

1 w1

∼=
(
A2

1

∣∣wH
1 s1

∣∣2 + σ2
)
R+A2

1σ
2
(
wH

1 s1
) (
w1sH

1

)
+A2

1σ
2
(
sH
1 w1

) (
s1wH

1

)
+ σ4

[
diag

(|w1|2, . . . , |wN

∣∣2) +w1wH
1

]
− σ4wH

1 w1I

∼=A4
1

[(∣∣wH
1 s1

∣∣2
A2

1

+
σ2

A2
1

)
R

+
σ2

A2
1

((
wH

1 s1
) (
w1sH

1

)
+ σ2

(
sH
1 w1

) (
s1wH

1

))

+
σ4

A4
1

([
diag

(|w1|2, . . . , |wN |2)

+ w1wH
1

]−wH
1 w1I

) ]

∼=αR+ Ñ (52)
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where R = Q+ σ2I, and Q = E[xxH ] =
∑K

k=1 |Ak|2sksH
k .

From (52), it can be seen that Rk can be approximated by
R multiplied by a scalar factor α plus a noise-like term Ñ,
which has an insignificant contribution for sufficient Eb/N0.
In addition, when the symbol estimates zk = wH

k r are reliable,
that is the cost function in (10) is small (JCM � 1), then
|zk|2 has small variations around unity for both linear and DF
detectors (note that zk = wH

k r− fH
k b̂ for the DF receivers),

yielding the approximation

E
[|zk|2rrH

]
=E[rrH ]+E

[(|z2k−1
)
rrH

]∼=E[rrH ]=R.
(53)

Therefore, we conclude that the channel estimation can be
performed on Rk in lieu of R since the properties of the matrix
R studied in [26] and [27] hold for Rk.
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