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Abstract—The main challenge of massive machine-type com- As mMTC is a very dense scenario and due to the coherence
munications (mMTC) is the joint activity and signal detection interval of the channel, even with a small number of active
of devices. The mMTC scenario with many devices transmittig devices (10% of the cell) the reuse of metadata sequences

data intermittently at low data rates and via very short packets t Naturall tadata allocation has to ad it
enables its modelling as a sparse signal processing problem must occur. Naturally, metadata allocation has to adag wi

In this work, we consider a grant-free system and propose a the traffic activity pattern, designating the resources in a
detection and decoding scheme that jointly detects actitand random manner [3]. Despite many works [4]—[7] that consider
signals of devices. The proposed scheme consists of a listation  the reuse only in the neighbouring cells, the assumption
technique, anlp-norm regularized activity-aware recursive least- of intra-cell metadata contamination should be applied [8]
squares algorithm, and an iterative detection and decoding . . . . . .
(IDD) approach that exploits the device activity probability. This a_ssumptlop 1S dlrec_:tly related to the ulenl_< capacﬁy
In particular, the proposed list detection technique uses wo @analysis. For this scenario, the sum-rate expressionsldesi
candidate-list schemes to enhance the detection performee. We take metadata contamination into account, must considaer th
also incorporate the proposed list detection technique it an (jfferent activity probability of each device.

IDD scheme based on low-density parity-check codes. We dee As envisaged, this kind of network supports a massive

uplink sum-rate expressions that take into account metadat b f devi ith di tivity. thi .
collisions, interference and a variable activity probabilty for number of devices with sporadic aclivity, this scenario can

each user. A computational complexity analysis shows thate D€ interpreted as a sparse signal processing problem [9].
proposed list detector does not require a significant additnal Exploiting the sparsity of the system, detection algorshm
complexity over existing detectors, whereas a diversity alysis should be reformulated to the mMTC scenario. A common
discusses its diversity order. Simulations show that the mposed  455r04ch is to apply a regularization parameter into thé cos
scheme obtains a performance superior to existing suboptiai functi in 1101 wherein Zh d Gi ki d th
detectors and close to the oracle LMMSE detector. unction, as in [10] w erein 2zhu and 1annakis proposed the
o _ _ Sparse Maximum a Posteriori Probability (S-MAP) detection
Index Terms—Decision feedback receivers, error propagation hioh performs a MAP detection of the new sparse problem
mitigation, iterative detection and decoding, massive mdtne- L . . . '
type communication, random access, spatial multiplexing. considering a zero-augmented finite alphabet. A va_lrlatrbn 0
the well-known sphere decoder has been proposed in [11] and
named as K-Best. In [12], a sparsity constraint has been-inco
. INTRODUCTION porated in the successive interference cancellation (B3-S
ASSIVE machine-type communications (MMTC) hasn order to avoid matrix inversions, in [13] a version of SACS
been considered a technology with great potential With sorted QR decomposition and ordered detection based on
future networks. This potential can be widespread acrogg activity probability of devices has been reported. Resp
different industries, including healthcare, logisticsamafac- its large computational complexity, a solution belongiagtte
turing, process automation, energy, and utilities. Déferfrom  class of Bayesian interference algorithms has been describ
the conventional human type communications, mMTC for lojh [14], which has the advantage of performing the detection
have unique service features, as transmissions between tithout knowing the activity factop,,.
MTC devices, low data rates, very short packets and highin the approach proposed in this paper, when a device has
requirements of energy efficiency and security [1], [2]. to transmit data, it splits the codeword in multiple framasd a
In this context, grant-free access is a promising techniqu@nsmit them in multiple transmission slots. During thenea
to meet the specifications of mMTC. Dividing the short packzoherence time, the channel is constant and it is estimeded f
ages in preamble (metadata) and payload (data), the cengiislink metadata every time the device transmits. In eack tim
aggregation node can detect the active devices and estimg¢g, each active device selects randomly a metadata seguen
their channels in just one transmission. Given the multipfeom a predetermined codebook and sends the rest of the
applications for mMTC, each type of device has its owpodeword. As the number of orthogonal metadata sequences
activity behaviour. For example, monitoring devices ofthig is lower than the devices, the system is suitable to frame
risk patients in a hospital request access to the networle meollisions [3], [9].
frequently than gas sensors from a smart home. Thus, it isin this work, inspired by the joint activity and data deteati
natural to assume that each device has a different protyabifiroblem in sparse scenarios, we introduce a detection schem
of being active f,,). named activity-aware variable group-list decision feeatba
. . _ (AA-VGL-DF). The proposed AA-VGL-DF scheme consists
The authors are with the Centre for Telecommunications i&ud . . .
(CETUC), Pontifical Catholic University of Rio de Janeiro UE-Rio), of a list detector, anip-norm regularized recursive least-
Rio de Janeiro 22453-900, Brazil (e-mail: robertobrauest@cpuc-rio.br; squares (RLS) algorithm that exploits the sparsity of the
delamare@cetuc.puc-rio.br). This work was supported ifipathe National - gystem to adjust the receive filters, and an iterative detect
Council for Scientific and Technological Development (CINBad in part by . . . .
FAPERJ. and decoding (IDD) scheme. Inspired by our previous list-
detection work, the AA-MF-SIC [15], we employ two list
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detection techniques based on the constellation points tt 1072
increasing the accuracy of each symbol detection. In omer
reduce the computational complexity, we consider a vagiab

T T
—0— a=4 and =10
—B— a=4 and =8

size of each list of constellation points candidates based 3 —i— a=4 and B=6 ||
the SINR. An IDD scheme based on low-density parity-chec —o— a=2 and =10
2.5 —e— a=3 and =10 H

(LDPC) codes, which incorporates thg-norm regularized
RLS algorithm, the list-detector and takes advantage of tl
activity probability of each device is also devised for sin
detection in mMTC. We then derive uplink achievable surr
rate expressions that take into account metadata colisio
interference and a variable activity probability for eacdeu
An analysis of the computational complexity shows that th 5
AA-VGL-DF detector does not require a significant additiong & = (5
complexity over existing techniques, whereas a diversigl-a

a=3 and =9

of K devices being active
in the same transmission slot

rob

,‘A

ysis discusses the diversity order achieved by the AA-VGL 0B O AN s
DF detector. Simulations show that our AA-VGL-DF schem: 80~ 100" © 120
successfully mitigates the error propagation and appesct. Number of active devices K

the oracle linear minimum mean-squared error (LMMSHjig. 1: Model of probability of havingk™ active devices within a total of
detector performance with a competitive complexity_ N = 120. All devices become independently active with a probapbilieter-

The main contributions of this work are: mined by the random variable, € [0,0.1,..., 1] with a beta distribution.

1) The AA-VGL-DF detection scheme with ak-norm
regularized RLS algorithm with two list-based strategies, ianal model
which detects active devices and their symbols; A. Sparse signal mode

2) An IDD scheme based on LDPC codes modified for As networks should support many different applications
mMTC that incorporates the AA-VGL-DF detector;  with distinct requirements, naturally each device has it® o
3) A diversity order analysis along with a complexityactivity behaviour. In order to model this scenario, we diders
analysis of AA-VGL-DF and existing approaches baseghe beta-binomial distribution [16] to model the problentizes
on required floating-point operations (FLOPs); probability of being activey,, is randomly drawn from a beta
4) A derivation of a closed-form expression for the achievistribution, proposed as a traffic model by the 3GPP [17].
able spectral efficiency which takes metadata collisiongonsideringV devices with a single antenna accessing a base
interference and the activity probability of each user; station (BS), the probability mass function is given by
5) A comparative study with simulation results of the AA-
VGL-DF and existing techniques. _(N\ k N—K
The organization of this paper is as follows: Section I p(K) = (K) P (1= pn) @)
briefly describes the random access and the channel models.
Section Ill presents the AA-VGL-DF detector, ttig-norm where p,, is a random variable with a beta distribution that
regularization and the variable group-list constrainttide [V represents the probability of being active of theh device
introduces the IDD and details the modifications that afhd K is the number of active devices out of at the same
suitable for mMTC. Analyses of computational complexity, d transmission slot. The sparsity of the scenario is modifed a
versity order and the achiveable uplink sum-rate are dpeelo S0on as each random variabig with beta distribution is
in Section V. Section VI presents the setup for simulatiors amodelled. Thus, each device has its own activity probabilit
results while Section VIl draws the conclusions. Hence, the probability of having K active devices within a
Notations: Matrices and vectors are denoted by boldotal of N at the same transmission slot is given by
faced capital letters and lower-case letters, respegtividie
space of complex (realy-dimensional vectors is denoted by
CN (RY). Thei-th column of a matrixA € C"*N isdenoted (K | N, , 8) = (N +1)
by a; € CM. The superscript$:)” and (-)"" stand for the PE+)I(N-K+1)
transpose and conjugate transpose, respectively. Forem giv I(N+a)U(N - K+0) T(atp) )
vectorx € CV,||x|| denotes its Euclidean norrfi ] stands L(N+a+p) I'(a)T(B)
for expected valuel is the identity matrix and diajg is to
reshape a vector in the main diagonal of a matrix.

whereT (-) is the gamma functiony and 8 are real positive
parameters that appear as exponents of the random vagiable

Il. SYSTEM MODEL and control the shape of the distribution. The average numbe

This section presents the sparse signal model and the sys@éractive devices Isﬁ—% and its variance i afg)(f(ZiEJrl))-

setup considered for the mMTC scenario. The sparse signaln most mMTC applications the devices have low probabil-
model takes into account considerations available in a 3GRY of being active. Fig. 1 shows the probability of a specific

specification and the system setup details the receivealsignumber of devices to be active at the same time for different
in a given coherence time. values ofa and 5 in a scenario ofV = 120.
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B. SyStem setup Device 1 S S -

. . . L . = | s >

The massive uplink connectivity scenario illustrated in Lo

Fig. 2 is considered, wher® devices with a single antenna 4 T
access a single base station (BS), equipped Witlantennas. Device 1
When a device has data to transmit, it splits the codeword in
multiple frames and transmit them in multiple transmission
slots. In each time slot, each active device selects randaml
metadata sequence from a predetermined codebook and sendDevice N+ . . . .
the rest of the codeword. Since in practice the BS would have Z I_I_I —
a list of devices that are associated with it, and their umiqu ~ [(IDpata ,7e<t<T
identifiers, we assume that the metadata sequences are knowr. Transmission slot, T =Ty + Ty Bl Metadata, 1<t<7
at the BS. Since these unique identifiers are known to the BSg. 2: mMTC single-cell system model. When active, each devidestrits
the metadata sequence is also known at the BS. Given thendr, symbols of metadata and data, respectively, in the cohergéme.
sporadic activity of devices, they will communicate to th& B
only when it is needed, so not all of them will be active during

the same coherence time. duration and changes independently from slot to slot. ¥he
As the frame size of MMTC is typically very small (betweenv channel matrixH corresponds to the channel realizations

10 and 100 bytes) [2], it is possible to assume the devicgstween the BS and devices, modelled as
are synchronized in time. That is, the devices are turned on

or turned off in the same transmission slot, as represented i H=AN"2 (6)
Fig. 2. The duration of a transmission slat & 74 + 7,) i . )
is smaller than the coherence time and coherence bandwidfiereH gathers independent fast fading, geometric attenua-
of the channel. The time index indicates each transmitted!ion and log-normal shadow fading. is the A/ x IV matrix of
vector in the same transmission slot. As we considered a-grd@St fading coefficients circularly symmetric complex Csias
free random access model, each frame has metadata and @igfibuted, with zero mean and unit variance. TNex N
Thus, the time index indicates how each frame is divided, §gonal matrixA/ models the path loss and shadowing expe-
in Fig. 2. rienced by each device and is modelledl@sog,, (x) + w,

The received signal [t] in a given coherence time isWherey is the signgl—to-noise ratio (SNR) _andisaGaussian
organized in aM x 1 vector that contains the transmitted@ndom variable with zero mean and varian¢e[18]. Thus,

Base station

HoaSTE

metadata [£]) or the datax [t]), as each vectoh,, can be written as
h, =a,/n, Yn=1,...,N. @)

HmBx[t|+v[], if rp<t<rt The n,, coefficients are assumed to be known at the BS and
changes very slowly, reaching a new value just in a new

where H is the M x N channel matrixB is the N x N yangmission slot. All signal model parameters are desdrib
transmission power matrix; is the M x 1 noise vector, while , Taple |.

T$ and.Tm are the numper 9f metadata and data symbols,Gjyen the features of mMTC scenarios, the number of
respectively. For each time instafit the metadata and datayeyices N is larger than that of antenna¥/ at the base
are represented by th¥ x 1 vectors station, in a way that it consists of an underdeterminedesyst
bt = Apl] =[Brionll,....on0n [f]]" and (4) However, the transmitted symbols can be detected as their
T vectors have a sparse structure as the rows corresponding to
x[t] = Asf] =lhsilt],...onsnlt]]s ) the inactive users are zero. So, the activity detectionlprob

where [f] and s[t] are N x 1 vectors of symbols from 1S reduced to finding the non-zero rows ¢ft].

a regular modulation scheme denoted My as quadrature "€ motivation of this work is to propose an efficient
phase-shift keying (QPSK). Th& x N diagonal matrixA detection technique for mMTC. Conventional detection tech

controls each device activity in the specific transmissiot, s Nidues are not suitable to deal with the small coherence time
with Pr(6, =1) = p, and Pts, =0) = 1 — p,. Thus and limitation of the orthogonal metadata sequences. Thus,
each transmitted vectorp(t] or x [t]) is composed by the W€ present an iterative and adaptive detection technicaie th
augmented alphabet,, where A, = A U {0}. exploits the sparsity of the system and, using the spedcitst

As in mMTC syste’ms the transmission powenf each provided for the mMTC scenario, jointly detects the acyivit
device is different [1], [2], we gather the transmissiofnd data of devices, outperforming existing approaches.

power component in theV x N diagonal matrixB =

y[t]:{H\/ﬁqu[tHv[t], if 1<t<m, 3

diag([v/1, Vb2, - .,vbx]). The noise vector is modelled I1l. VARIABLE GROUP-LIST DECISION FEEDBACK
as an independent zero-mean complex-Gaustian 1 vector DETECTION
with variances?. This section details the proposed AA-VGL-DF detection

In our work, we consider the block fading model, wherecheme. Unlike our previous work [19], AA-VGL-DF consists
a channel realization is constant across a transmissidn &b an adaptive receive filter adjusted kynorm regularized
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TABLE I: Description of signal model parameters.  candidates begins. The idea of this list is to perform a group
list verification of the most unreliable symbols, after tlastl
Parameter _Description i detection. With more reliable detected vectors, a morerateu
]\N/[ ngg: 8; gz\slisst?t'on antennas; decision of the first filter to be used in the next detection
K Number of active devices; will be taken. In order to define which soft estimates will be
T Number of transmitted symbols per trans. slot, given by rechecked with the second list, we apply the SAC criterion

T = Tz + 7, Wherer, represents the data and the again, but with a larger radius. After the reordering precés

metadata; e o !

on Random variable with a beta distribution that represents AA-VGL-DF is in the decision-directed mode, the reordered
the probability of being active of the-device; soft estimation vectord([t]) is converted to LLRs in order to

é[[tt}} ]\N/[: 11 :ﬁgg‘éifaszg?;l :;?i;oer S%tgﬁntgpazt'cgsrﬁgsed be decoded by the iterative scheme. Otherwise, the reatdere
by the augmented alphabsty; vectors of soft estimates and detected symbalg]}, are used

x[t] Nx1 d?t«’é V?C:]mbga the time instamtcomposed by the  to define the first symbol to be detected in the next received
augmented alphabed;

A N x N diagonal matrix that controls each device activity metadaFa vector. . .
in the specific transmission slot; We will present the proposed AA-VGL-DF scheme in detail

B N x N fdiagﬁngll matrix that gathers the transmission jn the following subsections. We first detail the adaptive
power of eac evice, P . . .

V[l noise component, modelled as a independent zero-mean decision feedback_structure, the receive filters _and tha\red_ _
complex-Gaussiad/ x 1 vector with variancer2; vector concatenation. Then, we describe the internal verifi

H M x N channel matrix, wherdl = A N'1/2; tion list scheme and the detection order update. Lastly, we

A M x N matrix of fast fading coefficients; i i

N N x N diagonal matrix that gathers the path loss and present th_e external list scheme and thaorm regularized
shadowing experienced by each device; RLS algorithm.

_ . . _ A. Adaptive Decision Feedback Structure
RLS with decision feedback and two list detection tech- the main idea is to use a feedforward filter to detect the

niques to reduce the detection error propagation. The Bigtec 5 smitted symbol and a feedback filter to cancel the iaterf

scheme is illustrated in a block diagram in Fig. 3. ence. For each operation mode, both filters are concatenated
As the transmission slots are separated by metadata apd \vritten as

data, AA-VGL-DF has two modes of operation, training mode

(1 <t < 7,) and decision-directed modey < ¢ < 7). . wi, [t], e 1; -
i - ¥ U] = T T
Although the same scheme is used for both cases, in the’ {Win [t]7wz}n [t]}  n=2....N.

training mode the focus is to use the metadata to update
the RLS algorithm, while the decision-directed mode usegherew,, [t] corresponds to both filters used for the detection
the filter to detect the received data symbols. AA-VGL-Dief the symbol of thex-th device (or layer). Both filters update
detects each symbol at a time, per layer. The detection ordeeir weights and the detection ordgrat each new symbol
is updated at each new layer, using the least squares d@stimatletection. The received vectgr[t] is concatenated with the
(LSE) criterion. The adaptive receive filter can be decoradosN x 1 vector(iww1 [t] which contains the previously detected
into feedforward and feedback filters. The feedforward orsymbols as

is updated at every new received vector by thenorm v [t] =1
regularized RLS algorithm. The feedback filter is a compdonen Yo, [t] = { { - ) ;

y

; T 9
,dLnil[t]} N

that is concatenated to the feedforward filter in order tacean
the interference of the previously detected symbols.

In the first layer, the filter is composed by the feedforwa
part and obtains a soft estimate of the symbol with the reckiv i H=wh It / 10
vector y [t]. Inspired by our previous work [15], we apply v 1=y, [ywn [f (10)
the shadow area constraints (SAC) criterion to evaluate theThus, the filterw,, [t] and the received vectoy,,, [t]
reliability of the hard decision of the soft symbol estimaténcreases in length at each detection. In the last detgction
If the symbol is considered unreliable, a list of candidatesy, [t] andyy, [t] are a(M + N) x 1 vectors, aswy [t] =
drawn from the constellation symbols is generated and tﬁgj
best candidate, chosen by the maximum likelihood critgrio 1) internal list: In order to improve the detection perfor-

replaces the unreliable symbol. After the first detectidmg tmance we include a SAC. first presented in our previous

LSE defines which will be the next layer, the received vectQlork [15], to evaluate the reliability of the soft estimates

y [t] is concatenated with th_e previous detectegl symbol and tRe <hown in Fig. 3, with the augmented alphabet of a QAM
filter of the selected layer is concatenated with the feddbal%odulation scheme, SAC compares the distance between the

part. This procedure is repeated until the last layer. A$ thiyy ogtimate and all the possible constellation symboth wi
point, the scheme has three vectors, one with all soft estsna

(d, [t]), the second one with the detected symbals [¢]) r= argmin Ao, —dy, [1]|? (11)
and the third onex, [t]) that keeps the information about i€ L (A1)

the reliability of each soft estimate. Those three vectoes avhere |.A| is the modulation order. If the soft estimate falls
reordered to the original sequence and the second listiofo the shadow arear (> " or r > 7o), the estimate

r%nd each soft symbol estimate of theth device is given by

D e wh g 10,0 apy Bl ag 1]
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,,,,,,,,,,,,,,,,, Internal list_ __________________ 1y [f] :
,,,,,,,, SAC [ E i % Leyl]
Q | :
: Le,[t
D /dw[fl | : ; :[0
" Y\T-A I | i . | : Le, [f]
[yl el ol i 1
wi |t N ) —>1 K1 — : ) L.
L ! I < - o i Kl Selection|[—! ' ' Le [t] SISO decoder jj
- 0 ) { o, ) i Kr ‘ | Llt]: 7o
| ‘ A ' ! ! ! :
" ' 9T Conversion| ' SISO decoder j,j _’
Co g U v’l”2H ! Ich [T]
Do f L~ dy, 11 [ do ] ! to : .
e ? “ fnternal Jist s dn LR - :
“ JH - dy, 1] Y SISO decod: N —
Y[ | S wh [t Iyalt] | Au[[ ]] Lo i decoder _*F
— ' - d,lt .
Do ! ot dy, [t]7 [ dy, v Reordering |:
Do -‘wéu ] d ] Internal list : [ ‘ (Ni,f,.[t] ol
| 5 i 1] ! ‘
. A [ | ol | :
o : i(f! i | : (js,-N t (ZM t 3 | ] d
: —‘w‘f\,H [t] /( ol ] Internal list|— H g ' ! o1t dlt] dlf] 3
v ; wh [t : | :
e ¢ o e <
(R i = g i oo dit External
Detection ordering dif] = [d """ d”] g xrerna

‘ T ! List
& Tap adaptation '

Fig. 3. Detailed structure of the AA-VGL-DF detector and the IDD sate. To simplify notations, just one received vector is @ered in the base station.

is considered unreliable and theg, [t] proceeds to the list the chosen filter is stored in the sequence of detection
scheme. Otherwise, it is just quantized to the nearest symbepresented as
of the augmented constellatiofy,, as ;= arg min J; [1], (14)

R H JES;
dy, [t] = Q [wy, [y, [t] - (12)
where the indicatorj in (14) belongs to the sef; =

The " and ™ radius of each reliability region are define 1,2,...,N}—{t1, s, ..., n_1}, which contains the index
by the probability of being active of each device [15] angf not yet detected symbols. Hence, the output index of
_the radius of the region arou_nd the zero (_mactlve device cost function is removed by the set and this symbol
is the complement Ofththe radluti of the regions around the chosen to be detected. In the next detection, the already
constellation symbols;™ =1 — r™. detected symbol does not participate in the new cost fumctio

The list scheme is a verification of a list of candidates dravgbmputation. Therefore, thg-norm cost functions of each
from constellation symbols to the actual detection. The liphase, are respectively given by

k = [k1 -+, k(4] IS used to select the best candidate
according to t - )
) TP =D N e = w [y, [+ 7w [ o, (15)
Kopt= argmin ||y [t] — hy, 2 (13) =0

iEl,---,(‘Ao‘) t—1
A - - %d [t] — Z)\tflfl
where the vectoth,, contains the estimate of the channel =
between the device that performs symbol detection and the
BS. As the channel estimation is not the focus of this workyhere || - || denotesiy-norm that counts the number of
we considered the well known linear MMSE (LMMSE) estizero entries inw; and~ is a non-zero positive constant to
mation. The estimate of eadh,,, is detailed in Section V-B. balance the regularization and, consequently, the estimat
The vector with minimum argument,y indicates which error. Moreover0 < A < 1 is the forgetting factor which
candidates will replace the quantized version of the unreliablgives exponentially less weight to older error sampl@;g.[t]
soft symbol estimatel,,, [¢]. represents in (15) the cost function for the metadata mode an
2) Detection order updateThe metric chosen to updatejf [t] for the data mode.
the detection ordet, is the minimum LSE. At each symbol After the detection of all symbols, the vector with the soft
detection, we compute tHg-norm cost function7; [¢] for the estimates can be reorganized to the original order andriiteg
symbols that were not detected yet. The $gft] contains the the iterative LDPC decoder. However, as for the next reckive
index of the remaining symbols to be detected and is updatesttor AA-VGL-DF will verify which filter should be used
with the outputy; of the cost function. Thus, the index offirst, we included another list detection technique at tlisip

;1) = W 1)y, 1] 1w 14 o 26)
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(a) The internal list results are the continuous line while éxternal list values (b) The radiusrto and i delimits the reliable re-
are shown in dashed lines. The probability of being activeasth device is gions for the internal list while-ex; for the external
randomly drawn from a beta distribution with = 4 and 3 = 8. list.

Fig. 4: Parameters of internal and external lists. (a) Number ogliable soft estimates by the number of active devices,guulgthe SAC of the internal
and external list scheme and (b) Shadow area constrainistésnal and external lists.

in order to provide more refined information to the first cost As an example, let us suppose that we hdvenreliable
function of the next received vector. estimates (non-zero elements) in veciyy [t]. Considering a
3) External list: The idea of the external list is to carryQPSK modulation, the augmented alphabkt would have
out a group list verification of the most unreliable symbols, elements and; would be a4 x 70 matrix, considering all
after the last detection. In the internal list block, AA-VGL the 70 combination possibilities of possible symbols int
DF also keeps the information about the reliability of eachnreliable estimates.
soft estimate. TheV x 1 binary vectord, [¢t] gathers this  Since mMTC is a crowded scenario, building the external
information asi,,, [t] = 1 when a soft estimate falls into theG matrix with all possible combinations would be impractical
shadow area and,,, [t] = 0, otherwise. After the reordering Thus, considering the distribution of probability of beimgfive
process, the external list block receives the estimatedsisn of devices, we notice in Fig. 4a that just a few symbols are
d[t], the detected symbolsl[t] and the vector with the considered unreliable by the internal list per receivedtorec
reliability information, 9 [t]. and this number is reduced as the SNR grows. Therefore, we
With the knowledge of which symbols had a reliable softonsidered a constraint in order to reduce the computdtiona
estimate, the external list generates all possible contibma complexity of the external list. Instead of verifying alleth
G of the symbols of the considered augmented alphahet possibilities of all unreliable soft estimates, we cheakworst
and gathers all these vectors in arx G matrix G given by cases, that is, the soft estimates considered more urlesliab
Thus, we define another radius in the SAC in order to

Aoy Aoy Aoy oo Apg e Aoy designate which unreliable symbols should be or not in the

Aoy Aoy Aoy o Aoy e Aoy external list. As the number of unreliable estimates varies

G=| An Ao A, - Ao, o Ao ; with the SNR, we choose the radius, represented in Fig. 4b,
: : R S : as rexx = [(M/f() + (No2/o2)| since it follows the

Ao, Aoy Ao, o Aoy e Aoy, increase of the average SNR value. Thus, the reliability of

(17) d[t] will be rechecked, with the new radiug,. As we have
wherev is the number of soft estimates considered unreliabe.d [¢], we have an estimation of which device is active or
With the complete candidate vector matrix, the verificatién not, given by k. So, the number of considered unreliable
the most appropriate vector occurs as in the internal Ist, soft estimates is reduced as the SNR value grows, as shown in

follows: Fig. 4a. In the next subsection, we detail the propdsetbrm
2 regularized RLS algorithm. Other list detection strategian
. SN also be considered [20], [21].
gopt = Arg min ||y 1= hygii|| (18) 1201, [21]
i€1,--, j—l

whereh; is the estimated channel of the unreliable symbg' lo-norm Regularized RLS Algorithm

to be verified. The vector candidatgy is chosen and its  In order to exploit the sparse activity of devices and coraput
values replace the ones considered unreliabl&['n}u in order the parameters of the proposed DF detector without the
to proceed to the detection, ordering and parameter estimatneed for explicit channel estimation, we devise lgmorm

of the next received vector. regularized RLS algorithm that minimizes the cost function
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Approximating the value of th&-norm [26], the cost function  The a priori probabilities are computed based on the

in (15) can be rewritten as extrinsic LLRs L [t], provided by the LDPC decoder. In
: the first iteration, aIILgn [t] are zero and, assuming the
- 2 i iati i : iari
JEM = Z PG ‘%_ ] — W.'; ]y, [tH bits are .s.tatlstlcally independent of one another, @hgriori
=0 probabilities are calculated as
2M M.
7Y (L—exp(=fuwip 1) (19 pr(z, (] =7) = Yoz (H [1+exp(—7°LZ, [t])}*) ,
p=1 TEA) \2=1

where the parametérregulates the range of the attraction to ) (25)
zero on small coefficients of the filter. Thus, taking the jpart WNere M. represents the total number of bits of_symk_a_ipl
derivatives for all entrieg of the coefficient vectow [¢] in the superscript indicates thez-th bit of symbol ofz, in 7
(19) and setting the results to zero, yields (thse value !S_(+1, —1)). As_each devu_:_e_ has a different
activity probability p,,, the a priori probabilities should take
wilt] = wilt—1]+k[t]e; [t into account, as

—v€sgn(wj,p [t]) exp(=Elwip [H11)  (20) 4 (1 - p,)Pr(z, (] =), if (& andz?) =0, (26)
wherek [t] is the gain vector and sdr) is a component-wise (1= pn)Pr(z, [t] =7), otherwise
sign function defined as where in the next iteration of the scheme, the repriori

probabilities incorporates the probability that theh device
is active and the extrinsic LLR values. As described in

) o Section Il, the probabilitieg,, are randomly drawn from a
In order to reduce computational complexity in (20), thgata distribution.

exponential function is approximated by the first order & th ¢ the output of the proposed receive filter has a large
Taylor series expansion, given by number of independent variables, we can approximate it
exp(—€ [w; , [1]]) ~ L—&lwp [, |wip[t]] <1/ as a Gaussian distribution [2_8]. Hence, we approximate
Jp 0, otherwise. dn [t] by the output of an equivalent AWGN channel with
(22) dn(t] = in, Sz’] xn, [t]+ by [t]. Therefore, the likelihood function

i 1/ 1wip [t ], wjp [t] # 0
sgn(wp [1]) = { B B 0, cu)}therwise. (21

As the exponential function is positive, the approximatiop (4, [t]|Z) is approximated by
of (22) is also positive. In this way, (20) becomes

wilt] = wilt—1+k[e [ P(d17)~ — [t]exp(—%mwt]—unmfﬁ),
—yEsgn(wyp [t]) fe (wip[t])  (23) ! " (27)

where the mean, [t] is given by

] = E{dalfoaltl} =E{w [{yalen 1}

wi [t] (i NPy [pl [p]> : (28)

where the functionfe (w,,, [t]) is given by

E (wip[t]) +& —1/& <wjyp[t] <0;
fe (wjp[t]) = £ (wiplt]) =& 0=<wjp[t] < 1/E;

0, otherwise.

Q

(24)
we nOt.'CG that the function (w?'v’? [t]) in (23) IMPOSES - \iote thatz,, is the previously detected symbol. In the first
an attraction to zero of small coefficients. So, if the valfie Qaseqn [t] = wH [t] vy [{]. Eachb, [{] is a zero-mean complex

Wip [t]_is not equal or in the range-1/¢,1/¢], no additional 5, ssian variable with variang [1] as
attraction is exerted. Thus, the convergence rate of rerar-z

coefficients of parameters of devices in mMMTC applicationg? ;] — var{cin [t]} = ]E{HJn [t] HQ} — pip [t]

that exhibit sparsity will be increased [26]. The pseuddeso H H 9

which also considers an IDD scheme with AA-VGL-DF, is = wy [E{yn [ty [t]} wa [t] — 45 [1] (29)

described in Algorithm 1. Alternatively, a designer can éoygp " ¢ . " .

other more sophisticated adaptive algorithms for paramete ~ w, [l Z)‘ Pyn 1y [Pl | W lt] = g, [4] -
p=1

estimation [22]-[25].
Then, the extrinsic LLRs computed by the AA-VGL-DF

IV. PROPOSEDSOFT INFORMATION PROCESSING AND detector for thez-th bit (z € {1,..., M.}) of the symbolz,,
DECODING transmitted by the:-th device are given by

In order to devise an IDD scheme, we incorporate the de- 5 - —
tected symbols by AA-VGL-DF in an iterative softinformatio 7= 1) —1q Lacar PT (d g |$) Pr@)
decoding scheme. Unlike existing approaches such as [&/],w . (Jn [t] |f) Pr(z)
incorporate the probability of each device being activehia t :

mMTC scenario in the computation of each a priori probapilitwhere AF! is the set oR2*<~1 hypotheses of for which the
symbol, which avoids the need for channel estimation. z-th bit is +1 (analogously ford;1).

—LZ, [t] (30)
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Algorithm 1 Proposed IDD with AA-VGL-DF 103 ¢ E
1. Initialization: M, N, p, &, v, A\, Py, = pIm
% For training mode, . i .
% For each metadata sequent€] and Yo, [T, 107 ¢
2. Compute the Kalman gain vector " B
Ky, =Py, [t vy, 1)/ Oyl 1Py, [tyy,, [H); % 108 E
3. Estimatedy,,, [t] = wH [t] y» [t]; = E
4. Update the error value withy, [t] = dy,, [t] — dy, [t]; 5 105 1 ]
5. Update the filters with Eq. (23); = E —4— LMMSE e
6. Update the auxiliary matrix —g - —#— SA-SIC [12] :
P [0 =271 (P, [0~k 19, 1] P 1) Z 10tk DN
7. Concatenatg;,, [t] with dy,, [t]; - AA-RLS Linear (internal list) ]
8. Update the sequence of detection with Eq.(11); 103 —»— AA-RLS-DF [19]
% For decision-directed mode, AA-RLS-DF (internal list)
9. Compute thea priori probability with Egs. (25) and (26); B —g— AA-VGL-DF
10. Repeat step2. to 6.; 102
11. Evaluate the reliability of the soft estimatiaf,, [¢] with SAC 0 50 100 150
and proceeds with the internal list if it is judged as uniséa Number of devices
12. Update thg sequence of detection with the output of 11, Fig. 5. Comparison of complexity of considered algorithms. Theueal
13. Proceed with the update &, [t], yy., [t] andwy,, [¢]; chosen wereM = 20, 74 = N/2 and the variables related to the ligs
14. After all detections, updatd [t] with the external list; reach the maximum of 5. Just 25% ¢fis equal to 1, following the beta-
15. Computeys,,, [f] and Cin [t] with Eqgs. (28) and (29); binomial distribution asx = 4 and 3 = 8.
16.  Verify the likelihood functionP (d‘n [t \5) with Eq. (27);
17.  Compute the LLR value according to Eq.(30). we compute the uplink sum-rate considering our detector.

Whereas the scenario implies the consideration of a differe
number of active devices at the same transmission slot and th
V. ANALYSIS OF THEAA-VGL-DF ALGORITHM probability of collision due to reuse of metadata sequences
In this section, the computational complexity required bwe compute the achievable rate of each device. We take into
the AA-VGL-DF algorithm is evaluated and both the diversityaccount all the possible contamination events from thevecti
order achieved by the AA-VGL-DF detector and the achiewdevices, as the number of transmission slots are large énoug
able rate of the uplink transmission from theth user are Were also considered that the BS can estimate the number of

discussed. active devices, as well as the average channel engrgyn
. _ this way, each device has the knowledge of its channel energy
A. Computational Complexity and is able to associate it with its rate, as both parameters a

The computational complexity of AA-VGL-DF is analyzedbroadcast by the BS.
below by counting each required numerical operation in germ Differently from the literature, the expressions derivakiet
of complex FLOPs. In particular, Table Il compares th#to account, beyond the filter computed by each approaeh, th
number of required FLOPs, for a different number of devicggobability of metadata collisions, the probability of ray an
N, receive antennal/ and theG group size. We consider bothspecific number of active devices and different featuresohe
well-known algorithms as linear minimum-mean-squaredrer device, as variable activity probability, transmissionveo and
(LMMSE) and modifications for mMTC, as SA-SIC [12], SA-the path loss and shadowing experienced.
SIC with A-SQRD [13] and AA-RLS-DF [19]. Theorem 1:An approximation of a lower bound of the
Including the internal list scheme in our previous work [19Jnaximal achievable sum-rate (in bits per symbol) is
AA-RLS-DF, as shown in Fig. 5, results in just a slight N K—1
cpmplexity increase. Recalling that i_s the number of com- R = Z p(K)K Z p (c|K) Efyy [R(Ci, K,{n})] (31)
binations of the unreliable soft estimates, the upper bound K=1 =0
pf AA—\_/GL—DF is a_llvers.ion.where there are not constr_ainta,herep(K)’ given by (1), is the probability of havind<
in the I|_sts. As _ver|f|ed in Fig. 4a, the number _of U”fe"abl‘éctive devices in a total oV andp (c|K) is the probability of
soft estimates increase as the number of devices rises. Tging devices with the same metadata sequence of-the
computational cost of AA-VGL-DF is comparable with ayeyice being observed out éf active devices and; refers to

standard DF detector with an RLS algorithm. Since many othglat of those contaminator devices. The expressipn ¢
considered algorithms have a similar computational cost, A ;g given by

VGL-DF has a competitive complexity when compared with
other schemes.

K 1 1 c 1 K—-1—c¢
| p(elK) = < ) (—) (1 - —) @
B. Uplink Sum-Rate ¢ To T¢

As seen that the mMTC has an amount of features thatThe procedure and the derivation of the first summations
distinguish from the standard massive MIMO communicationare given by [3]E,, designates the expectation with respect
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TABLE Il: FLOPs counting of considered techniques in detail.

Algorithms Required number of FLOPs

LMMSE 2M3+4(N+1)M2+2SN2+N+1)M—(N2+N)
SA-SIC [12] | Ao| (N3 + N2 +6)

SA-SIC A-SQRD [13] 2N3 +4(M +1)N?> 4+ (M - 1)N

AA-RLS Linear (6M? +10M) N

AA-RLS Linear (internal list) [6M2 +10M + 9y, (2M|Ao|)] N
AA-RLS-DF [19] N, [6 (M +9)% +10 (M + i)]

AA-RLS-DF (internal list) >N [6 (M + 4% +10 (M +4) + 9n, (2M|AO\)]
AA-VGL-DF N [6 (M +4)2 +10 (M +14) + O (2M|A0|)] +2MG

ton;,j € {i,C;} andR (C;, K, {n}) is a lower bound on the time instantt we have,
maximal achievable rate of devigeconditioned on a collider ~
set with indice<C; within K active devices is given by K

Q=E Z (w';| hj\/bij:cj:c;' \/EhJH Wi) + (W'{'VVHWi)
R (Ci, K, {n}) = log, (1 + SINR(C;, K, {n})).  (33) L=t

L ' _ =E ‘ Hh\/b; 25
1) Perfect Channel EstimationWe first consider the case W \/_x
when the BS has perfect CSl, i.e., it has the perfect knoveedg -
of H. Therefore, the channel capacity, recallingd [¢{] and

y [t] in (10) and suppressing the time index for simplicity, is ] . ) )
where the first term is the signal of interest and the other

2 K 2
30 WV i
J=1,j#i

(37)

- additive terms are treated as a Gaussian noise. Thus, substi
¢ = maxI (y7d) (34) tuting (37) in (35), we get the expression of the signal-to-
ra(d) : : , :
~ noise-plus-interference for the fixed channel realizalbnas
= maxH(y) - H (d|y) = max H (WHy) — H (W"v)
ra(d) 20 [
SINR = ” t 2 - (38)
. . 2
where H is the differential entropy and the mutual informa- jzlz;#‘wi h; \/E‘ +wil
tion. Thus, as the considered signals are Gaussian, theamutu
information is given by [29] 2) Imperfect Channel Estimatiorin practice, the channel
matrix H has to be estimated at the BS. Thus, we define the
I (y; &) — (35) computation of the LMMSE estimate of the channel estimate
of the n-th device, as

log, (det(E [WH vy HW])) — log, (det(IE [WH vV HW])) .

yn = Yyl = Z (\/Td)bn’hn’ <Pn’+V¢) o

Thus, computing? = E [WHyy "W], we have to rewrite n'eN
the following: = /Teboh, +
- Z To by hyy Pn’ ‘101}11 + V¢ (pv[;l (39)
K
n’#n
Q=E > wiyy;"w; (36)
|i=1 wherey,, is thel x 74 metadata vector of the-th device,V4
[ K y is the M x 74 noise matrix and the components @%, 1)
=E ) w! (h\/b_:c +v) (h\/b_x +v) W, are i.i.d., as|¢,||2. Then, the LMMSE estimate df,,, h,, is
- 7 J J J J J e Pnll” ! 7y SN
j=1

K " H H - E{y; 'h.}
=E > (Wa' hy\/bj ;a2 /bhf WJ') * Ba = WY"’
Wn\/ﬁ

H / H _
(Wj hj bj xjvj Wj) + B Zn’eN Te bn’ Tin! |‘pn/ 9071‘“2 + 0121 I (40)

Jj=1

H, H H H . H N . .
(Wj vz /bjh; Wj) + (whvolflwi) | Thus, H is the N x M matrix of channel estimate.
We denote€ = H — H, where the elements of =
[€1,€2, -+ ,€n| are random variables with zero mean and

As the main objective is to compute the maximum achiewariance(n;) / (bin; + 1). Furthermore, owing to the proper-
able rate of a device out of K active devices in the sameties of LMMSE estimation,£ is independent oftl. Split-
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ting (37) in devices with and without the same metadata Proof: As the decision feedback scheme applies an inter-

sequence assigned to tiwh device, we have ference cancellation at each detection step, as it is common
in the literature [34], [35], we can make an analogy to the
_ Hy A H /ipHo well-known successive interference cancellation (SI@psce.
Q=5 . Z:C (Wi h; /b; @ /b WZ) + (41) Assuming the channel model described in Section Il and
JElnCi) making the common assumption that there is no error prop-
agation related to the interference cancellation [30]};[8%&
H H H HoH
Z (Wi hj\/b_jxjxj \/b_jhj Wi) + (wivvwi) |, interference nulling out can be expressed as a generalxmatri
3¢{i,Ci} form given by
Recalling that€ = H-—H and considering the independence yL=""y, (48)
betweens, H and separating the signal of interest we obtaifyhere (48) projecty onto the direction orthogonal to the span
0= (42) {k} Following the procedure in [30], to reach the expression

of the diversity order of each step of the SIC, the idea is
2 A 2 to rotate the set of channe]hy,...,hg] in a way thath
£ [wt by it B, ] y thathyc

HEe /b o
£ ‘Wi hi/bi becomes parallel tpx, one of the orthonormal basis of the

JelCi} subspace. Considering the detection of the first skep,is
2 5 fixed and positionhk_; into the [px_1 px] plane. In this
Z ’WzH £j\/bj Ij‘ + Z ‘WZH h;\/b; xj’ way, the received signal vector can be written as
je{iCi} J¢{iCi}

where the first term is the signal of interest and the other yi=vhmat-htv, (49)
additive terms are treated as a Gaussian noise. Thus, -subvgtiere the time instants are suppressed to reduce the motatio
tuting (42) in (35), we get the expression, (45) in the top dfhe rotations happens until the last channel vedif, is

the next page. positioned into thgps ps, - .., px| hyper plane. In the well-
known SIC scheme, the diversity order after all rotations is
(M —K+1), ash;, has a total of(M — K + 1) nonzero
components. On the other hand, as the AA-VGL-DF scheme

This section is devoted to present the diversity ordghs an internal list at each detection step, the diversity ga
achieved by the AA-VGL-DF detector. We adopt the geqszn pe increased.

metrical approach presented in [30] and used in the previousagsyming that the first soft estimate was considered un-

work [31] in order to reach the expression. As for non-ergodjg|igple by the SAC, the internal list scheme would imply

scenarios the error probability is the probability that$hgnal  ,ore than one possible received vector to be cancelled.

level is less than the specified value, also known as outafigs designating the order of the alphabet of the chosen

probability, the diversity order, that is, the asymptotmpe of  \oqylation scheme dst|, for the first step, the diversity order

the outage probability curve [32] [33], is given by is (M — K + |A]). For the steps that the soft estimation is
reliable, the diversity order is the same as the SIC scheme.

42 iim log (Pr (Rk,spar{%}) < I) (46) Thereby, the result can be achieved by induction. For:the
T s log () step, the diversity order can be represented by

C. Diversity Order

whereRk_’Spa = Rispan1,2,...k—1,k+1,..., K} 1S the squared M — K + 99, if czn is reliable and
projection height from théth column vectoth i of H. From M — K+ 9" mgq, if d, is unreliable

the definition in [33],R - = ||Xhg|? whereY = .
[33] Ry sparfzy = I k] where® andmy,q vectors are scaled as 1 andd? is the total

o o .
1 - PP" is the projection matrix to the orthogonal space gl mper of zeros in the vectat until the ith step. Therefore,
span{k} andP is composed of any orthonormal bases of thig, 1o — 5 and 9T = [10110], we have

subspace. An important point is that only tReactive devices
are considered for the computation of the diversity order.

(50)

s _ T
Theorem 2: The diversity order achieved by the AA-VGL-DF [ fori =1, dveL = M — K + ﬁT Mord
detector is given by fori =2, dveL = M — K +19 mor + 1
for i =3, dveL. = M — K + 97 meg+ 1 (51)
dveL =M — K + (9" moq +9°) + G (47) for i = 4, dveL =M — K + 9" mgq + 1

. e . _ T
whered is the K x 1 binary vector presented in Section I1I-A fori=>5=K, dver =M= K+9 moa+2.

that gathers the information about the reliability of theftso Thus, considering the internal list, the diversity order
estimatesmorg = [|A,|A|,. .., |A|]" is also aK x 1 vector achieved by AA-VGL-DF isM — K + (97 morg + 9°),

but each column has the number of symbols of the consideredhe external list also contributes to the diversity gaintiies
alphabet andj is the number of all the possible combinationsxternal list is comparable as a low complexity ML detector,
of the symbols of the considered augmented alphabet gertbe increase gain in the diversity order can follow the same
ated by the external list?° is the total number of zeros in theidea. As the ML detector has a diversity gain\f[32] and the
vectord. size of the group list is variable, we consider theumber of
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SINR =
2
[whh, B[+ 3 NG I L VOl
76{6} je{d.Ci ¢{i,C;}
wib; (m— <(J771)/<\/7771+ > 777+1>>>
che (45)
. n? —N)?20202+1
W;-l S b, m—L + > b-( )—i— Sobim; Wi—i-((l)\)ifﬁ)
ey Ve 2wt | ey i) F iy 20
symbols chosen to be verified in a total @fpossible vectors. 100

In this way, the diversity order achieved by the AA-VGL-DF
is given by (47).

1071

VI. NUMERICAL RESULTS <
. . ~
In this section, we evaluate the performance of the A/ -
VGL-DF and other relevant mMTC detection schemes. V\L;: i
consider an underdetermined mMTC system wih= 128 102
devices and a single base-station equipped with= 64 = | —0—a=4andp =
antennas. The evaluated schemes experience an indeper e Z .
and identically-distributed (i.i.d.) random flat-fadinfannel P —2end f=
model and the values,, , of (7) are taken from complex ——a=3and =10
Gaussian distribution af V' (0, 1). The active devices radiate a=3and =9

QPSK symbols with power values drawn uniformly at randol = - ‘ =
in [0.1,0.3] and the activity probabilites are given by & 0 ° 10 15 20 25 30
beta-binomial distribution, as described in Section llclEa Average SNR (dB)
transmission slot has 128 symbols, split into 60 metadatia afiy. 6: symbol Error Rate vs. Average SNR of the AA-VGL-DF algorithm
68 data. This balance between pilots and data is Suggestﬂﬂ‘ferent sparsity scenarios. The activity pattern ofides is determined by
in [36]. For systems that need eXp|ICIt channel estimatiom, 2 random variable with beta distribution, as ;hown in Fl_gnl_he legend, are
. . . . shown thea: and 8 parameters of each considered distribution, o= 128

considered the scheme described in Section V-B. and M — 64.

Initially, we verify the Symbol Error Rate (SER) perfor-
mance and the Spectral Efficiency of the AA-VGL-DF for
the six sparsity scenarios shown in Fig. 1. Fig. 6 shows
that as lower is the activity probability of devices, betier the Oracle LMMSE detector, which has the knowledge of the
the SER performance of AA-VGL-DF. The result of Fig. 7ndex of nonzero entries, is considered.
illustrates the achievable spectral efficiency of the systéth Fig. 8 shows the symbol error rate performance of the
the AA-VGL-DF detection scheme and shows that, as tle@nsidered algorithms. LMMSE has a poor performance as
sparsity increases, the spectral efficiency also incredsds the system is underdetermined. Due to error propagatien, th
is due to the reduced number of block collisions and bettgnsorted SA-SIC does not perform well. SA-SIC with A-
detection performance, thus reducing the interferenceh B&QRD is effective since it considers the activity probdied,
plots consider the average SNR Hslog (N 02/02). but under imperfect CSI conditions, its performance is not

Given the SER results of those different scenarios, v&@ good. In contrast, as AA-RLS-DF does not need explicit
choose the beta-distribution with = 4 and 3 = 8 as it channel estimation, it is more efficient. The decision-fesek
provides an intermediary sparsity, to compare the SER aseheme provides a SER gain due to the interference can-
Bit Error Rate (BER) performances of the AA-VGL-DF andcellation, which also happens by including the internal. lis
other relevant mMTC detection schemes. The proposed schemes with lists of candidates obtain gesult

The numerical results of both uncoded and coded systethgt outperform the other relevant schemes, approachiag th
are averaged over0® runs. The performance of AA-VGL- lower bound. The AA-VGL-DF with perfect AUD surpasses
DF is compared with other relevant schemes, as the lindhe lower bound for high SNRs, where the filter weights are
mean squared error (LMMSE), unsorted SA-SIC [11], SA-Sl@etter adjusted and the list schemes are able to correct more
with A-SQRD [13], AA-RLS Linear, AA-RLS-DF [19] and a errors.
version of AA-RLS-DF with the internal list of this work. For the coded systems with IDD, Fig. 9 shows the BER of
Besides that, we analyze a version with AA-VGL-DF witlthe already considered algorithms under the scheme prdpose
perfect activity user detection (AUD) and, as a lower boun#) Section IV. The LDPC matrix has 256 columns and 128
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10°

I I g 1 E
990 | | == =4and s =10 *L ; % 4 a
— == a =4and g =8 10*15 |
B 200 || ==a=4and 8 =6 - ]
> == a=2and g =10 10,2 —
51807+a=33ndﬂ:10 -
3 160 a=3and B =9 g 3L
= < 107°
> 2 8
= 140 8 -4 | —#— LMMSE :
R = - LMMSE-PIC x .
S 1204 is = S
RS . _s ||~ LMMSE-SIC ==t
E 100 A 1077 ~@{— AA-RLS Linear [19] E
o ¢ || == AA-RLS-DF [19] .
c 80 107" H —@— AA-RLS-DF (internal list) =
=S —fl- AA-VGL-DF
» 60g 4 1077 | =B~ AA-VGL-DF (perfect AUD) =
40— | = = = Oracle MMSE .
108 ———— — ‘
0 5 10 15 20 25 30 35 40 0 2 4 6 8 10 12 14 16 18 20

Average SNR (dB) Average SNR, (dB)
Fig. 7: Spectral Efficiency vs. Average SNR of the AA-VGL-DF alghrit
with imperfect CSI in different sparsity scenarios. In tlegdnd, are shown
the o and 8 parameters of each considered distribution, féor= 128 and

Fig. 9: Bit Error Rate values vs. Average SNR. LDPC with block length
of 128, symbol rateR = 0.5, refined by 2 decoding iterations for the same
scenario of Fig. 8.

M = 64.
0 100 —¢— LMMSE .
10 90 H == AA-RLS Linear [19] ‘,"
) N —»— AA-RLS-DF [19] e
T80 AA-RLS-DF (internal list) |= = === (A
*« = 70 § —= AA-VGL-DF
3 E = = = Oracle LMMSE
Z 10t ~. 60
5 = 50
= [ —— LMMSE &
M | | == SA-SIC [12] £ 40l
E —@— SA-SIC with A-SQRD [13] K
E 102 || =0~ AA-RLS Linear [19] g 30
& | —»— AA-RLS-DF [19] S 204
B AA-RLS-DF (internal list) o
|| -~ AA-VGL-DF 10 |- o
|| 45— AA-VGL-DF (perfect AUD) | ¢ & ? M ‘
L3 o7 = Oracle MMSE ‘ 0 5 10 15 20 25 30

0 5 10 15 20 30

Average SNR (dB)

Average SNR (dB)

Fig. 10: Spectral Efficiency vs. Average SNR. Parameters of propama

Fig. 8: Symbol Error Rate values vs. Average SNR. Parameters obpaig
are A = 0.92, v = 0.001 and¢ = 10. The pattern activity of theV = 128
devices is modelled with a beta-binomial distribution with= 4 and3 = 8.

A = 0.92, v = 0.001 and§ = 10. The pattern activity of theV = 128
devices is modelled with a beta-binomial distribution with= 4 and3 = 8
and imperfect CSI.

We consider imperfect CSl in the approaches which dependseo€hannel
estimation.

upper bound of the system.

rows, avoiding length-4 cycles and with 6 ones per column. VIl. CONCLUDING REMARKS

The Sum-Product Algorithm (SPA) decoder is used and theln this paper, we have proposed and investigated the AA-
average SNR is0log (NRo2/02), whereR = 1/2 is the VGL-DF detection scheme, for mMTC. Considering different
rate of the LDPC code. The sparsity of the mMTC approadparsity scenarios, we have presented a list-based DFtaletec
degrades the expected efficiency of LMMSE-PIC, obtainirejong with anly-norm regularized RLS algorithm. In order
little variation in relation to LMMSE and LMMSE-SIC. The to mitigate error propagation, we employ two lists schemes,
hierarchy of performance of the other considered algosthrbased on constellation points that generate candidates for
is the same as the uncoded case but with better error rdégection. Simulations have shown that AA-VGL-DF signif-
values. The iterative scheme matches the results for low lmantly outperforms existing approaches with a competitiv
error rate values. Fig. 10 exhibits the spectral efficierfdhe computational complexity. AA-VGL-DF is also compared and
considered algorithms. The filter refinement promoted by tlmalysed in terms of spectral efficiency and diversity. Weeha
internal and external lists provokes a better spectralieffay also incorporated into AA-VGL-DF an IDD scheme based on
than the other detection schemes. The oracle LMMSE is thBPC codes modified to the mMTC scenario.
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