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Robust Multi-Branch Tomlinson-Harashima
Precoding Design in Amplify-and-Forward MIMO

Relay Systems
Lei Zhang, Yunlong Cai, Rodrigo C. de Lamare, and Minjian Zhao

Abstract—This paper proposes the design of robust trans-
ceivers with Tomlinson-Harashima precoding (THP) for multiple-
input multiple-output (MIMO) relay systems with amplify-and-
forward (AF) protocols based on a multi-branch (MB) strategy.
The MB strategy employs successive interference cancellation
(SIC) on several parallel branches which are equipped with
different ordering patterns so that each branch produces transmit
signals by exploiting a certain ordering pattern. For each parallel
branch, the proposed robust nonlinear transceiver design consists
of THP at the source along with a linear precoder at the relay and
a linear minimum-mean-squared-error (MMSE) receiver at the
destination. By taking the channel uncertainties into account, the
source and relay precoders are jointly optimised to minimise the
mean-squared-error (MSE). We then employ a diagonalization
method along with some attributes of matrix-monotone functions
to convert the optimization problem with matrix variables into
an optimization problem with scalar variables. We resort to an
iterative method to obtain the solution for the relay and the
source precoders via Karush-Kuhn-Tucker (KKT) conditions.
An appropriate selection rule is developed to choose the non-
linear transceiver corresponding to the best branch for data
transmission. Simulation results demonstrate that the proposed
MB-THP scheme is capable of alleviating the effects of channel
state information (CSI) errors and improving the robustness of
the system.

Index Terms—MIMO relay, multiple branch, channel state
information, Tomlinson-Harashima precoding

I. INTRODUCTION

There has been considerable interest in wireless multiple-
input multiple-output (MIMO) communication systems, due
to their potential to enhance diversity and spectral efficiency
[1]. Recently, MIMO techniques have been introduced in
cooperative relay systems as a means for further performance
enhancement. It is well known that relays are useful in
increasing the coverage of wireless communications under
power and spectral constraints, and can provide significant
improvement in terms of both spectral efficiency and link reli-
ability. Amplify-and-forward (AF) is one of the most popular
relaying strategies due to low computational complexity and
small processing delay, where the relay simply processes the
signals received from the source without decoding and then
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forwards the amplified signal to the destination. Therefore,
using MIMO relays with the AF strategy in multi-antenna
relay systems has become a very important topic [2]–[11].

Linear transceiver designs [12]–[16] for dual-hop AF
MIMO relay systems have been extensively investigated in
[3]–[7]. The relay precoder in an AF-based MIMO relay
system was first designed in [3] to boost the overall channel
capacity. In [4], a closed-form solution for the relay precoder
was proposed to minimize the mean-squared-error (MSE) in
order to improve the link quality. Joint design of the source
and relay precoding schemes was investigated in [5], which
can lead to a better bit error ratio (BER) performance. Using
the standard Lagrange technique, the authors obtained the
solution with an iterative water-filling method. Also, both
[4] and [5] considered a linear minimum-mean-squared-error
(MMSE) destination equalizer. All the works above require the
perfectly known channel state information (CSI) in order to
perform the optimization. However, in practical relay systems,
the CSI is usually imperfect, since channel estimation errors
are inevitable, which should be taken into account in the
transceiver design. In the case that channel uncertainties are
considered, some linear robust techniques were proposed in [6]
and [7]. The joint robust design of the linear relay precoder
and destination equalizer for a two-hop MIMO relay system
has been proposed in [6]. More recently, by taking source
precoding into account the optimization of the source and the
relay processing matrices using imperfect CSI was investigated
in [7].

As an alternative to the linear transceiver design, using
nonlinear precoding for MIMO relay channels has recently
generated great attention. A capacity achieving nonlinear dirty
paper coding (DPC) technique [8] has been proposed for
presubtracting interference at the source prior to transmission.
Since DPC requires an infinite length of codewords and
codebooks, it is not suitable for practical use [9]. For this
reason, Tomlinson-Harashima precoding (THP) which origi-
nates from DPC was presented as a low complexity alternative.
This technique employs modulo arithmetic and was originally
proposed to combat intersymbol interference (ISI) at the
transmitter. In [10], Millar et al. focused on the joint design of
linear processors for a two-hop network with THP employed
at the source. In [11], the direct link between the source
and the destination node was also considered. The authors
proposed two methods to solve the design problem, including
a non-iterative method to obtain the closed-form solutions for
the precoders and an iterative method to separately optimize
the two precoders. Another prominent precoding technique
used in recent years is vector perturbation (VP) viewed as
a generalized THP [17], [18], where the transmit signal
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vector is perturbed by another vector to minimize transmit
power from the extended constellation. With the perturbation,
a near optimal performance is achieved by VP precoding.
However, finding the optimal perturbation vector can be a
nondeterministic polynomial time (NP)-hard problem. Con-
ventional VP techniques based on sphere encoding (SE) suffer
from high computational complexity. Several approaches have
been reported in the last few years to reduce the complexity
of VP which include a tree-search method [19] proposed as
a low-complexity implementation strategy. Considering the
tradeoff between computational complexity and performance,
the THP algorithm is more widely implemented in practical
systems. For this reason, we focus on THP in this paper.

To the best of our knowledge, few works have considered
robust THP in MIMO relay systems [20]–[22]. In [20], Millar
et al. employed some approximations to relax the problem
to make the optimization problem tractable. A robust THP
transceiver design for two-hop non-regenerative MIMO relay
networks with imperfect CSI was presented. In [21], a ro-
bust nonlinear design for a multi-hop MIMO relay system
was considered. In [22], Tseng et al. proposed THP with
a unitary precoder and adopted the primal decomposition to
simplify the optimization problem. Compared to prior work on
robust transceiver design that are only based on one particular
cancellation order and motivated by the sensitivity of THP
to channel uncertainty. In this paper, we propose a robust
nonlinear THP transceiver algorithm for MIMO relay systems
in the presence of imperfect CSI. Specifically, we consider
a novel successive-interference-cancellation (SIC) strategy for
this system based on a structure with multiple interference
cancellation branches. The original idea of this multi-branch
(MB) strategy was first proposed in [23]–[25] to utilize the po-
tential extra diversity gains for direct-sequence code-division
multiple access (DS-CDMA) systems and then extended to
precoding in [26], [27]. This MB-SIC framework consists of
several SIC branches placed in parallel, and in each branch a
SIC scheme processes transmit signals with a given ordering
pattern [28]. For each branch, the nonlinear transceiver design
consists of a TH precoder at the source along with a linear
precoder used at the relay and a linear MMSE receiver at
the destination. We employ a diagonalization method along
with some attributes of matrix-monotone functions to obtain
the optimal relay and source precoders. The solution can be
computed by using an iterative method via the Karush-Kuhn-
Tucker (KKT) conditions. An appropriate selection rule is
developed to choose the nonlinear transceiver corresponding
to the best branch for data transmission. For every block prior
to the data transmission, the source sends the index of the
selected optimal branch which is chosen by the selection rule
to the relay and the destination through a limited feedforward
channel. All the branches provide different capabilities of
interference cancellation for a given transmission block. Thus,
the best branch can be selected from them to obtain the best
possible performance. Simulation results demonstrate that the
proposed MB-THP scheme outperforms existing transceiver
designs with perfect and imperfect CSI. The contributions of
this paper are summarized as follows:

I) A novel robust MB-SIC strategy is developed according to
different pre-stored ordering patterns for MIMO relay systems.

II) For each branch, we present the robust nonlinear
transceiver design with THP using imperfect CSI.

III) We also propose a selection criterion for choosing
the optimal branch corresponding to the minimum Euclidean
distance for data transmission.

IV) Sub-optimal ordering schemes are developed to select
a subset from the optimal ordering scheme set in a low-
complexity way.

The rest of this paper is organized as follows. The proposed
system model and channel error model are introduced in
Section II. In Section III, we present the proposed robust
MB-THP transceiver design for AF MIMO relay systems. The
selection criterion, complexity analysis and the MB ordering
schemes are described in Section IV. Simulation results and
comparisons are given in Section V. Finally, conclusions are
drawn in Section VI. Some technical details including the
analysis are relegated to the Appendix.

Notation: Throughout the paper, we denote vectors and
matrices by lower and upper case bold letters, respectively.
E [·] stands for the statistical expectation. The operators (·)T ,
(·)H , (·)∗, |·| and tr (·) denote the matrix transpose, Hermitian
transpose, conjugate, determinant and trace, respectively. The
Kronecker product of matrices is denoted by ⊗. A− 1

2 repre-
sents the inverse square root of positive definite matrix A. ∥·∥
is the Euclidean norm of the vector. ⌊·⌋ represents the floor
operator which returns the largest integer that is smaller than
or equal to the argument.

II. SYSTEM MODEL

A. Signal Model

We consider a three-node AF MIMO relay communication
system comprising of one source, one relay and one desti-
nation equipped with Ns, Nr and Nd antennas, respectively.
Due to long distance and possibly deep fading, the direct
link between the source and destination is not considered in
this paper. In practice, this model is employed for the relay
architectures of 3GPP LTE-Advanced [29]. All the channels
are assumed to be flat fading.

This system consists of a TH source precoder, a linear relay
precoder and a linear MMSE receiver, as shown in Fig. 1. The
quantity s is the Nd × 1 input signal vector with zero mean
and E

[
ssH

]
= σ2

sI, where I denotes an identity matrix of
appropriate dimension, and σ2

s is the average transmit power
per antenna at the source. To ensure the transmission of Nd in-
dependent data streams in this system, the number of transmit
antennas should be larger than or equal to Nd, i.e., Ns ≥ Nd.
Each element of the transmit vector, s = [s1, ..., sNd

]T , is
an m-ary square quadrature amplitude modulation (QAM)
modulated signal, where the real and imaginary parts of sk
belong to the set {±1,±3, ...,± (

√
m− 1)}. Then the input

signal is sorted to generate multiple branch signals by the
pre-designed cancellation ordering patterns. We introduce the
ordering transformation matrix T(l), l ∈ {1, ..., L}, which is
a permutation matrix that has one entry of value equal to one,
and corresponds to the ordering pattern employed in the l-th
branch. The optimal ordering scheme conducts an exhaustive
search with L = Ns!, where ! is the factorial operator.
The reordered vector s̄(l)=T(l)s, which is based on the l-th
cancellation order, is then recursively computed by a backward
square matrix C(l) for the l-th branch and a nonlinear modulo
operation in order to perform a SIC operation.
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Fig. 1: MB-TH source and linear relay precoded AF MIMO relay system with MMSE receiver

As shown in Fig. 1, MODm (·) stands for the modulo
operator which is used to constrain a value to be within the
region (−

√
m,

√
m]. The modulo operator acts independently

over the real and imaginary parts of its input according to the
following rule

MODm (x) = x− 2
√
m

⌊
x+

√
m

2
√
m

⌋
. (1)

With C(l) and the modulo operation in (1), the l-th branch
channel symbols x̄

(l)
k are successively generated as

x̄
(l)
k = s̄

(l)
k −

k−1∑
n=1

C(l) (k, n)x̄(l)
n + e

(l)
k , (2)

where C(l) is a strictly lower triangular matrix, C(l) (k,m)
is the element in the kth row and nth column of the matrix
C(l) and e(l) =

[
e
(l)
1 , ..., e

(l)
Nd

]T
is the vector selected by the

modulo operation to ensure that the real and imaginary parts
of the elements in x̄(l) are bounded by the square region for
the l-th branch. The Eq. (2) can be rewritten in matrix form
as

x̄(l) = U(l)−1

v(l), (3)

where v(l) = s̄(l) + e(l), U(l) ∈ CNd×Nd is a lower
triangular matrix with ones on the main diagonal and it is
given by U(l) = C(l) + I . As a result of the modulo
operation, the elements of x̄(l) are no longer uncorrelated
and uniformly distributed over the Voronoi region [30]. This
leads to the l-th branch channel symbol vector x̄(l) having
slightly higher energy than s̄(l). This slight increase in the
average energy is termed precoding loss [30]. For moderate to
high m this energy increase can be neglected [10], [31], [32],
thus we still have E

[
x̄(l)x̄(l)H

]
= σ2

sI. Based on a selection
criterion, the optimum source precoder, relay precoder and

receiver corresponding to the lopt-th branch are chosen for data
transmission. Then the source sends the index of the selected
optimal branch to the relay and the destination through a
limited feedforward channel before data transmission. The
signal transmission is carried out in two stages. In the first
phase, the signal is processed by the selected precoding matrix
F

(lopt)
s ∈ CNs×Nd for the lopt-th branch. The received signal

y
(lopt)
r corresponding to the lopt-th cancellation order at the

relay is given by

y(lopt)
r = HsrF

(lopt)
s x̄(lopt) + nsr, (4)

where Hsr ∈ CNr×Ns denotes the MIMO channel matrix
between the source and the relay. The vector nsr is the additive
noise component at the relay which is modeled as a circularly
symmetric complex Gaussian random vectors with zero-mean
and correlation matrix E

[
nsrn

H
sr

]
= σ2

nsr
I, where σ2

nsr
is the

average noise power at the relay.
In the second phase, the relay forwards the received signals

to the destination after performing linear precoding which
corresponds to the selected branch, while the source does not
transmit data. Thus, the ordered signal y(lopt)

d received at the
destination corresponding to the lopt-th branch is given by

y
(lopt)
d = T(lopt)HrdF

(lopt)
r HsrF

(lopt)
s x̄(lopt)

+T(lopt)HrdF
(lopt)
r nsr+T(lopt)nrd, (5)

where T(lopt) represents the selected ordering transformation
matrix, F(lopt)

r ∈ CNr×Nr is the selected relay precoder for the
lopt-th branch. Hrd ∈ CNd×Nr stands for the MIMO channel
matrix between the relay and the destination. Mathematically,
the equivalent channel matrix after a specific transmit pattern
can be denoted as H

(lopt)
rd = T(lopt)Hrd. By transforming the

channel matrix, the columns of the channel matrix Hrd are
permutated [33]. The vector nrd is the zero-mean complex
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Gaussian noise vector at the destination with E
[
nrdn

H
rd

]
=

σ2
nrd

I, where σ2
nrd

denotes the received average noise power
at the destination.

At the destination, the selected linear receiver W(lopt) is
then employed to detect the received signal. The detected
signal is given by:

v̂(lopt) = W(lopt)y
(lopt)
d . (6)

Then the signal can be re-arranged in the original order by
using T(lopt). Thus, the final output is obtained by

ŝ= Q
(
MOD

(
T(lopt)

T

v̂(lopt)
))

, (7)

where Q(·) denotes the quantization operation.

B. Channel Error Model
Since perfect CSI is typically not available at the transmitter

and at the receiver [22], robust methods have been developed
to deal with imperfect CSI. To model the channel matrix
distribution, the well-known Kronecker model is adopted for
the covariance of the CSI mismatch [6]. Although we focus
on the channel error model based on the CSI mismatch, we
note that it can be easily extended to the model with channel
feedback, since the work in [34] has built a relationship
between them and verified that they are equivalent problems.
We have the following expressions:

Hsr = H̄sr +∆Hsr, (8)
Hrd = H̄rd +∆Hrd, (9)

where H̄sr and H̄rd are the estimated channel matrices,
while ∆Hsr and ∆Hrd are the corresponding channel es-
timation error matrices. ∆Hsr can be written as ∆Hsr =
Σ

1/2
sr Hi.i.dΨ

T/2
sr , and ∆Hrd can be written as ∆Hrd =

Σ
1/2
rd Hi.i.dΨ

T/2
rd , where the elements of Hi.i.d are indepen-

dent and identically distributed Gaussian random variables
with zero mean and unit variance. Both the relay and des-
tination have the estimated CSI. Thus, ∆Hsr and ∆Hrd have
the matrix-variate complex Gaussian distribution, which can
be expressed as [35]

∆Hsr ∼ CNNr,Ns (0Nr,Ns ,Ψsr ⊗Σsr) , (10)
∆Hrd ∼ CNNd,Nr (0Nd,Nr ,Ψrd ⊗Σrd) , (11)

with the probability density function (PDF) given by

p (∆Hsr)=
exp

(
−tr

(
∆HH

srΣ
−1
sr ∆HsrΨ

−1
sr

))
(π)

NsNr |Σsr|Ns |Ψsr|Nr
, (12)

p (∆Hrd)=
exp

(
−tr

(
∆HH

rdΣ
−1
rd ∆HrdΨ

−1
rd

))
(π)

NrNd |Σrd|Nr |Ψrd|Nd
, (13)

where Ψsr and Σsr denote the covariance matrices of the
source-to-relay channel seen from the transmitter and re-
ceiver, respectively, and so do Ψrd and Σrd for the relay-to-
destination channel. The equivalent estimated channel matrix
after the lopt-th transmit ordering pattern can be denoted as
H̄

(lopt)
rd = T(lopt)H̄rd.
By using the estimation algorithm proposed in [36], we have

Ψsr = RT,sr, Σsr = σ2
e,srRR,sr, Ψrd = RT,rd and Σrd =

σ2
e,rdRR,rd. The matrices RT,sr and RR,sr are the transmit

and receive antennas correlation matrices at the source and

the relay, respectively, and σ2
e,sr is the source-relay channel

estimation error variance. A similar definition can be applied
to RT,rd, RR,rd and σ2

e,rd for the relay-to-destination channel.
If we use the channel estimation method proposed in [37], we

then have Ψsr = RT,sr, Σsr = σ2
e,sr

(
I+ σ2

e,srR
−1
R,sr

)−1

,

Ψrd = RT,rd and Σrd = σ2
e,rd

(
I+ σ2

e,rdR
−1
R,rd

)−1

. A
reasonable assumption that we can make is that Ψrd, Σrd,
Ψrd and Σrd are slowly varying and can be known a priori by
estimating long term channel statistics. It is important to note
that the analysis to be presented in this paper can be applied
in exactly the same way without assuming any specific form
of channel estimation error covariance matrix as long as it is
symmetric and full-rank [6], [36]–[40]. It can be shown that
if a least squares (LS) channel estimation algorithm is used to
estimate the source-relay and relay-destination channels, the
matrices Ψsr, Ψrd, Σsr and Σrd will be proportional to the
identity matrix even for the case where the transmit and receive
antennas are correlated [38]. The channel error model we used
in this paper is a fairly standard model and widely used for
analysis in the existing literature.

C. Problem Formulation
We focus on the problem of jointly designing F

(l)
s , F

(l)
r ,

W(l), U(l) to minimize the total MSE under the sum power
constraint at the source and the relay. The detailed derivation
of the transmit and receive filters is provided in Appendix A.
The system MSE matrix can be written as

MSE
(
U(l),F(l)

s ,F(l)
r ,W(l)

)
= E

[∥∥∥W(l)y
(l)
d − v(l)

∥∥∥2]
= E[tr(σ2

s(W
(l)H

(l)
rdF

(l)
r HsrF

(l)
s −U(l))

× (W(l)H
(l)
rdF

(l)
r HsrF

(l)
s −U(l))H)]

+ E[tr(σ2
nsr

(W(l)H
(l)
rdF

(l)
r )(W(l)H

(l)
rdF

(l)
r )H)]

+ tr(σ2
nrd

W(l)W(l)H ), (14)

where the expectation is taken with respect to the channel
estimation errors and noise. By taking the expected value, the
MSE can be rewritten as

MSE
(
U(l),F(l)

s ,F(l)
r ,W(l)

)
=tr

(
W(l)A(l)W(l)H

)
− σ2

str
(
U(l)F(l)H

s H̄H
srF

(l)H

r H̄
(l)H

rd W(l)H
)

− σ2
str
(
W(l)H̄

(l)
rdF

(l)
r H̄srF

(l)
s U(l)H

)
+ σ2

str
(
U(l)U(l)H

)
,

(15)

where

A(l) ∆
= H̄

(l)
rdF

(l)
r (σ2

sH̄srF
(l)
s F(l)H

s H̄H
sr + σ2

sα
(l)
1 Σsr

+ σ2
nsr

I)F(l)H

r H̄
(l)H

rd + α
(l)
2 Σ̂rd + σ2

nrd
I (16)

α
(l)
1

∆
= tr(F(l)

s F(l)H

s ΨT
sr) (17)

α
(l)
2

∆
= tr((F(l)

r (σ2
sH̄srF

(l)
s F(l)H

s H̄H
sr + σ2

sα
(l)
1 Σsr

+ σ2
nsr

I)F(l)H

r ΨT
rd)) (18)

Σ̂rd
∆
= T(l)ΣrdT

(l)H . (19)

By imposing a transmit power constraint at the source and
the relay, we arrive at the following constrained optimization
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problem:

min
U(l),F

(l)
s ,F

(l)
r ,W(l)

MSE
(
U(l),F(l)

s ,F(l)
r ,W(l)

)
s.t. tr

(
σ2
sF

(l)
s F(l)H

s

)
≤ Ps

tr
(
F(l)

r

(
σ2
sHsrF

(l)
s F(l)H

s HH
sr + σ2

nsr
I
)
F(l)H

r

)
≤ Pr,

(20)

III. PROPOSED ROBUST TRANSCEIVER DESIGN

In this section, we propose the robust transceiver design for
each branch. The optimal linear receiver W(l) can be derived
by solving ∂

∂W(l)∗ MSE
(
U(l),F

(l)
s ,F

(l)
r ,W(l)

)
= 0, and it is

given by

W(l) = σ2
sU

(l)F(l)H

s H̄H
srF

(l)H

r H̄
(l)H

rd A(l)−1

. (21)

By substituting (21) into (15) and making use of the matrix
inversion lemma [41], the MSE can be expressed as

MSE
(
U(l),F(l)

s ,F(l)
r

)
= tr

(
E(l)

)
, (22)

where

E(l) ∆
= U(l)(σ−2

s I+ F(l)H

s H̄H
srF

(l)H

r H̄
(l)H

rd B(l)−1

× H̄
(l)
rdF

(l)
r H̄srF

(l)
s )−1U(l)H (23)

B(l) ∆
= H̄

(l)
rdF

(l)
r

(
σ2
sα

(l)
1 Σsr + σ2

nsr
I
)
F(l)H

r H̄
(l)H

rd

+ α
(l)
2 Σ̂rd + σ2

nrd
I. (24)

It is well known that for a positive semi-definite matrix
M ∈ CN×N , we have |M|1/N ≤ tr (M) /N , which is
the arithmetic-geometric mean inequality. Only when M is
a diagonal matrix with equal diagonal elements, the equality
can be achieved [10]. By letting H̄(l) = H̄

(l)
rdF

(l)
r H̄sr, we

obtain the following bound on the MSE
(
U(l),F

(l)
s ,F

(l)
r

)
:∣∣∣(σ−2

s I+ F(l)H

s H̄(l)HB(l)−1

H̄(l)F(l)
s

)∣∣∣−1/Ns

≤ tr
{
U(l)

(
σ−2
s I+ F(l)H

s H̄(l)HB(l)−1

H̄(l)F(l)
s

)
U(l)H

}
/Ns,

(25)

where the expression of the MSE in (23) can achieve the
lower bound when E(l) = γI, γ is a scaling parameter. Here,
we use the fact that |MN| = |NM|,

∣∣M−1
∣∣ = |M|−1 and∣∣UHU

∣∣ = 1, note that U is a unit triangular matrix. We also
use the rule that for square invertible matrices A and B we have
|AB| = |A| |B|. In the following we propose to minimise
the lower bound of (25) and find appropriate precoders such
that the bound in (25) holds with equality. The constrained
optimization problem can be rewritten as

min J
(
F(l)

s ,F(l)
r

)
=

∣∣∣∣(σ−2
s I+ F(l)H

s H̄(l)HB(l)−1

H̄(l)F(l)
s

)−1
∣∣∣∣

s.t. tr
(
σ2
sF

(l)
s F(l)H

s

)
≤ Ps

tr(F(l)
r (σ2

sH̄srF
(l)
s F(l)H

s H̄H
sr + σ2

sα
(l)
1 Σsr

+ σ2
nsr

I)F(l)H

r ) ≤ Pr, (26)

We note the fact that the source-relay and relay-destination
channels are not completely known. The transmission power

consumed by the relay depends on the unknown channel Hsr.
Thus we take the expectation of the error covariance matrix in
formulating the optimisation problem and Lemma 1 is applied
to obtain the expression of the power constraint at the relay.
From (17) and (18), we find that α(l)

1 is a function of F(l)
s and

α
(l)
2 is a function of both F

(l)
s and F

(l)
r . This problem can be

solved by firstly finding the source and relay precoders F
(l)
s

and F
(l)
r that minimise (26) and satisfy the power constraints,

and in a second step using the remaining degrees of freedom
to ensure the constraint in (25) holds with equality.

In order to find the explicit structure of the optimal F(l)
s and

F
(l)
r , we discuss a scenario with either the covariance matrix

of the channel estimation error at the transmitter or a scenario
in which the receiver is an identity matrix, respectively. The
relations between the scattering environment and the properties
of the transmit correlation matrix and the receive correlation
matrix are illustrated in [42]. In practice, the transmitter or the
receiver is located within a homogenous field of scatterers and
we can expect the correlation matrix to be proportional to the
identity matrix. The considered scenarios are represented by
the two special cases above.

A. Robust Design with Identity Covariance Matrix at the
Transmitter Side

First of all, we consider the case that the covariance matrix
of channel estimation error at the transmitter is an identity
matrix, i.e. Ψsr = I and Ψrd = I, we have α

(l)
1 =

tr(F
(l)
s F

(l)H

s ) and α
(l)
2 = tr(F

(l)
r (σ2

sH̄srF
(l)
s F

(l)H

s H̄H
sr +

σ2
sα

(l)
1 Σsr + σ2

nsr
I)F

(l)H

r ). It can be shown then that the
optimal solution is always achieved with equality in the power
constraint. The optimal solutions of F(l)

s and F
(l)
r are obtained

when α
(l)
1 = Ps/σ

2
s and α

(l)
2 = Pr. The detailed derivation

is provided in Appendix B. The precoding matrices have the
following structures:

F(l)
s = Ṽ(l)

srΛ
(l)
s Φ(l)

s , (27)

F̃(l)
r = Ṽ

(l)
rdΛ

(l)
r Ũ(l)H

sr , (28)

F(l)
r = F̃(l)

r Λ̃
(l)−

1
2

Σsr
UH

Σsr
, (29)

where Λ
(l)
s and Λ

(l)
r are both diagonal matrices with the i-

th diagonal elements λFs,i and λF̃r,i
, respectively, and Φ

(l)
s

is a unitary matrix yet to be determined. Then, we have
B(l) = H̄

(l)
rd F̃

(l)
r F̃

(l)H

r H̄
(l)H

rd +U
(l)
Σrd

Λ̃
(l)
Σrd

U
(l)H

Σrd
. The detailed

derivation is shown in Appendix C.
By substituting (27) and (29) into (26), the problem can be

simplified as follows:

minJ
(
Λ(l)

s ,Λ(l)
r

)
=

∣∣∣∣∣
(
σ−2
s I+ Λ̃(l)2

sr Λ(l)2

s Λ(l)2

r Λ̃
(l)2

rd

(
Λ̃

(l)2

rd Λ(l)2

r + I
)−1

)−1
∣∣∣∣∣

s.t. tr
(
σ2
sΛ

(l)2

s

)
≤ Ps

tr
(
Λ(l)2

r

(
σ2
sΛ

(l)2

s Λ̃(l)2

sr + I
))

≤ Pr, (30)

Note that for a positive semi-definite matrix M ∈ CN×N , we
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have [41]

det (M) ≤
N∏
i=1

M (i, i), (31)

the equality holds when M is a diagonal matrix [43].
Let λ̃1,i and λ̃2,i be the ith diagonal element of Λ̃

(l)
sr

and Λ̃
(l)
rd , respectively, i=1, · · · ,Nd, from (30) we have the

following results

min
λFs,i,λF̃r,i

Nd∏
i=1

σ−2
s +

λ̃2
1,iλ̃

2
2,iλ

2
Fs,i

λ2
F̃r,i

λ̃2
2,iλ

2
F̃r,i

+ 1

−1

(32)

s.t.

Nd∑
i=1

σ2
sλ

2
Fs,i ≤ Ps (33)

Nd∑
i=1

λ2
F̃r,i

(
σ2
sλ

2
Fs,iλ̃

2
1,i + 1

)
≤ Pr. (34)

Let us introduce

xi
∆
= σ2

sλ
2
Fs,i (35)

yi
∆
= λ2

F̃r,i

(
σ2
sλ

2
Fs,iλ̃

2
1,i + 1

)
, (36)

(32) becomes a maximization problem and the logarithm is
used. This is possible because the logarithmic function is a
monotonically increasing function which makes the formulated
problem equivalent. Thus the optimization problem can be
rewritten as

max

Nd∑
i=1

ln

(
yiλ̃

2
2,ixiλ̃

2
1,i + yiλ̃

2
2,i + xiλ̃

2
1,i + 1

yiλ̃2
2,i + xiλ̃2

1,i + 1

)
(37)

s.t.

Nd∑
i=1

xi ≤ Ps

Nd∑
i=1

yi ≤ Pr. (38)

The solution to the objective function can be obtained by using
an iterative waterfilling method [44] via KKT conditions [45].
The detailed derivation is summarized in Appendix D. For a
given xi, by solving (37) and (38), the optimum yi can be
obtained as follows:

yi =
1

2λ̃2
2,i

[√
λ̃4
1,ix

2
i + 4λ̃2

1,ixiλ̃2
2,iµr − λ̃2

1,ixi − 2

]+
, (39)

where [y]
+

= max [0, y], and µr is the water level which
satisfies the power constraint with equality at the relay in (38).
By solving (37) and (38), the optimum xi can be calculated
as

xi =
1

2λ̃2
1,i

[√
λ̃4
2,iy

2
i + 4λ̃2

1,iyiλ̃
2
2,iµs − λ̃2

2,iyi − 2

]+
, (40)

where µs is the water level which satisfies the power constraint
with equality at the source in (38). The algorithm can be
implemented iteratively with initial values. Note that λFs,i and
λF̃r,i

can be calculated based on (35) and (36). Note that this
iterative water-filling algorithm is guaranteed to converge, as
discussed in [46]. As shown in [44], a locally optimal solution
can be obtained by iteratively updating the power allocation

vector of one node by fixing the power allocation vectors of
all other nodes. We then focus on the derivation of the unitary
matrix Φ

(l)
s and the feedback matrix U(l).

The lower bound of MSE is achieved when the objective
function in (23) is a diagonal matrix with equal diagonal
elements. Thus, the following equation must be satisfied:

U(l)
(
σ−2
s I+ F(l)H

s H̄(l)HB(l)−1

H̄(l)F(l)
s

)
U(l)H = σ̄2I.

(41)
By substituting (27) and (29) into (41), we obtain

U(l)Φ
(l)H

s Σ(l)−1/2

Σ(l)−1/2

Φ
(l)
s U(l)H = σ̄2I. Then we define

Ũ(l)=σ̄U(l)−H

and apply the geometric mean decomposition
(GMD) [47] to Σ(l)−1/2

to make the diagonal entries of an
upper triangular matrix all equal. In [47], the GMD was proved
to be asymptotically optimal for high SNR, in terms of both
channel throughput and BER performance. Thus, we obtain
Σ(l)−1/2

= Q(l)Ũ(l)Φ
(l)H

s , where Q(l) and Φ
(l)
s are unitary

matrices, and Ũ(l) is an upper triangular matrix with equal
diagonal elements σ̄, where σ̄2 is given by

σ̄2 =

Ns∏
i=1

σ−2
s +

λ̃2
1,iλ̃

2
2,iλ

2
Fs,i

λ2
F̃r,i

λ̃2
2,iλ

2
F̃r,i

+ 1

−1/Ns

, (42)

From the equation above, it can be verified that the equality is
achieved. We then calculate U(l) = σ̄Ũ(l)−H

. With Φ
(l)
s and

U(l), the source and relay precoders corresponding to the l-th
cancellation order are obtained by (27) and (29). Subsequently,
the MMSE receiver W(l) can be derived by substituting (27)
and (29) into (21).

B. Robust Design with Identity Covariance Matrix at the
Receiver Side

Then, we consider the case that the covariance matrix of
the channel estimation error at the receiver side is an identity
matrix, i.e., Σsr = σ2

eI and Σrd = σ2
eI. We perform the

SVD of the estimated channels: H̄sr = UsrΛsrV
H
sr, H̄(l)

rd =

U
(l)
rdΛ

(l)
rdV

(l)H

rd , it can be clearly seen from (76)-(81) that for
Σsr = σ2

eI and Σrd = σ2
eI, we have Ũsr=Usr, Ũ(l)

rd=U
(l)
rd ,

Ṽsr=Vsr and Ṽ
(l)
rd=V

(l)
rd .

Thus, the precoding matrices have the following structure:

F(l)
s = VsrΛ

(l)
s Φ(l)

s , (43)

F(l)
r = V

(l)
rdΛ

(l)
r UH

sr, (44)

B(l) = β1H̄
(l)
rdF

(l)
r F(l)H

r H̄
(l)H

rd + β2I, (45)

where

β1 = σ2
e · σ2

str
(
F(l)

s F(l)H

s ΨT
sr

)
+ σ2

nsr
, (46)

β2 = σ2
etr{F(l)

r (σ2
sH̄srF

(l)
s F(l)H

s H̄H
sr + β1I)F

(l)H

r ΨT
rd}+ σ2

nrd
.

(47)

The constrained optimization that corresponds to the pro-
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posed robust design can be written as

min

Nd∏
i=1

(
σ−2
s +

λ2
1,iλ

2
2,iλ

2
Fs,i

λ2
Fr,i

β1λ2
2,iλ

2
Fr,i

+ β2

)−1

, (48)

s.t.

Nd∑
i=1

σ2
sλ

2
Fs,i ≤ Ps, (49)

Nd∑
i=1

λ2
Fr,i

(
σ2
sλ

2
Fs,iλ

2
1,i + β1

)
≤ Pr. (50)

By introducing the following definitions

xi
∆
= σ2

sλ
2
Fs,i, (51)

yi
∆
= λ2

Fr,i

(
σ2
sλ

2
Fs,iλ

2
1,i + β1

)
, (52)

The optimization can be finally formulated as

max

Nd∑
i=1

ln

(
yiλ

2
2,ixiλ

2
1,i + yiλ

2
2,iβ1 + xiλ

2
1,iβ2 + β1β2

yiλ2
2,iβ1 + xiλ2

1,iβ2 + β1β2

)
,

(53)

s.t.

Nd∑
i=1

xi ≤ Ps, (54)

Nd∑
i=1

yi ≤ Pr, (55)

where λ1,i and λ2,i are the ith diagonal elements of Λ(l)
sr and

Λ
(l)
rd , respectively. The quantities β1 and β2 can be written as

β1
∆
=

Ns∑
i=1

σ2
exi

[
Ψ̃sr

]
ii
+ σ2

nsr
, (56)

β2
∆
=

Ns∑
i=1

σ2
eyi

[
Ψ̃rd

]
ii
+σ2

nrd
, (57)

Ψ̃sr
∆
= VH

srΨ
T
srVsr, (58)

Ψ̃rd
∆
= V

(l)H

rd ΨT
rdV

(l)
rd . (59)

We find the following solutions to the optimization problem
by using the aforementioned iterative method:

xi =
β1

2λ2
1,i

√λ4
2,iy

2
i

β2
2

+
4λ2

1,iyiλ
2
2,iµs

β1β2
−

λ2
2,iyi

β2
− 2

+

,

(60)

yi =
β2

2λ2
2,i

√λ4
1,ix

2
i

β2
1

+
4λ2

1,ixiλ2
2,iµr

β1β2
−

λ2
1,ixi

β1
− 2

+

.

(61)

Similarly, we can derive the values of Φ(l)
s and U(l). Finally,

the source and relay precoders can be obtained explicitly. In
Section V, we will show the simulation results of the proposed
robust THP scheme.

IV. SELECTION CRITERION, COMPLEXITY ANALYSIS AND
ORDERING SCHEMES

We have presented the overall principles and structures of
the proposed algorithm in the previous section. In this section,
we introduce the selection criterion, the complexity analysis
and the ordering schemes which are employed in our proposed
design.

A. Selection Criterion for the Proposed MB-THP Scheme
A proper selection criterion is of great importance for

the MB-THP algorithm to achieve a significant performance
improvement in MIMO relay systems. We have investigated a
number of different criteria and the squared Euclidean distance
has been identified as a simple and yet effective selection
mechanism. The selection criterion chooses the best branch
corresponding to the minimum squared Euclidean distance,
which is given by

lopt=arg min
1≤l≤L

J(l) (i) , (62)

where J(l) (i) is the squared Euclidean distance corresponding
to the l-th cancellation branch for the i-th transmission data
block, which is expressed by

J(l) (i) =
∥∥∥b (i)− b̂(l) (i)

∥∥∥2, (63)

where the quantity b (i) denotes the i-th trans-
mission data block, which is given by b (i) =[
sT (i) , ..., sT (i+K − 1)

]T , K is the block length,
the vector s (i+ k) denotes the k-th transmit vector of the
i-th block, k ∈ {1, ...,K − 1}. b̂(l) (i) is the transformed
version of b̃(l) (i) back to the original order for the i-th block,
and the vector b̃(l) (i) denotes the noise-free pre-estimated
values of the data at the transmitter using estimated CSI,
which is given by

b̃(l) (i)= MOD
(
r̃(l) (i)

)
, (64)

where r̃(l) (i) =
[
ỹ(l)T (i) , ..., ỹ(l)T (i+K − 1)

]T
.

ỹ(l) (i+ k) denotes the pre-estimated received vector
based on the l-th branch for the k-th transmit vector of the
i-th block, which is expressed as follows

ỹ(l) (i+ k)=W(l)H̄
(l)
rdF

(l)
r H̄srF

(l)
s x̄(l) (i+ k) . (65)

The optimum branch is chosen by minimizing the summa-
tion of the squared Euclidean distance values in one trans-
mission data block. The selected optimum branch is updated
once per block. Ideally, the optimum branch can be chosen to
minimize the accumulated squared Euclidean distance between
the true transmit symbol and the received soft information
at the destination in one transmission block. However, the
selection criterion is conducted at the transmitter, we cannot
obtain the exact received signal at the destination. We then
adopt the noiseless information to estimate the received signal
in our proposed algorithm. The simulation results in Section V
show that the proposed scheme achieves a better performance
with respect to the conventional algorithms, which verifies the
effectiveness of the approximation. It is worth to mention that
since the proposed algorithm is implemented at the transmitter,
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the selection criterion has the full information of the transmit
symbols. The procedure of the proposed robust transceiver
algorithm for the case that the covariance matrix of channel
estimation error at the transmitter is an identity matrix is
summarized in Table I.

B. Complexity Analysis

In this part, we focus on the computational complexity of the
proposed robust precoding scheme. Complexity is measured
in terms of the number of FLOPs, defined as the floating-
point operations. Note that from [48], we know that a complex
addition and multiplication have 2 and 6 FLOPs, respectively.
The computational complexity of the proposed scheme is
summarized in Table II. As we can see, the proposed methods
mainly involve singular value decomposition (SVD), matrix
multiplications, matrix inversions, and the GMD. Essentially,
we detail the complexity of the proposed robust MB-THP
procedure in each branch, and the overall complexity of
the MB-THP algorithm can be obtained by multiplying the
complexity of the robust THP per branch by the number of
branches L. Also, the selection mechanism requires O(KN2

d )
operations. The computational complexity of the regular TH
joint source and linear relay precoding algorithm in [10] is
O(N3

s + NrN
2
s + NdN

2
s + NdN

2
r + N3

r + NsN
2
r + N3

d +
NsN

2
d+NdIsIi+NdIrIi). We advocate an affordable increase

in complexity in exchange for the improvement of the per-
formance. The proposed scheme can effectively improve the
performance including the ability to mitigate the multistream
interference, alleviate the effects of CSI errors and enhance
the robustness of the system.

C. Ordering Schemes

A V-BLAST like ordering strategy for THP has been studied
in [49] . The V-BLAST ordering algorithm requires multiple
calculations of the pseudo inverse of the channel matrix.
Therefore, a suboptimal heuristic sorted LQ decomposition al-
gorithm has been extended from the sorted QR decomposition
(SQRD) algorithm in [50]. And a tree search (TS) algorithm
has also been proposed in [51]. The above ordering algorithms,
however, assume that each distributed receiver is equipped
with a single antenna. The cooperative ordering processing
is impractical for MIMO relay systems. And the TS algorithm
shows superior performance especially for medium to high
SNRs. In order to achieve a better BER performance in the
whole SNR range, we proposed the MB strategy. It is clear
that the optimal ordering scheme which conducts an exhaustive
search is complex for practical systems, especially when the
number of transmit antennas is large. Thus, we discuss two
sub-optimal off-line schemes to design the transformation
matrices T(l) with appropriate structures such that they can be
used for low-complexity implementation. The basic arbitrary
ordering scheme randomly chooses a subset from the exhaus-
tive search. However, the proposed schemes are developed to
select a subset from the optimal ordering scheme set in a way
that approaches the optimal performance while keeping the
computational complexity low.

1) Pre-Stored Patterns (PSP): The transformation matrix
T(1) for the first branch is chosen as the identity matrix I
to keep the optimal ordering as described by T(1) = I. The

remaining ordering patterns can be described mathematically
by

T(l)=

[
Is 0s,Ns−s

0Ns−s,s ϕ [Is]

]
, 2 ≤ l ≤ Ns, (66)

where 0m,n denotes an m×n-dimensional matrix full of zeros,
the operator ϕ [·] rotates the elements of the argument matrix
column-wise such that an identity matrix becomes a matrix
with ones in the reverse diagonal. The proposed ordering
algorithm shifts the ordering of the cancellation according to
shifts given by

s= ⌊(l−2)Ns/L⌋ , 2 ≤ l ≤ Ns, (67)

where L is the number of parallel branches. In order to
illustrate this problem clearly, we take the situation when the
number of branches L = 4 as an example. By using the
scheme above, we obtain the transformation matrix T(l) as
follows

T(1)=

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , T(2)=

 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

T(3)=

 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , T(4)=

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (68)

2) Frequently Selected Branches (FSB): The FSB algorithm
builds a codebook which contains the ordering patterns for
the most likely selected branches and the required number of
branches to obtain a near-optimal performance is greatly re-
duced. In order to build the FSB codebook, we need to perform
an extensive set of experiments and compute the frequency of
the indices of the selected patterns to identify the statistics of
each selected branch and construct the codebook with the L
most likely selected branches to be encountered. The algorithm
is summarized in Table III, where dE denotes the vector of
Euclidean distance for all possible branches, Ne denotes the
total number of experiments we did, Lidx is defined for the
storage of the selected branches for every experiment and Lo

is the codebook for optimal ordering patterns computed by
PERMS(Ns : −1 : 1), which provides the list containing
all possible permutations of the Ns elements. We highlight
that in each run, after we measure the Euclidean distances for
all branches, the branch that results in the smallest Euclidean
distance is stored in Lidx at step 10. Finally, the FSB codebook
LFSB is created by selecting the most frequently selected L
branches according to the histogram of Lidx.

D. Efficiency
From the algorithm discussed above, we know that for every

block prior to the data transmission, the source sends the
index of the selected optimal branch which is chosen by the
selection rule to the relay and the destination through a limited
feedforward channel. We insert the limited feedforward bits at
the beginning of the corresponding transmission block. Each
transmission block comprises K symbol periods each one
consisting of Nd spatial streams, and the feedforward rate of
the optimum index is one per transmission block. We consider
a m-ary modulation and assume that B bits index information
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TABLE I: Proposed Robust Transceiver Algorithm
1 for each parallel branch l, l ∈ {1, ..., L}.
2 Solve for the unknown diagonal matrices Λ

(l)
s and Λ

(l)
r in the optimal precoding structure by selecting an appropriate initial

choice for xi that satisfies
Nd∑
i=1

xi=Ps, the algorithm updates yi according to yi =
1

2λ̃2
2,i

[√
λ̃4
1,ix

2
i + 4λ̃2

1,ixiλ̃2
2,iµr − λ̃2

1,ixi − 2
]+

and xi according to xi =
1

2λ̃2
1,i

[√
λ̃4
2,iy

2
i + 4λ̃2

1,iyiλ̃
2
2,iµs − λ̃2

2,iyi − 2
]+

in an alternating way, note that the variable µr and

µr can be solved by the bisection method detailed in [11].

3 Compute Φ
(l)
s and the feedback matrix U(l) based on U(l)

(
σ−2
s I+ F

(l)H

s H̄(l)HB(l)−1
H̄(l)F

(l)
s

)
U(l)H = σ̄2I,

F
(l)
s = Ṽ

(l)
sr Λ

(l)
s Φ

(l)
s , and apply the GMD to Σ(l)−1/2

, Σ(l)−1/2
= Q(l)Ũ(l)Φ

(l)H

s .

4 Derive the optimal structure of F(l)
s and F

(l)
r given by F

(l)
s = Ṽ

(l)
sr Λ

(l)
s Φ

(l)
s and F

(l)
r = F̃

(l)
r Λ̃

(l)
− 1

2

Σsr
UH

Σsr
.

5 Compute the receiver W(l) by using the obtained F
(l)
s , F(l)

r and U(l).

6 Compute the squared Euclidean distance for the l-th cancellation order, J(l) (i) =
∥∥∥b (i)− b̂(l) (i)

∥∥∥2.
7 end
8 Choose the optimum branch by using the selection criterion for data transmission and send the optimum index to the relay

and receiver with the aid of the limited feedforward transmission.

TABLE II: Complexity of Proposed MB-THP Algorithm in Each Branch
Step Operation FLOPs

1 H̃
(l)
sr O(N2

s (Ns+Nr+Nd))

2 H̃
(l)
rd O(N2

r (Ns+Nr+Nd))

3 SVD H̃
(l)
sr = Ũ

(l)
sr Λ̃

(l)
sr Ṽ

(l)H

sr O(NrN2
s+N3

s )

4 SVD H̃
(l)
rd = Ũ

(l)
rd Λ̃

(l)
rd Ṽ

(l)H

rd O(NdN
2
r+N3

r )

5 B(l)−1
O(N3

d )

6 xi and yi O(NdIsIi+NdIrIi)

7 GMD Σ(l)−1/2
= Q(l)Ũ(l)Φ

(l)H

s O(N3
d )

8 U(l) = σ̄Ũ(l)−H
O(N3

d )
9 Fs and Fr O((NsNd+NsN2

d )+(N2
r+N3

r ))

Ir : number of iteration for computing Λ
(l)
r

Is : number of iteration for computing Λ
(l)
s

Ii : number of iteration of the water-filling process

TABLE III: Frequently Selected Branches Ordering Scheme
1 dE ← NULL, Lidx ← NULL, LFSB ← NULL
2 Lopt ← Ns!, l← 1
3 Lo ← PERMS(Ns: −1: 1)
4 for ne=1 to Ne do
5 for l=1 to Lopt do
6 T(l) ← Lo(l)
7 ŝ(l) ← SIC(T(l)H̄)
8 dE (l)←

∥∥s− ŝ(l)
∥∥

9 end for
10 Lidx(ne)←MIN Index(dE)
11 end for
12 LFSB ← SELECT(HIST(Lidx))

to be sent for each transmit block. Thus, the transmission
efficiency is given by

ε=
NdKlog2 (m)

NdKlog2 (m) +B
. (69)

In this work, we employ the 16-QAM modulation and
employ a data block of K = 100 symbols in the simu-
lation. For the exhaustive search ordering scheme with 24
branches, we need 5 feedforward bits. For a configuration
with Ns = Nr = Nd = 4, by using B = 5 feedforward
bits we achieve the transmission efficiency of 99.68%. For a
slow fading channel, the feedforward rate is very low, and the

transmission efficiency is close to 1. It should be noted that the
efficiency can be made higher if we increase the block length
K. In the simulation section, we will show that with the side
information (SI) the performance of the proposed precoding
algorithm outperforms the performance of the conventional
precoding algorithms significantly.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
precoding scheme. We adopt a simulation approach and con-
duct several experiments in order to verify the effectiveness
of the proposed techniques. In the following, we consider an
AF MIMO relay system with Ns = Nr = Nd = 4. By
using the exponential model [37], the channel estimation error
covariance matrices can be expressed as

Ψsr = Ψrd =

 1 α α2 α3

α 1 α α2

α2 α 1 α
α3 α2 α 1,



Σsr = Σrd = σ2
e

 1 β β2 β3

β 1 β β2

β2 β 1 β
β3 β2 β 1

 , (70)
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Fig. 2: BER performance comparison for different MB ordering
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Fig. 3: BER performance comparison for pre-designed and arbitrary
MB ordering schemes. (α = β = 0, σ2

e = 0.001)

where α and β denote the correlation coefficients, and σ2
e is

the estimation error variance. The estimated channels, H̄sr and
H̄rd, are generated by the distributions as follows:

H̄sr ∼ CNNr,Ns

(
0Nr,Ns ,

(
1− σ2

e

)
σ2
e

Ψsr ⊗Σsr

)
(71)

H̄rd ∼ CNNd,Nr

(
0Nd,Nr ,

(
1− σ2

e

)
σ2
e

Ψrd ⊗Σrd

)
, (72)

such that channel realizations have unit variance. In the
simulation, for the data transmission process the SNR at the
relay is defined as SNRsr = Ps/σ

2
nsr

, and the SNR at the
destination is defined as SNRrd = Pr/σ

2
nrd

. We adopt the
diagonal elements of the identity matrix as the initial values
for the iterative algorithm. Also, we use 16-QAM as the
modulation scheme.
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Fig. 4: BER performance comparison for conventional precoding
techniques and the proposed MB-THP algorithm. (α = β = 0, σ2
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According to the above settings, we use a Monte-Carlo
approach to obtain the required expected values over nu-
merous channel realizations. Here, we let SNRsr = 30 dB,
α = β = 0, σ2

e = 0.001 and SNRrd is varied. Fig. 2 shows the
BER performance versus the SNR for comparing the proposed
MB-THP transceiver scheme, i.e., 4-, 8-, 24- pre-designed
cancellation ordering branches, respectively. The proposed
robust TH source and linear relay precoded system without
considering the ordering schemes (TH-L-robust) is also listed
here for comparison. The best performance is achieved with
the proposed scheme with 24 ordering branches, i.e., the
exhaustive search. The BER decreases as the number of
branches increases. The plots also show that the performance
of the robust FSB algorithm with 8 branches approaches the
optimal ordering scheme closely.

We then compare the BER performance for the pre-designed
and the arbitrary MB ordering schemes of the proposed
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MB-THP algorithm under the scenario that α = β = 0
and σ2

e = 0.001. As shown in Fig. 3, the measurements
agree quite well with the simulations. By employing the pre-
designed MB ordering scheme described in Section IV, the
BER performance can be further improved for L = 4 and
L = 8 branches, respectively. Moreover, the performance of
each pre-designed MB ordering scheme is always superior to
the arbitrary ordering scheme, respectively. Accordingly, we
only consider the sub-optimal FSB algorithm of the MB order-
ing schemes in the following simulations for low-complexity
implementation.

In the third set of simulations, we also let SNRsr = 30 dB,
α = β = 0, σ2

e = 0.001 and SNRrd is varied. Here, we
compare the proposed robust MB-THP algorithm with the
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Fig. 8: BER performance comparison for the robust THP system
and the proposed MB-THP algorithm with different α and β.
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Fig. 9: BER performance comparison for the robust THP system and
the proposed MB-THP algorithm with perfect and imperfect SI.

following five existing MIMO relay precoding algorithms and
the proposed robust THP algorithm without considering the
ordering schemes: 1) a non-precoded system with a Wiener fil-
ter (NAF); 2) the linear relay precoded system without source
precoding (U-L) [4]; 3) the robust linear relay precoded system
without source precoding (U-L-robust) [6]; 4) the linear robust
joint source and relay precoded system (L-L-robust) [7]; 5)
the TH source and linear relay precoded system (TH-L) [10];
6) the proposed robust TH source and linear relay precoded
system (TH-L-robust). As shown in Fig. 4, the proposed robust
MB-THP algorithm using the sub-optimal FSB algorithm with
L = 8 branches outperforms the existing transceiver designs
in terms of BER. Meanwhile, the performance of the proposed
robust algorithm considering the estimation error is better than
that of the conventional non-robust algorithms estimate the
channels directly. Specifically, the proposed robust MB-THP
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algorithm can lead to 3 dB gain in SNR in comparison with
the proposed robust THP algorithm without considering the
ordering schemes (TH-L-robust), and can save up to almost 5
dB in comparison with the conventional TH source and linear
relay precoding algorithm (TH-L) , at the BER level of 10−3.

Fig. 5 shows the BER comparison for our proposed MB-
THP algorithm with the recently mentioned robust algorithms
which consist of THP at the source along with a linear pre-
coder at the relay in [20]–[22]. Note that the robust algorithm
in [21] considers the multi-hop relay system. For fair compar-
ison, here we focus on the algorithm for two-hop system only.
As expected, the proposed method outperforms all the other
algorithms. A degree of performance improvement is achieved
compared to the recently described robust algorithms. The
proposed robust MB-THP algorithm with L = 8 branches can
lead to 3.5 dB gain in SNR in comparison with the robust THP
algorithm in [21], and can save 4 dB and 6 dB, compared with
the the precoding algorithms in [22] and [20], respectively, at
the BER level of 10−3.

Next, we investigate the effect of the channel estima-
tion errors on the BER and MSE performances. Also let
SNRsr=30dB, α = β = 0, σ2

e = 0 (σ2
e = 0.001), and

SNRrd is varied. Here, we further incorporate the linear relay
precoded system without source precoding (U-L) [4] and the
robust linear relay precoded system without source precoding
(U-L-robust) [6] for comparison. From Fig. 6, we observe
that, as expected, since U-L-robust only considers a relay
precoder, its performance is inferior to the proposed TH-L-
robust no matter if CSI is perfect or not. On the other hand,
the performance of the algorithm based on estimated channels
only shows performance degradation compared to that of the
two robust algorithms in terms of imperfect CSI. As expected,
the performance of the corresponding robust and nonrobust
algorithms coincide when σ2

e = 0 for perfect CSI. Fig. 7 shows
the corresponding MSE performance, which is consistent with
the BER performance.

Fig. 8 shows the BER performance comparison for the
proposed robust THP system and the proposed MB-THP
algorithm with different values of the correlation coefficients.
For the left figure, we let β = 0, σ2

e = 0.001 and α is varied. It
can be seen that smaller correlation coefficients lead to a better
performance. When the value of α decreases, the performance
of both algorithms improves. Of course, the performance of the
proposed MB-THP algorithm is always superior to the perfor-
mance of the proposed robust THP (TH-L-robust) algorithm.
In particular, the proposed MB-THP algorithm can save up to
almost 4 dB in comparison with the algorithm without ordering
scheme, at the BER level of 10−3 when α = 0. Furthermore,
the performance gap between the TH-L-robust and MB-THP
becomes larger as α increases. The right figure shows the BER
performance comparison for the proposed robust THP system
and the proposed MB-THP algorithm with different values of
β. Here, we let α = 0, σ2

e = 0.001 and β is varied. It can
be seen that a similar conclusion can be drawn. Those curves
saturate in the high SNR region.

The results in Fig. 9 show the BER performance ver-
sus SNRrd for the proposed robust MB-THP preprocessing
scheme and the conventional linear precoding system using
perfect and imperfect SI at the transmitter. We use a structure
based on a frame format where the indices are converted to
0s and 1s. This frame of 1s and 0s with the feedforward

information is transmitted over a binary symmetric channel
with an associated probability of error. We assume that there
is a 1% SI error of the optimal index information, which
corresponds to almost 1 dB degradation, compared with the
perfect SI case at a BER level of 10−3. This case shows
the ability of our proposed algorithms to deal with SI errors.
In order to make sure the SI error are controlled, channel
coding techniques can be applied to the signalling feedforward
channels with errors.

VI. CONCLUSION

In this paper, a robust MB-THP transceiver design in
MIMO relay networks with imperfect CSI has been proposed.
The proposed MB structure is equipped with several parallel
branches based on pre-designed ordering patterns. For each
branch, the transceiver is composed of a TH precoder at the
source, a linear precoder at the relay and an MMSE receiver at
the destination. The solution for the precoders has been finally
obtained by using an iterative method via the KKT conditions.
An appropriate selection rule has been developed to choose
the nonlinear transceiver corresponding to the best branch for
data transmission. Simulations have shown that the proposed
robust design outperforms the existing non-precoded/precoded
systems without taking the channel uncertainties into account.

APPENDIX A
DERIVATION OF THE TRANSMIT AND RECEIVE FILTERS

Lemma 1: For a random matrix M ∈ CM×N with a multi-
variate Gaussian distribution A ∼ CN

(
Ā,C⊗D

)
, we have

for any matrix F ∈ CN×N that E[AFAH ] = ĀFĀH +
tr(FCT )D [35].

Using Lemma 1, we have

E[HsrF
(l)
s F(l)H

s HH
sr] =E[(H̄sr+∆Hsr)F

(l)
s F(l)H

s (H̄sr+∆Hsr)
H
]

=H̄srF
(l)
s F(l)H

s H̄H
sr + tr(F(l)

s F(l)H

s ΨT
sr)Σsr,

(73)

where Ψsr and Σsr denote the covariance matrices of the
source-to-relay channel seen from the transmitter and the
receiver, respectively.

Similarly, we obtain

E[H
(l)
rdF

(l)
r HsrF

(l)
s F(l)H

s HH
srF

(l)H

r H
(l)H

rd ]

=E[H
(l)
rdF

(l)
r (H̄srF

(l)
s F(l)H

s H̄H
sr

+ tr(F(l)
s F(l)H

s ΨT
sr)Σsr)F

(l)H

r H
(l)H

rd ]

=H̄
(l)
rdF

(l)
r (H̄srF

(l)
s F(l)H

s H̄H
sr

+ tr(F(l)
s F(l)H

s ΨT
sr)Σsr)F

(l)H

r H̄
(l)H

rd

+tr(F(l)
r (H̄srF

(l)
s F(l)H

s H̄H
sr

+ tr(F(l)
s F(l)H

s ΨT
sr)Σsr)F

(l)H

r ΨT
rd)Σ̂rd. (74)

We also have

E[H
(l)
rdF

(l)
r HsrF

(l)
s ]=H̄

(l)
rdF

(l)
r H̄srF

(l)
s . (75)
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APPENDIX B
PROOF OF CONDITIONS FOR THE OPTIMAL SOLUTION

By introducing F̃
(l)
s =F

(l)
s

/√
tr(F

(l)
s F

(l)H

s ), we can rewrite

the MSE as

|(σ−2
s I+ F̃(l)H

s H̄H
srF

(l)H

r H̄
(l)H

rd B̄(l)−1

H̄
(l)
rdF

(l)
r H̄srF̃

(l)
s )|,

where

B̄(l) ∆
= H̄

(l)
rdF

(l)
r (σ2

sΣsr + σ2
nsr

I
/
tr(F(l)

s F(l)H

s ))F(l)H

r H̄
(l)H

rd

+ α̃
(l)
2 Σ̂rd + σ2

nrd
I
/
tr(F(l)

s F(l)H

s ),

α̃
(l)
2

∆
= tr(F(l)

r (σ2
sH̄srF̃

(l)
s F̃(l)H

s H̄H
sr + σ2

sΣsr

+ σ2
nsr

I
/
tr(F(l)

s F(l)H

s ))F(l)H

r ).

Note that for any given F̃
(l)
s , the objective function

is decreasing in tr(F
(l)
s F

(l)H

s ). Similarly, we can verify
that the objective function also decreases with respect to
tr(F

(l)
r (σ2

sH̄srF
(l)
s F

(l)H

s H̄H
sr + σ2

sα
(l)
1 Σsr + σ2

nsr
I)F

(l)H

r ).
Thus, the optimal solutions of F(l)

s and F
(l)
r are obtained when

α
(l)
1 = Ps/σ

2
s and α

(l)
2 = Pr.

APPENDIX C
DERIVATION OF (29)

Based on the SVD and the eigenvalue decomposition
(EVD), we have the following expressions

Σsr = UΣsrΛΣsrU
H
Σsr

, (76)

Σ̂rd = U
(l)
Σrd

Λ
(l)
Σrd

U
(l)H

Σrd
, (77)

Λ̃
(l)
Σsr

= α
(l)
1 ΛΣsr + σ2

nsr
I, (78)

Λ̃
(l)
Σrd

= α
(l)
2 Λ

(l)
Σrd

+ σ2
nrd

I, (79)

H̃(l)
sr

∆
= Λ̃

(l)−
1
2

Σsr
UH

Σsr
H̄sr = Ũ(l)

sr Λ̃
(l)
sr Ṽ

(l)H

sr , (80)

H̃
(l)
rd

∆
= Λ̃

(l)−
1
2

Σrd
U

(l)H

Σrd
H̄

(l)
rd = Ũ

(l)
rd Λ̃

(l)
rdṼ

(l)H

rd . (81)

From (76)-(79), we have

α
(l)
1 Σsr + σ2

nsr
I=UΣsr

(α
(l)
1 ΛΣsr + σ2

nsr
I)UH

Σsr

=UΣsrΛ̃
(l)
Σsr

UH
Σsr

,

α
(l)
2 Σ̂rd + σ2

nrd
I=U

(l)
Σrd

(α
(l)
2 Λ

(l)
Σrd

+ σ2
nrd

I)U
(l)H

Σrd

=U
(l)
Σrd

Λ̃
(l)
Σrd

U
(l)H

Σrd
.

By using (80) and (81) and introducing F̃
(l)
r =F

(l)
r UΣsr

Λ̃
(l)

1
2

Σsr
,

the problem (26) can be equivalently written as

min J
(
F(l)

s ,F(l)
r

)
=

∣∣∣∣(σ−2
s I+ F(l)H

s H̃H
srF

(l)H

r H̃
(l)H

rd B̃(l)−1

H̃
(l)
rdF

(l)
r H̃srF

(l)
s

)−1
∣∣∣∣

s.t. tr
(
σ2
sF

(l)
s F(l)H

s

)
≤ Ps

tr(F(l)
r (σ2

sH̄srF
(l)
s F(l)H

s H̄H
sr + σ2

sα
(l)
1 Σsr

+ σ2
nsr

I)F(l)H

r ) ≤ Pr,

where B̃(l) = H̃
(l)
rd F̃

(l)
r F̃

(l)H

r H̃
(l)H

rd + I.

Using Theorem 1 in [35], we obtain a similar structure
for the optimisation problem. F̃(l)

r = Ṽ
(l)
rdΛ

(l)
r Ũ

(l)H

sr , F(l)
s =

Ṽ
(l)
srΛ

(l)
s V

(l)
o , where V

(l)
o is a unitary matrix yet to be deter-

mined. The solution to the reformulated optimisation problem
is given by the source and relay precoders. By substituting the
expressions of the precoders into (23), we obtain

E(l) = U(l)V(l)H

o Σ(l)−1/2

Σ(l)−1/2

V(l)
o U(l)H ,

where we have Σ(l) ∆
= (σ−2

s I +

Λ̃
(l)2

sr Λ
(l)2

s Λ
(l)2

r Λ̃
(l)2

rd (Λ̃
(l)2

rd Λ
(l)2

r + I)−1). We note that
the lower bound of MSE is achieved when the objective
function is a diagonal matrix with equal diagonal elements,
namely, E(l) = γI. Then we define Ũ(l)=σ̄U(l)−H

and apply the GMD to Σ(l)−1/2

to make the diagonal
entries of an upper triangular matrix all equal. We obtain
Σ(l)−1/2

= Q(l)Ũ(l)Φ
(l)H

s , where Q(l) and Φ
(l)
s are unitary

matrices, and Ũ(l) is an upper triangular matrix with equal
diagonal elements σ̄. Let V(l)

o = Φ
(l)
s , we obtain E(l) = σ̄2I.

From the equation above, it can be verified that the equality
is achieved.

APPENDIX D
DERIVATION OF THE SOLUTION IN (39) AND (40)

The Lagrangian function with respect to (37) can be written
as

L =

Nd∑
i=1

ln

(
yiλ̃

2
2,ixiλ̃

2
1,i + yiλ̃

2
2,i + xiλ̃

2
1,i + 1

yiλ̃2
2,i + xiλ̃2

1,i + 1

)

+µ̃s

(
Nd∑
i=1

xi−Ps

)
+µ̃r

(
Nd∑
i=1

yi−Pr

)

−
Nd∑
i=1

υs,ixi−
Nd∑
i=1

υr,iyi.

As mentioned, if xi is given, (37) is a convex optimization
problem (for yi). Thus, we can obtain the optimum yi using
the KKT conditions [45]. The KKT optimality conditions for
solving yi, 1 ≤ i ≤ Ns are given as follows:

∂L

∂yi
= −

λ̃2
2,ixiλ̃

2
1,i(xiλ̃

2
1,i+1)

(yiλ̃2
2,i+xiλ̃2

1,i+1)
2

yiλ̃2
2,ixiλ̃2

1,i+yiλ̃2
2,i+xiλ̃2

1,i+1

yiλ̃2
2,i+xiλ̃2

1,i+1

+µ̃r−υr,i=0, (82)

υr,iyi=0, (83)

µ̃r

(
Nd∑
i=1

yi−Pr

)
=0, (84)

µ̃r, υr,i, yi ≥ 0. (85)

Substituting (82) into (83) and considering that yi ≥ 0, we
have υr,i= 0. After some straightforward manipulations and
the use of (85), we can have the optimum yi ≥ 0 given as (39),
where µs=1/µ̃s is chosen to satisfy the power constraint in
(26).
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