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We develop a reduced-rank space-time adaptive processing

(STAP) method based on joint iterative optimization of filters

(JOINT) for airborne radar applications. The proposed method

consists of a bank of full-rank adaptive filters, which forms

the projection matrix, and an adaptive reduced-rank filter that

operates at the output of the bank of filters. We describe the

proposed method for both the direct-form processor (DFP) and

the generalized sidelobe canceller (GSC) structures. Adaptive

algorithms including the stochastic gradient (SG), the recursive

least square (RLS), and their hybrid algorithms are derived for

the efficient implementation of the JOINT STAP method. The

computational complexity analysis of the proposed algorithms is

shown in terms of the number of multiplications and additions

per snapshot. Furthermore, the convexity analysis of the proposed

method is carried out. Simulations for a clutter-plus-jamming

suppression application show that the proposed STAP algorithm

outperforms the state-of-the-art reduced-rank schemes in

convergence and tracking at significantly lower complexity.
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I. INTRODUCTION

A requirement of airborne surveillance radar

systems is to detect moving targets in a severe

and dynamic interference environment which

may be composed of clutter and jamming.

Space-time adaptive processing (STAP) has

been motivated as a key enabling technology for

advanced airborne radar applications following

the landmark publication by Brennan and Reed

[1]. By a joint-domain optimization of the spatial

and temporal degrees-of-freedom (DOFs), STAP

algorithms can improve slow-moving target detection

through better mainlobe clutter suppression, provide

better detection in combined clutter and jamming

enviroment, and offer a significant increase in output

signal-to-interference-plus-noise-ratio (SINR), as

compared with traditional factored approaches [2].

However, the large computational complexity of

the optimum STAP algorithm often prohibits its

full-rank processing in real-time implementations.

The computational complexity requirements of the

optimal full-rank STAP algorithm have order O(M3),

where M is the dimension of the full-rank filter, due

primarily to a covariance matrix inversion operation.

An even more challenging problem, which is raised

by conventional STAP techniques, is that when the

number of elements in the filter is large, it requires

a large number of samples, at least twice as many

as the DOFs, to reach its steady state within 3 dB of

the optimal performance. In dynamic scenarios, filters

with large M usually fail or provide poor performance

in tracking signals embedded in interference.

To address computational complexity and sample

support issues, a diverse set of reduced-rank STAP

techniques has been proposed. In the comprehensive

report by Ward [2] and the book by Klemm [3],

several factored reduced-dimension methods were

developed to reduce the number of statistical

unknowns associated with the interference based

on forming “beams” in angle and/or Doppler.

However, there is generally a price to be paid in

interference cancellation performance. The first

statistical reduced-rank method, which outperforms

the conventional “beams”-type reduced-rank

STAP techniques, was based on an eigenvector

decomposition of the target-free covariance matrix,

which is known as the principal-components

(PC) method [4, 5]. By retaining the principal

eigenvectors of the total target-free covariance

matrix, the interference was indeed confined to

a relatively low-rank subspace. Another class of

eigen-decomposition methods was based on the

cross-spectral metric (CSM) [6], [7]. Compared

with the PC method, the CSM method yields a

signal-dependent rank-ordering of the interference

eigenvectors. However, the PC and the CSM methods

have the problem of heavy computational load due
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Fig. 1. Radar CPI datacube.

to the eigen-decomposition. The family of Krylov

subspace methods has been investigated thoroughly

in recent years. This class of reduced-rank adaptive

filtering algorithms, including the multistage Wiener

filter (MSWF) [8—10] and the auxiliary-vector filter

(AVF) with orthogonal auxiliary vectors [11], projects

the observation onto a lower dimensional Krylov

subspace. Improvements to the AVF include the

version with nonorthogonal auxiliary vectors [12, 13].

The joint domain localized (JDL) approach, which

is a beamspace reduced-dimension algorithm, was

proposed by Wang and Cai [24] and investigated in

both homogeneous and nonhomogenous environments

[25, 26]. Recently, the JDL algorithm was applied to

the code-division multiple-access (CDMA) systems

and was reported to outperform the MSWF algorithm

with limited training [27].

In the present paper, we develop a reduced-rank

approach to the STAP design utilizing a method

based on joint iterative optimization of adaptive

filters (JOINT) which was recently proposed in

[14] and generalize the idea of adaptive interpolated

filters with time-varying interpolators [15—17].

The proposed STAP algorithm consists of a bank

of full-rank adaptive filters, which constitutes the

projection matrix, and an adaptive reduced-rank filter

that operates at the output of the bank of full-rank

filters. The reduced-rank STAP algorithm employing

the proposed JOINT scheme is investigated in both

the direct-form processor (DFP) and the generalized

sidelobe canceller (GSC) [18, 19] structures. We

also derive the stochastic gradient (SG) and the

recursive least squares (RLS) algorithms for their

implementations. As a consequence, the computational

complexity of the STAP with the SG algorithm is

reduced substantially to O(MD) and the computational
complexity of the STAP with the RLS algorithm is

reduced to O(M2) for each computing cycle of clock

time, where D is the dimension of the reduced-rank

filter.

This paper is organized as follows. Section II

introduces the signal model, the optimum STAP

algorithm and the fundamental of reduced-rank

signal processing. The new reduced-rank STAP

scheme is proposed and detailed in Section III,

and the proposed adaptive algorithms and their

complexity analysis are also presented in Section III.

The convexity analysis of the proposed method and

the study of its convergence properties are carried

out in Section IV. Examples of the performance

assessment of the proposed reduced-rank STAP are

provided in Section V using both simulated and

experimental radar data. Finally, conclusions are given

in Section VI.

II. PROBLEM STATEMENT

The system under consideration is a pulsed

Doppler radar residing on an airborne platform. The

radar antenna is a uniformly spaced linear array

antenna consisting of N elements. Radar returns are

collected in a coherent processing interval (CPI),

which is referred to as the 3-D radar datacube shown

in Fig. 1, where L denotes the number of samples

collected to cover the range interval. The data is then

processed at one range of interest, which corresponds

to a slice of the CPI datacube. This slice is a K £N
matrix which consists of N £ 1 spatial snapshots for K
pulses at the range of interest. It is convenient to stack

the matrix column-wise to form the M £ 1,M =KN

vector r(i), termed the ith range gate space-time

snapshot, 1· i · L [1, 2].

A. Signal Model

The function of a radar is to ascertain whether

targets are present in the data. Thus, given a

space-time snapshot, radar detection is a binary

hypothesis problem, where hypothesis H0 corresponds

to target absence and hypothesis H1 corresponds to

target presence. The radar space-time snapshot is

then expressed for each of the two hypotheses in the

following form,

H0 : r(i) = v(i)

H1 : r(i) = as+ v(i)
(1)

where a is a zero-mean complex Gaussian random

variable with variance ¾2s , v(i) denotes the input

interference-plus-noise vector which consists of

clutter rc(i), jamming rj(i), and the white noise rn(i).

These three components are assumed to be mutually

uncorrelated. Thus, the M £M covariance matrix

R of the undesired clutter-plus-jammer-plus-noise

component can be modeled as

R= Efv(i)vH(i)g=Rc+Rj +Rn (2)

where H represents Hermitian transpose, Rc =

Efrc(i)rHc (i)g, Rj = Efrj(i)rHj (i)g and Rn =
Efrn(i)rHn (i)g denote clutter, jamming, and noise
covariance matrix, respectively, and E denotes
expectation. The vector s, which is the M £1
normalized space-time steering vector in the

space-time look-direction, can be defined as

s= b($t)− a(#t) (3)
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Fig. 2. (a) Full-rank direct-form processor. (b) Full-rank GSC processor.

where b($t) is the K £ 1 normalized temporal steering
vector at the target Doppler frequency $t and a(#t)
is the N £ 1 normalized spatial steering vector in the
direction provided by the target spatial frequency #t.

The notation − denotes Kronecker product.
B. Optimum Radar Signal Processing

To detect the presence of targets, each range bin is

processed by an adaptive 2D beamformer (to achieve

maximum output SINR) followed by a hypothesis

test to determine the target presence or absence. The

STAP algorithm normally can be implemented in

two different structures: one is the DFP structure and

the other is the GSC structure whose diagrams are

depicted in Fig. 2(a) and (b) respectively. In Fig. 2(a),

fr(i)gLi=1 denotes the secondary data, which is a
target-free signal. We assume that the secondary data

fr(i)gLi=1 are independent and identically distributed
(IID). y(i) = !H(i)r(i) is the output of the STAP
algorithm, where !H(i) is the STAP filter. The
optimum full-rank STAP algorithm for DFP[1]

obtained by an unconstrained optimization of the

SINR is given as follows:

!opt = kR
¡1s (4)

where k is an arbitrary non-zero complex number. The

optimal constrained weight vector for maximizing

the output SINR, while maintaining a normalized

response in the target spatial-Doppler look-direction

was originally given in [18] by

!opt =
R¡1s
sHR¡1s

: (5)

The solution in (5) can also be obtained by solving

the linearly constrained minimum variance (LCMV)

problem as [36]

!opt = argmin
!(i)

!H(i)R!(i) subject to sH!(i) = 1:

(6)

For the GSC structure as shown in Fig. 2(b), the

output d0 of the radar mainbeam is provided by

d0(i) = s
Hr(i) (7)

and the interference-plus-noise subspace data vector

r0(i) is defined to be an (M ¡1)£ 1 vector at the

output of the signal blocking matrix given by

r0(i) = Br(i) (8)

where B denotes the (M ¡ 1)£M signal blocking

matrix which can be directly obtained by using the

singular value decomposition (SVD) and the QR

decomposition algorithms [20]. Thus, Bs= 0(M¡1)£1,
so that the matrix B effectively blocks any signal
coming from the spatial-Doppler look-direction. Let

us consider the equivalent transformation defined by

the operator T= [s,BH]H. The transformation of radar
return r(i) yields a vector r̃(i) which has the form

r̃(i) = Tr(i) =

·
sHr(i)

Br(i)

¸
=

·
d0(i)

r0(i)

¸
(9)

and the associated covariance matrix Rr̃ given by

Rr̃ = E[r̃(i)r̃
H(i)] = TRTH =

·
¾20 pH0

p0 R0

¸
(10)

where ¾20 = s
HRs, the (M ¡ 1)£1 cross-correlation

vector between the noise subspace data vector and

the beamformer output p0 = Efr0(i)d¤0(i)g and the
(M ¡ 1)£ (M ¡1) noise subspace covariance matrix
R0 = BRB

H. Due to the transformation on the steering

vector yielding the unit transformed steering vector e1
as

e1 = Ts=

266664
1

0

...

0

377775 (11)

the optimal weight vector for GSC in these

transformed coordinates is given by

!0opt =
R¡1
r̃
e1

eH1R
¡1
r̃
e1
=

·
1

¡!gsc

¸
(12)

where !gsc =R
¡1
0 p0. Thus the optimal weight vector

may be expressed as

!opt = T
H!0opt = s¡BH!gsc: (13)

C. Reduced-Rank Signal Processing

The diagrams of reduced-rank processors with

the DFP and the GSC structures are depicted in
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Fig. 3. (a) Reduced-rank DFP. (b) Reduced-rank GSC processor.

Fig. 3(a) and (b), respectively. The basic idea of

reduced-rank algorithms is to reduce the number of

adaptive coefficients by projecting the received vectors

onto a lower dimensional subspace as illuminated

in the figure. Considering the DFP structure, let SD
denote the M £D projection matrix with column

vectors which are an M £ 1 basis for a D-dimensional
subspace, where D <M . Thus, the received signal r(i)

is transformed into its reduced-rank version r̄(i) given

by

r̄(i) = SHDr(i): (14)

The reduced-rank signal is processed by an adaptive

reduced-rank filter !̄(i) 2 CD£1. Subsequently, the
decision is made based on the filter output y(i). The

optimum minimum variance distortionless response

(MVDR) solution for the reduced-rank weight vector

!̄opt is obtained by [28]

!̄opt = argmin
!̄

!̄HR̄!̄ subject to !̄Hs̄= 1

(15)

) !̄opt =
R̄¡1s̄

s̄HR̄¡1s̄

where R̄= SHDRSD denotes the reduced-rank

covariance matrix and s̄= SHDs denotes the

reduced-rank steering vector.

The reduced-rank adaptive GSC shown in Fig. 3(b)

utilizes an (M ¡ 1)£D projection matrix SD to form

D£ 1 reduced-rank observation data vector
r̄0(i) = S

H
Dr0(i) (16)

and the associated D£D reduced-rank covariance

matrix is given by

R̄0 = S
H
DR0SD: (17)

The reduced-rank data vector r̄0(i) = S
H
Dr0(i)

is then processed by the D£ 1 reduced-rank filter
!̄gsc(i), which can be optimized to minimize the
squared error between the mainbeam output d0(i) and

the sidelobe output y0(i) as

!̄gsc = argmin
!̄(i)

Efjd0(i)¡ !̄H(i)SHDr0(i)j2g
(18)

) !̄gsc = R̄
¡1
0 p̄d

where p̄d = S
H
DBRs denotes the reduced-rank cross-

correlation vector. Since the equivalent transformation

matrix T̄ with (D+1)£M-dimension is given by

T̄=

·
sH

SHDB

¸
the optimal reduced-rank weight vector for the GSC

with D£ 1-dimension in the transformed domain is
given by

!̄opt =

·
1

¡!̄gsc

¸
:

The challenge left to us is how to efficiently

design and optimize the projection matrix SD. The

PC method which is also known as the eigencanceller

method [4] suggested to form the projection matrix

using the eigenvectors of the covariance matrix R
corresponding to the eigenvalues with significant

magnitude. The CSM method, a counterpart of the

PC method belonging to the eigen-decomposition

algorithm family, outperforms the PC method because

it employs the projection matrix which contains

the eigenvectors which contribute the most towards

maximizing the SINR [7]. A family of closely related

reduced-rank adaptive filters, such as the MSWF [8]

and the AVF [11] algorithms, employs a set of basis

vectors as the projection matrix which spans the same

subspace, known as the Krylov subspace [29, 30].

The Krylov subspace is generated by taking the

powers of the covariance matrix of observations on

a cross-correlation (or steering) vector. Despite the

improved convergence and tracking performance

achieved with these methods, the remained problem is

their high complexity and the existence of numerical

problems for implementation.

III. THE PROPOSED STAP ALGORITHM

In this section, we present the principles of the

proposed reduced-rank scheme based on the joint

iterative optimization of adaptive filters (JOINT)

scheme for both the DFP and the GSC structures. We

also develop efficient and low-complexity adaptive

implementations for our proposed scheme using

the SG, the RLS, and the hybrid algorithms and

we compare the complexity of the proposed JOINT

scheme with other existing algorithms, namely, the

full-rank filters, the JDL, the MSWF and the AVF
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Fig. 4. Proposed JOINT STAP schematic diagrams. (a) DFP structure. (b) GSC structure.

algorithms, in terms of multiplications and additions

per snapshot. Furthermore, we consider the important

issue of rank selection and propose an adaptive

technique to automatically determine the rank.

A. Proposed Reduced-Rank STAP Algorithm

ere we detail the principles of the proposed

reduced-rank scheme using a projection operator

based on adaptive filters. For the DFP structure

which is depicted in Fig. 4(a), our proposed JOINT

algorithm employs a projection matrix SD(i) with

dimensions M £D, which is responsible for the
dimensionality reduction, to project the M £ 1 data
vector r(i) onto the rank-reduced data vector r̄(i). The

D£ 1-dimensional reduced-rank filter !̄(i) linearly
combines the vector r̄(i) in order to yield a scalar

estimate y(i). The projection matrix SD(i) and the

reduced-rank filter !̄(i) are jointly optimized in
the proposed scheme according to the constrained

minimum variance (CMV) criterion. Specifically,

the projection matrix is structured as a bank of D

full-rank filters sd(i) = [s1,d(i),s2,d(i), : : : ,sM,d(i)]
T, (d =

1, : : : ,D) with dimensions M £ 1 as given by SD(i) =
[s1(i) s2(i) ¢ ¢ ¢sD(i)]. Let us now mathematically
express the output estimate y(i) of the reduced-rank

scheme as a function of the received data r(i), the

projection matrix SD(i) and the reduced-rank filter

!̄(i):
y(i) = !̄H(i)SHD(i)r(i) = !̄

H(i)r̄(i): (19)

Note that for D = 1, the novel scheme becomes

a conventional full-rank filtering scheme with an

addition weight parameter !̄D that provides a gain. For

D > 1, the signal processing tasks are changed and the

full-rank filters compute a subspace projection and the

reduced-rank filter estimates the desired signal. The

CMV expression for the filters SD(i) and !̄(i) can be
computed via the constrained optimization problem

[!̄opt,SD,opt] = argmin
!̄(i),SD(i)

E[j!̄H(i)SHD(i)r(i)j2]

subject to !̄H(i)SHD(i)s= 1

(20)

where !̄(i) 2 CD,SD(i) 2 CM£D. The constrained
optimization problem in (20) can be transformed

by the method of Lagrange multipliers into an

unconstrained optimization problem whose cost

function is

LMV = E[j!̄H(i)SHD(i)r(i)j2]+2<[¸¤(!̄H(i)SHD(i)s¡ 1)]
(21)

where ¸ is a scalar Lagrange multiplier, ¤ denotes
complex conjugate, and the operator <[¢] selects the
real part of the argument. By fixing !̄(i), minimizing
(21) with respect to SD(i) and solving for ¸, we get

SD(i) =
R¡1s!̄H(i)R¡1!̄

!̄H(i)R¡1!̄ !̄(i)s
HR¡1s

(22)

where R= E[r(i)rH(i)], R!̄ = E[!̄(i)!̄H(i)]. By fixing
SD(i), minimizing (21) with respect to !̄(i), and
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solving for ¸, we arrive at the expression for !̄(i)

!̄(i) =
R̄¡1(i)s̄

s̄HR̄¡1(i)s̄
(23)

where R̄(i) = SHD(i)RSD(i), s̄= S
H
D(i)s.

For the GSC structure, the proposed algorithm is

illustrated in Fig. 4(b). As mentioned in the previous

section, the reduced-rank adaptive GSC utilizes an

(M ¡ 1)£D projection matrix SD to project the

target-free subspace data vector r0(i) to a reduced-rank

subspace vector r̄0(i) = S
H
D(i)r0(i). In our design, the

project matrix SD(i) and the reduced-rank weight

vector !̄gsc(i) are jointly optimized by minimizing the
squared error between the mainbeam output d0(i) and

sidelobe output y0(i) as

[!̄gsc,opt,SD,opt]

= argmin
!̄gsc(i),SD(i)

Efjd0(i)¡ !̄Hgsc(i)SHD(i)r0(i)j2g

(24)

where !̄gsc(i) 2 CD,SD(i) 2 C(M¡1)£D. The cost function
of this optimization problem can be written as

L= E[jd0(i)¡ !̄Hgsc(i)SHD(i)r0(i)j2]: (25)

By fixing !̄gsc(i), minimizing (25) with respect to
SD(i), we get the optimum projection matrix for the

GSC structure

SD(i) =R
¡1
0 p0!̄

H
gsc(i)R

¡1
!̄gsc

(26)

where R0 = E[r0(i)r0(i)H], p0 = E[r0(i)d¤0(i)] and
R!̄gsc = E[!̄gsc(i)!̄

H
gsc(i)]. By fixing SD(i), minimizing

(25) with respect to !̄gsc(i), we may obtain

!̄gsc(i) = R̄
¡1
0 p̄0 (27)

where R̄0 = S
H
D(i)R0SD(i) and p̄0 = S

H
D(i)p0.

Note that the filter expressions in (22) and (23)

for the DFP structure as well as (26) and (27) for the

GSC structure are not closed-form solutions for SD(i)

and !̄(i) since (22) and (26) are functions of !̄(i)
and !̄gsc(i), respectively, and (23) and (27) depend
on SD(i). Thus it is necessary to iterate (22) and

(23), (26), and (27) with an initial guess to obtain

a solution. Unlike the MSWF [8] and the AVF [13]

approaches which project the data onto the Krylov

subspace, the proposed scheme provides an iterative

exchange of information between the reduced-rank

filter and the projection matrix and leads to a much

simpler adaptive implementation than the MSWF and

the AVF algorithms. The projection matrix reduces the

dimension of the input data, whereas the reduced-rank

filter attempts to estimate the desired signal. The key

strategy lies in the joint iterative optimization of the

filters. In the next section, we seek iterative solutions

via adaptive algorithms.

B. Adaptive Implementations

Adaptive implementations of the LCMV

beamformer were subsequently reported with the

SG [31] and the RLS algorithms [32]. Here we

describe the SG, the RLS, and a hybrid of SG and

RLS algorithms [33] that adjust the parameters of the

filter bank and the reduced-rank filter for the DFP

structure based on the constrained minimization of the

minimum value (MV) cost function, and for the GSC

structure based on the minimum mean squared error

(MMSE) criterion, respectively.

1) Stochastic Gradient Algorithm: By computing

the gradient terms of (21) with respect to S¤D(i) and
!̄¤(i) for the DFP structure, we get

rLMVS¤
D
(i)
(i) = y¤(i)r(i)!̄H(i)+2¸¤s!̄H(i)

(28)
rLMV!̄¤(i) (i) = y¤(i)SHD(i)r(i) +2¸¤SHD(i)s:

By solving the above equations and introducing the

convergence factors ¹! and ¹s, the proposed jointly

optimized and iterative SG algorithms for parameter

estimation become

SD(i+1) = SD(i)¡¹sy¤(i)[I¡ ssH]r(i)!̄H(i) (29)

!̄(i+1) = !̄(i)¡¹!y¤(i)
·
I¡ s̄s̄H

ks̄k2
¸
r̄(i) (30)

where y(i) = !̄H(i)SHD(i)r(i).
Subsequently, let us consider the GSC structure.

The instantaneous gradient terms of (25) with respect

to S¤D(i) and !̄
¤
gsc(i) are given by

rLS¤
D
(i)(i) = (d0(i)¡ !̄Hgsc(i)SHD(i)r0(i))¤r0(i)!̄Hgsc(i)

(31)
rL!̄¤gsc(i)(i) = (d0(i)¡ !̄

H
gsc(i)S

H
D(i)r0(i))

¤SHD(i)r0(i):

Thus, the projection matrix SD(i) and the reduced-rank

GSC weight vector !̄gsc(i) can be jointly and
iteratively optimized as

SD(i+1) = SD(i)+¹sy
¤(i)r0(i)!̄

H
gsc(i) (32)

!̄gsc(i+1) = !̄gsc(i) +¹!y
¤(i)r̄0(i) (33)

where y(i) = d0(i)¡ !̄Hgsc(i)SHD(i)r0(i). The proposed
scheme trades-off a full-rank filter against one

projection matrix SD(i) and one reduced-rank adaptive

filter !̄(i) or !̄gsc(i) operating simultaneously and
exchanging information. The JOINT schemes using

the SG algorithm for the DFP and the GSC structures

are summarized in Tables I and II, respectively.

2) Recursive Least Squares Algorithm: Here we

derive the RLS reduced-rank adaptive algorithms for

the efficient implementation of the proposed scheme

using both the DFP and the GSC strucutures. To this

end, let first consider that for the DFP structure whose
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TABLE I

The JOINT Scheme using SG Algorithm for the DFP

Initialization SD(1) = [ID£D 0D£(M¡D)]
T

s̄= SH
D
(1)s, !̄(1) = s̄=ks̄k and i = 1

Recursion y(i) = !̄(i)HSH
D
(i)r(i)

SD(i+1) = SD(i)¡¹sy¤(i)[I¡ ssH]r(i)!̄H(i)
y(i) = !̄(i)HSH

D
(i+1)r(i)

s̄= SH
D
(i+1)s, r̄(i) = SH

D
(i+1)r(i)

!̄(i+1) = !̄(i)¡¹!y¤(i)
·
I¡ s̄s̄H

ks̄k2
¸
r̄(i)

TABLE II

The JOINT Scheme using SG Algorithm for the GSC

Initialization SD(1) = [ID£D 0D£(M¡1¡D)]
T

!̄(1) = 0 and i= 1

Recursion d0(i) = s
Hr(i), r0(i) = Br(i)

y(i) = d0(i)¡ !̄Hgsc(i)SHD(i)r0(i)
SD(i+1) = SD(i) +¹sy

¤(i)r0(i)!̄
H
gsc(i)

y(i) = d0(i)¡ !̄Hgsc(i)SHD(i+1)r0(i)
r̄0(i) = S

H
D
(i+1)r0(i)

!̄gsc(i+1) = !̄gsc(i) +¹!y
¤(i)r̄0(i)

least squares (LS) unconstrained cost function is given

by

LLS =
iX

n=1

®i¡nj!̄H(i)SHD(i)r(n))j2

+2<[¸¤(!̄H(i)SHD(i)s¡ 1)] (34)

where ® is the forgetting factor chosen as a positive

constant close to, but less than 1. Fixing !̄(i) and
computing the gradient of (34) with respect to SD(i)

equal to a zero matrix and solving for ¸, we obtain

SD(i) =
R̂¡1(i)s!̄H(i)R¡1!̄ (i)

!̄H(i)R¡1!̄ (i)!̄(i)s
HR̂¡1(i)s

(35)

where R̂(i) =
Pi

n=1®
i¡nr(n)rH(n) is the input

covariance matrix and R!̄(i) = !̄(i)!̄
H(i) is the

reduced-rank weight matrix at time instant i. The

computation of (35) includes the inversion of R̂(i)

and R!̄(i), which may increase significantly the

complexity and create numerical problems. However,

the expression in (35) can be further simplified

using the constraint !̄H(i)SHD(i)s= 1. The details of
the simplification are given in the Appendix. The

simplified expression for SD(i) is given by

SD(i) =
R̂¡1(i)ss̄H

sHR̂¡1(i)s
: (36)

To avoid using the matrix inversion, we use the

matrix inversion lemma [33] to estimate R̂¡1(i). We
define the inverse covariance matrix ©̂(i) = R̂¡1(i) for

convenience of presentation. The recursive estimation

of ©̂(i) is given by

K(i) =
®¡1©̂(i)r(i)

1+®¡1rH(i)©̂(i)r(i)

©̂(i+1) = ®¡1©̂(i)¡®¡1K(i)rH(i)©̂(i)
(37)

where K(i) is the M £ 1 Kalman gain vector. We set
©̂(1) = ±¡1IM to start the recursion of (37), where ± is
a positive small constant and IM is an M £M identity

matrix.

Assuming SD(i) is known and taking the gradient

of (34) with respect to !̄(i), equating the terms to a
null vector and solving for ¸, we obtain the D£ 1
reduced-rank filter

!̄(i) =
©̄(i)s̄

sH©̄(i)s̄
(38)

where ©̄(i) =
ˆ̄
R
¡1
(i) and

ˆ̄
R(i) =

Pi
n=1®

i¡nr̄(n)r̄H(n) is
the estimate of reduced-rank input covariance matrix.

In order to estimate ©̄(i), we use the matrix inversion
lemma as follows

K̄(i) =
®¡1©̄(i)r̄(i)

1+®¡1r̄H(i)©̄(i)r̄(i)

©̄(i+1) = ®¡1©̄(i)¡®¡1K̄(i)r̄H(i)©̄(i)
(39)

where K̄(i) is the D£ 1 reduced-rank gain vector
and the recursion of (39) is initialized by choosing

©̄(1) = ±̄¡1ID, where ±̄ is a positive small constant.
The RLS reduced-rank algorithm for the GSC

structure takes the similar procedure to minimize the

LS cost function given by

LLS =
iX

n=1

®i¡njd0(n)¡ !̄Hgsc(i)SHD(i)r0(n)j2: (40)

Assuming that the optimum reduced-rank filter !̄gsc
is given. The LS design of the projection matrix SD(i)
can be obtained by solving the gradient of (40) with

respect to SD(i) equal to zero, as follows

SD(i) = R̂
¡1
0 (i)P̂0(i)R

¡1
!̄gsc

(41)

where R!̄gsc = !̄gsc!̄
H
gsc, R̂0(i) =

Pi
n=1®

i¡nr0(n)r0(n)
H

is the LS sidelobe covariance matrix and P̂0(i) =Pi
n=1®

i¡nd¤0(n)r0(n)!̄
H
gsc is the LS sidelobe

cross-correlation matrix. In this work, we use the time

averaging of !̄gsc(i)!̄
H
gsc(i) to approach the R!̄gsc and

regularize the R̂!̄gsc by adding a small diagonal load

&ID, where the small positive constant & is known as

regularization parameter [33]. The regulized matrix

can be written as

R̂!̄gsc =

iX
n=1

®i¡n!̄gsc(i)!̄
H
gsc(i)+ &ID: (42)

Let us fix SD(i), take the gradient of (40) with the
respect to !̄gsc(i) and solve the equation equal to zero
vector, we obtain the optimum LS reduced-rank filter
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TABLE III

The JOINT Scheme using RLS Algorithm for the DFP

Initialization SD(1) = [ID£D 0D£(M¡D)]
T

s̄= SH
D
(1)s, !̄(1) = s̄=ks̄k

ˆ̄
©(1) = ±̄¡1ID , ©̂(1) = ±

¡1IM and i= 1

Recursion y(i) = !̄(i)HSH
D
(i)r(i)

K(i) = ©̂(i)r(i)=(®+ rH(i)©̂(i)r(i))

©̂(i+1) = ®¡1©̂(i)¡®¡1K(i)rH(i)©̂(i)
SD(i) =

R̂¡1(i)ss̄H

sHR̂¡1(i)s
s̄= SHD(i)s, r̄(i) = S

H
D(i)r(i)

K̄(i) =
ˆ̄
©(i)r̄(i)=(®+ r̄H(i)

ˆ̄
©(i)r̄(i))

ˆ̄
©(i+1) = ®¡1 ˆ̄©(i)¡®¡1K̄(i)r̄H(i) ˆ̄©(i)

!̄(i) =

ˆ̄
©(i)s̄

sH
ˆ̄
©(i)s̄

as

!̄gsc(i) =
ˆ̄
R
¡1
0 (i)

ˆ̄p0(i) (43)

where ˆ̄p0(i) =
Pi
n=1®

i¡nr̄0(i)d
¤
0(i) is the LS

cross-correlation vector. Thus, by applying the matrix

inversion lemma to
ˆ̄
©0(i) and ©̂0(i) which denote

ˆ̄
R
¡1
0 (i) and R̂

¡1
0 (i) respectively, we obtain them in a

recursive way as

ˆ̄
©0(i+1) = ®

¡1 ˆ̄©0(i)¡®¡1K̄0(i)r̄H0 (i)
ˆ̄
©0(i) (44)

©̂0(i+1) = ®
¡1©̂0(i)¡®¡1K0(i)rH0 (i)©̂0(i) (45)

where

K̄0(i) =

ˆ̄
©0(i)r̄0(i)

®+ r̄H0 (i)
ˆ̄
©0(i)r̄0(i)

K0(i) =
©̂0(i)r0(i)

®+ rH0 (i)©̂0(i)r0(i)
:

(46)

Since the time average estimates of (M ¡ 1)£D
cross-correlation matrix and and D£ 1 reduced-rank
cross-correlation vector can be written in a recursive

way as

ˆ̄p0(i) = ®
ˆ̄p0(i)+ r̄0(i)d

¤
0(i) (47)

P̂0(i+1) = ®P̂0(i) + r0(i)!̄
H
gsc(i)d

¤
0(i): (48)

By substituting (44) and (47) into (43), and (45)

and (48) into (41), we obtain recursively adaptive

equations for both the reduced-rank filter and the

projection matrix as follows

!̄gsc(i+1) = !̄gsc(i) + K̄0(i)y
¤(i) (49)

SD(i+1) = SD(i)+K0(i)es(i) (50)

where y(i) = d0(i)¡ !̄gsc(i)r̄0(i) is the output of the
processor, and es(i) = !̄

H
gsc(i)R̂

¡1
!̄gsc
d¤0(i)¡ rH0 (i)SD(i¡ 1)

denotes a priori estimation error vector. The JOINT

schemes using RLS algorithm for the DFP and the

TABLE IV

The JOINT Scheme using RLS Algorithm for the GSC

Initialization SD(1) = [ID£D 0D£(M¡D)]
T

s̄= SH
D
(1)s, !̄gsc(1) = 0D

ˆ̄
©0(1) = ±̄

¡1ID , ©̂0(1) = ±
¡1IM¡1

R̂!̄gsc (1) = &ID and i = 1

Recursion d0(i) = s
Hr(i), r0(i) = Br(i)

y(i) = d0(i)¡ !̄Hgsc(i)SHD(i)r0(i)
K0(i) = ©̂0(i)r0(i)=(®+ r

H
0
(i)©̂0(i)r0(i))

©̂0(i+1) = ®
¡1©̂0(i)¡®¡1K0(i)rH0 (i)©̂0(i)

es(i) = !̄
H
gsc(i)R̂

¡1
!̄gsc
(i)d¤

0
(i)¡ rH

0
(i)SD(i)

SD(i+1) = SD(i) +K0(i)es(i)

r̄0(i) = S
H
D
(i)r0(i)

K̄0(i) =
ˆ̄
©0(i)r̄0(i)=(®+ r̄

H
0
(i)
ˆ̄
©0(i)r̄0(i))

ˆ̄
©0(i+1) = ®

¡1 ˆ̄©0(i)¡®¡1K̄0(i)r̄H0 (i)
ˆ̄
©0(i)

!̄gsc(i+1) = !̄gsc(i) + K̄0(i)y
¤(i)

R̂!̄gsc (i+1) = ®R̂!̄gsc (i) + !̄gsc(i)!̄
H
gsc(i)

GSC structures are summarized in Tables III and IV,

respectively.

3) Hybrid Algorithm of SG and RLS: Here we

develop an algorithm for the JOINT STAP structure,

so-called hybrid algorithm, to update the reduced-rank

receiver !̄(i) by using the RLS algorithm and the

projection matrix SD(i) by using the SG algorithm,

respectively, which leads to a computational saving

compared with the RLS and meanwhile has better

performance than the SG algorithm. Equations (29),

(38), and (39) are combined to yield the hybrid

algorithm of SG and RLS for the DFP. Similarly,

the hybrid algorithm for the GSC can be obtained

by combining (32), (44), and (49). The JOINT

schemes using hybrid algorithms for the DFP and the

GSC structures are summarized in Tables V and VI,

respectively.

C. Complexity Analysis

We detail the computational complexity in terms

of additions and multiplications per snapshot of

the proposed schemes with SG and RLS and other

existing algorithms, namely the full-rank SG and

RLS algorithms, the MSWF with the SG and the

RLS algorithms, the JDL-RLS algorithm and the AVF

algorithm, for both the DFP and the GSC structures

as shown in Table VII and Table VIII, respectively.

Note that since we did not consider the GSC structure

using the JDL-RLS and the AVF algorithms, we do

not put their complexity with the GSC in Table VIII.

The proposed schemes with the SG, the RLS, and the

hybrid algorithms are much simpler than the full-rank

RLS filter, the MSWF, and the AVF algorithms and

slightly more complex than the full-rank SG algorithm

(for D¿M). Note that the proposed JOINT-SG
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TABLE V

The JOINT Scheme using Hybrid Algorithm for the DFP

Initialization SD(1) = [ID£D 0D£(M¡D)]
T

s̄= SH
D
(1)s, !̄(1) = s̄=ks̄k

ˆ̄
©(1) = ±̄¡1ID and i = 1

Recursion y(i) = !̄(i)HSH
D
(i)r(i)

SD(i+1) = SD(i)¡¹sy¤(i)[I¡ ssH]r(i)!̄H(i)
s̄= SH

D
(i+1)s, r̄(i) = SH

D
(i+1)r(i)

K̄(i) =
ˆ̄
©(i)r̄(i)=(®+ r̄H(i)

ˆ̄
©(i)r̄(i))

ˆ̄
©(i+1) = ®¡1 ˆ̄©(i)¡®¡1K̄(i)r̄H(i) ˆ̄©(i)

!̄(i) =

ˆ̄
©(i)s̄

sH
ˆ̄
©(i)s̄

TABLE VI

The JOINT Scheme using Hybrid Algorithm for the GSC

Initialization SD(1) = [ID£D 0D£(M¡D)]
T

s̄= SH
D
(1)s, !̄gsc(1) = 0D
ˆ̄
©0(1) = ±̄

¡1ID
R̂!̄gsc (1) = &ID and i= 1

Recursion d0(i) = s
Hr(i), r0(i) = Br(i)

y(i) = d0(i)¡ !̄Hgsc(i)SHD(i)r0(i)
SD(i+1) = SD(i)¡¹sy¤(i)[I¡ ssH]r(i)!̄H(i)

y(i) = d0(i)¡ !̄Hgsc(i)SHD(i+1)r0(i)
r̄0(i) = S

H
D(i+1)r0(i)

K̄0(i) =
ˆ̄
©0(i)r̄0(i)=(®+ r̄

H
0
(i)
ˆ̄
©0(i)r̄0(i))

ˆ̄
©0(i+1) = ®

¡1 ˆ̄©0(i)¡®¡1K̄0(i)r̄H0 (i)
ˆ̄
©0(i)

!̄gsc(i+1) = !̄gsc(i) + K̄0(i)y
¤(i)

and JOINT-hybrid algorithms have comparable

computational complexity with the JDL algorithm, but

outperform the JDL algorithm in terms of steady-state

performance as shown in the subsequent section.

In order to illustrate the main trends in what

concerns the complexity of the proposed and analyzed

algorithms, we show in Figs. 5 and 6 the complexity

of both the DFP and the GSC structures in terms of

additions and multiplications versus the length of

the filter M. The curves indicate that the proposed

JOINT RLS algorithm has a complexity lower than

the MSWF-RLS and the AVF algorithms for both the

DFP and the GSC structures. The proposed JOINT-SG

and JOINT-hybrid algorithms have a complexity that

is situated between the full-rank RLS and the full-rank

SG algorithms. The complexity of the GSC structure

has extra O(M2) more than that of the DFP structure

in terms of multiplications and additions due to the

block matrix in the sidelobe canceller. Obviously,

there is no significant difference in complexity

between the DFP and the GSC structures caused by

extra operations for the RLS algorithms. However, for

TABLE VII

Computational Complexity of Algorithms for the DFP

Number of Operations per Snapshot

Algorithm Additions Multiplications

Full-Rank-SG 3M +1 3M +2

Full-Rank-RLS 6M2 ¡ 8M +3 6M2 +2M +2

MSWF-SG DM2 ¡M2 (D¡ 1)M2 +2DM

+3D2 ¡ 2 +4D+1

MSWF-RLS (D+1)M2 + 6D2 (D+1)M2 +2DM

¡8D+2 +3D+2

AVF D(M2 + 3(M ¡ 1)2)¡ 1 D(4M2 +4M +1)

+D(5(M ¡ 1)+1)+2M +4M +2

JDL-RLS DM +4D2¡D¡ 2 DM +5D2 + 5D

JOINT-SG 3DM +2M 3DM +M

+2D¡ 2 +5D+2

JOINT-RLS 6M2 + 8M 7M2 +2M

+6D2¡ 8D+3 +7D2 + 9D

JOINT-Hybrid 6DM +M 4DM +5D2 ¡ 4
+6D2 + 9D+12

TABLE VIII

Computational Complexity of Algorithms for the GSC

Number of Operations per Snapshot

Algorithm Additions Multiplications

Full-Rank-SG M2 +M ¡ 1 M2 +2M ¡ 2
Full-Rank-RLS 5M2¡ 5M 3M2¡ 3M +1

MSWF-SG DM2 + (D+3)M ¡ 2 (D+1)M2

+(2+D)M

MSWF-RLS DM2 + (D+3)M ¡ 3 (D+1)M2 + 2M

+2D+4D2 +DM +3D2¡D
JOINT-SG DM2 + (3+D)M M2 + (1+3D)M

¡3+2D+4D2 +2D+1

JOINT-RLS 7M2 ¡ 21M +20 8M2¡ 12M +8

+6D2¡ 8D +7D2 + 9D

JOINT-Hybrid M2 + (1+3D)M M2 + (1+3D)M

+6D2 + 10D+10 +6D¡ 1+7D2

the SG algorithms, the GSC structure is more complex

than the DFP structure.

D. Rank Selection

Normally, the selection of the rank D is essential

to most reduced-rank algorithms. Fortunately,

based on our investigation, the sensitivity of the

performance of our proposed algorithms to the

change of rank (when D > 3) is less than that of the

eigen-decomposition family and the Krylov-subspace

family of reduced-rank algorithms. Considering the

trade-off between the performance and complexity,

we set the rank of our proposed algorithms to 4.

Nevertheless, we consider a rank adaptation algorithm,

in order to automatically determine the rank. We

present a method for automatically selecting the ranks

of the algorithms based on the exponentially weighted

a posteriori LS type cost function described by

C(SD(i), !̄D(i)) =
iX
l=1

®ij!̄HD(i)SD(i)r(l)j2 (51)
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Fig. 5. Complexity for DFP in terms of additions and multiplications versus length of filter M.

Fig. 6. Complexity for GSC in terms of additions and multiplications versus length of filter M .

where ® is the forgetting factor and !̄D(i) is the

reduced-rank filter with rank D. For each time interval

i, we can select the rank Dopt which minimizes

C(SD(i),!̄D(i)) and the exponential weighting factor
® is required as the optimal rank varies as a function

of the data record. The key quantities to be updated

are the projection matrix SD(i), the reduced-rank filter

!̄D(i), the associated reduced-rank steering vector s̄,

and the inverse of the reduced-rank covariance matrix

©̄(i) (for the proposed RLS algorithm). To this end,

we define the following extended projection matrix

SD(i) and the extended reduced-rank filter weight

vector !̄D(i) as follows:

SD(i) =

2664
s1,1 s1,2 ¢ ¢ ¢ s1,Dmin

¢ ¢ ¢ s1,Dmax

...
...

...
...

. . .
...

sM,1 sM,2 ¢ ¢ ¢ sM,Dmin
¢ ¢ ¢ sM,Dmax

3775
!̄D(i) = [w1 w2 ¢ ¢ ¢wDmin ¢ ¢ ¢wDmax ]

T:

(52)

The extended projection matrix SD(i) and the extended
reduced-rank filter weight vector !̄D(i) are updated
along with the associated quantities s̄ and ©̄(i) (only
for the RLS) for the maximum allowed rank Dmax
and then the proposed rank adaptation algorithm
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determines the rank that is best for each time instant

i using the cost function in (51). The proposed rank

adaptation algorithm is then given by

Dopt = arg min
Dmin·d·Dmax

C(SD(i),w̄D(i)) (53)

where d is an integer, Dmin and Dmax are the minimum

and maximum ranks allowed for the reduced-rank

filter, respectively. Note that a smaller rank may

provide faster adaptation during the initial stages of

the estimation procedure and a greater rank usually

yields a better steady-state performance. Our studies

reveal that the range for which the rank D of the

proposed algorithms have a positive impact on the

performance of the algorithms is limited, being from

Dmin = 3 to Dmax = 8 for the reduced-rank filter

recursions. A drawback of this method is that it may

increase the length of the filters, resulting in higher

complexity. Another issue of the rank selection is

that some prior knowledge about the clutter should be

used in order to set Dmin and Dmax. The development

of cost-effective methods for rank selection remains

an interesting area for investigation.

IV. CONVEXITY ANALYSIS OF THE PROPOSED
SCHEME

Since the GSC structure is an alternative

implementation of the LCMV DFP beamforming

algorithm [19], in this section, only the convexity

analysis of the proposed reduced-rank method

employing the DFP structure is carried out for the

sake of simplification. Our approach is based on

expressing the output of the proposed scheme and

the proposed constraint in a convenient form that

renders itself to analysis. Let us rewrite the proposed

constrained optimization method in (20) using the

method of Lagrange multipliers and express it by the

Lagrangian

L= E[j!̄H(i)SHD(i)r(i)j2]+2<[¸¤(!̄H(i)SHD(i)s¡ 1)]
= E[jy(i)j2]+2<[¸¤(!̄H(i)SHD(i)s¡ 1)]: (54)

In order to proceed, let us express y(i) in an

alternative and more convenient form as

y(i) = !̄H(i)SHD(i)r(i)

= !̄H(i)

266664
r(i) 0 ¢ ¢ ¢ 0

0 r(i) ¢ ¢ ¢ 0

...
...

. . .
...

0 0 ¢ ¢ ¢ r(i)

377775
T266664
s¤1(i)

s¤2(i)
...

s¤D(i)

377775
= !̄H(i)RT(i)s¤v(i) (55)

where R(i) is a DM £D block diagonal matrix with

the input data vector r(i) and s¤v(i) is a DM £ 1 vector
with the columns of SD(i) stacked on top of each

other.

In order to analyze the proposed joint optimization

procedure, we can rearrange the terms in y(i) and

define a single D(M +1)£ 1 parameter vector f (i) =
[!̄T(i) s¤v(i)]

H. We can therefore further express y(i) as

y(i) = fH(i)
·
0D£D 0D£DM
R(i) 0DM£DM

¸
f (i)

= fH(i)G(i) f (i) (56)

where G(i) is a D(M +1)£D(M +1) matrix which

contains R(i). Now let us perform a similar linear

algebra transformation with the proposed constraint

!̄H(i)SHD(i)s= 1 and express it as

!̄H(i)SHD(i)s= f
H(i)As f (i) (57)

where As is a D(M +1)£D(M +1) matrix structured

as

As =

·
0D£D 0D£DM
Rs 0DM£DM

¸
(58)

and the DM £D block diagonal matrix Rs with the
steering vector s constructed as

Rs =

266664
s 0 ¢ ¢ ¢ 0

0 s ¢ ¢ ¢ 0

...
...
. . .

...

0 0 ¢ ¢ ¢ s

377775 : (59)

At this point, we can alternatively express the

Lagrangian in (54) as

L= E[j fH(i)G(i) f (i)j2]+2<[¸¤( fH(i)As f (i)¡ 1)]:
(60)

We can examine the convexity of the above

Lagrangian by computing the Hessian (He) with
respect to f (i) using the expression [34]

He =
@

@ fH(i)
@L
@ f (i)

(61)

and testing if the terms are positive semi-definite.

Specifically, He is positive semi-definite if À
HHeÀ¸ 0

for all non-zero, À 2 CD(M+1)£D(M+1) [35]. Therefore,
the optimization problem is convex if the Hessian He
is positive semi-definite.

Evaluating the partial differentiation in the

expression given in (61) yields

He = 2E[ f
H(i)G(i) f (i)GH(i)+G(i) f (i) fH(i)GH(i)]

+2¸As: (62)

By examining He, we verify that the second term
is positive semi-definite, whereas the first terms is

indefinite. The third term depends on the constraint,

which is typically positive in the proposed scheme

as verified in our studies, yielding a positive

semi-definite matrix. Therefore, the optimization

problem cannot be classified as convex. It is however

important to remark that our studies indicate that there
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are no local minima and there exists multiple solutions

(which are possibly identical).

In order to support this claim, we have checked

the impact on the proposed algorithms of different

initializations. This study confirmed that the

algorithms are not subject to performance degradation

due to the initialization although we have to bear in

mind that the initialization SD(1) = 0M£D annihilates
the signal and must be avoided. We have also studied

a particular case of the proposed scheme when M = 1

and D = 1, which yields the Lagrangian

L(!̄(i),SD(i)) = E[j!̄H(i)SHD (i)r(i)j2]
+2<[¸¤(!̄H(i)SHD (i)s¡ 1)]: (63)

By choosing SD = 1, it is evident that the resulting
function

L(!̄(i),r(i)) = E[j!̄H(i)r(i)j2]
+2<[¸¤(!̄H(i)s¡ 1)] (64)

is a convex one. In contrast to that, for a time-varying

projection SD the plots of the function indicate that
the function is no longer convex but it also does not

exhibit local minima. The problem at hand can be

generalized to the vector case, however, we can no

longer verify the existence of local minima due to

the multi-dimensional surface. This remains as an

interesting open problem to be studied.

V. PERFORMANCE ASSESSMENT

In this section we evaluate the performance of

the proposed JOINT STAP algorithm in an airborne

radar application using the simulated collected radar

data. The parameters of the simulated radar platform

are shown in the Table IX. For all simulations, we

assume the presence of a mixture of two broadband

jammers at ¡45± and 60± with jammer-to-noise-ratio
(JNR) equal to 30 dB. The clutter-to-noise-ratio

(CNR) is fixed at 40 dB. The signal-to-noise-ratio

(SNR) is set at 10 dB. In particular, the performance

of the proposed scheme with the SG, the RLS, and

the hybrid algorithms is compared with existing

techniques, namely the full-rank SG and RLS

algorithms, the reduced-rank algorithms with SD(i)
designed according to the MSWF and the AVF

algorithms, the reduced-dimension algorithm JDL

with specified localized processing region (LPR), and

the optimal linear filter that assumes the knowledge

of the covariance matrix for both the DFP and the

GSC structures. To this end, the algorithms are

compared in terms of the SINR, which is defined for

the reduced-rank scheme as

SINR(i) =
j!̄H(i)SHD(i)sj2

!̄H(i)SHD(i)RSD(i)!̄(i)
(65)

and the probability of detection with specific false

alarm rate. In all the experiments, we set D = 6 for the

AVF and the MSWF-RLS algorithms, D = 4 for the

TABLE IX

Radar System Parameters

Parameter Value

Carrier frequency (fc) 450 MHz

Transmit pattern Uniform

PRF (fr) 300 Hz

Platform velocity (v) 50 m/s

Platform height (h) 9000 m

Clutter-to-noise ratio (CNR) 40 dB

Jammer-to-noise ratio (JNR) 30 dB

Elements of sensors (N) 8

Number of Pulses (K) 8

MSWF-SG algorithm, our proposed JOINT scheme

with the SG, the RLS, and the hybrid algorithms. The

performance of the JDL algorithm with D = 3£ 3
LPR is investigated. Note that the Ds are selected

via a large number of experiments to optimize the

algorithms in terms of SINR.

A. SINR Performance

In the first two experiments, we evaluate the

SINR performance of the considered algorithms

against the number of snapshots for both the DFP

and the GSC structures, and their curves are shown

in Figs. 7 and 8, respectively. L= 500 snapshots are

simulated and all presented results are averages over

100 independent Monte-Carlo runs. The parameters

used to obtain these curves are also shown and the

rank D shown in the figures are selected to optimize

the algorithms and we suppose the target injected in

the boresight (0±) with Doppler frequency 100 Hz.
The SG-version MSWF is known to have problems

in these situations since it does not tridiagonalize its

covariance matrix [9], being unable to approach the

optimal performance. The curves show an excellent

performance for the proposed scheme with the RLS

and the hybrid algorithms which converge much

faster than the full-rank SG and RLS algorithms, and

are also better than the more complex MSWF-RLS

and AVF schemes. The low complexity JOINT-SG

algorithm performs better than the MSWF-RLS

algorithm but slightly worse than the AVF algorithm.

Although the JDL algorithm converges a little

faster than our proposed algorithms, its steady-state

performance is inferior to the reduced-rank algorithms

and the full-rank RLS algorithm. Note that the

performance for the DFP and GSC structures is

similar and the proposed scheme using RLS and

hybrid algorithms is more promising than others

for the designer because of their good convergence

performance and reduced complexity.

In the next two experiments with the same

scenario as the previous ones, we evaluate the SINR

performance against the target Doppler frequency at

the mainbeam look angle for both the DFP and the

GSC structures which are illustrated in Figs. 9 and 10,
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Fig. 7. SINR performance against snapshot for FDP structure with M = 64, SNR= 10 dB, ®= 0:9998, ¹s = 0:0003, ¹! = 0:001.

Fig. 8. SINR performance against snapshot for GSC structure with M = 64, SNR = 10 dB, ®= 0:9998, ¹s = 0:0003, ¹! = 0:001.

respectively. The potential Doppler frequency space

from ¡100 to 100 Hz is examined. To illustrate that
our proposed scheme supports short data record, 100

snapshots are simulated and all results are averages

over 100 independent Monte-Carlo runs. The plots

show that our algorithms converge and approach the

optimum in a very short time, and form a deep null

to cancel the mainbeam clutter. It is worth to note

that the proposed JOINT-RLS and JOINT-hybrid

algorithms in the GSC structure have much deeper

notch in the low value Doppler space but less SINR

gain in the high value Doppler space than those in

the DFP structure, which means that they have better

performance to cancel the mainbeam clutter but less

response to the moving target with relative high

velocity.

B. Probability of Detection

In this part, the probability of detection (PD)

against SNR is evaluated for all algorithms with

limited training, say L= 100 snapshots, and the

results for the DFP and the GSC structures are shown

in Figs. 11 and 12, respectively. The false alarm

probability PFA is set to 1e-6 and we suppose the

target injected in the boresight (0±) with Doppler
frequency 100 Hz. The figures illustrate that the best
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Fig. 9. SINR performance against target Doppler frequency (FD) for FDP structure with 100 snapshots, M = 64, SNR = 10 dB,

®= 0:9998, ¹s = 0:0003, ¹! = 0:001.

Fig. 10. SINR performance against target Doppler frequency (FD) for GSC structure with 100 snapshots, M = 64, SNR= 10 dB,

®= 0:9998, ¹s = 0:0003, ¹! = 0:001.

detection performance is provided by the JOINT-RLS,

the JDL-RLS, and the JOINT-hybrid algorithms,

followed by the AVF and the proposed JOINT-SG

algorithms. As mentioned before, the proposed

algorithms in the GSC structure have less response

to the moving target with relative high velocity than

those in the DFP structure. Thus, in this experiment,

the PD performance of the proposed algorithms in the

DFP structure is better. We also note that with limited

training, the JDL algorithm has similar detection

performance to our proposed algorithm.

VI. CONCLUSIONS

We developed a novel reduced-rank scheme based

on joint iterative optimization of adaptive filters

and a reduced-rank STAP technique based on the

proposed JOINT algorithm with a low-complexity

implementation using the the SG, the RLS, and

the hybrid adaptive algorithms for airborne radar

applications. In the proposed scheme, a bank of

full-rank adaptive filters forms the projection matrix

and a small reduced-rank filter is responsible

for estimating the desired signal. We developed
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Fig. 11. Probability of detection performance against normalized SINR for FDP structure with 100 snapshots, PFA = 1e-6, M = 64,

®= 0:9998, ¹s = 0:0003, ¹! = 0:001.

Fig. 12. Probability of detection performance against normalized SINR for GSC structure with 100 snapshots, PFA = 1e-6, M = 64,

®= 0:9998, ¹s = 0:0003, ¹! = 0:001.

cost-efficient adaptive algorithms for the proposed

method for both the DFP and the GSC structures

and the complexity analysis was shown in terms

of the number of multiplications and additions

per snapshot. Furthermore, the convexity analysis

of the proposed method was carried out. The

results for radar clutter and jamming suppression

show a performance significantly better and

lower complexity than existing reduced-rank

schemes.

APPENDIX. SIMPLIFICATION OF SD(i)

In this Appendix, we show the details of the

simplification of the filter SD(i) in (35) for reducing
the computational complexity. Observing the terms

!̄H(i)R¡1!̄ (i)!̄(i) in the denominator of (35) and
employing the constrained condition !̄H(i)SHD(i)s= 1,
we have

!̄H(i)R¡1!̄ (i)!̄(i) = s
HSHD(i)!̄(i)!̄

H(i)R¡1!̄ (i)!̄(i)

= sHSHD(i)!̄(i) = 1: (66)
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Besides, we pay attention to the reduced-rank

weight matrix R!̄(i) = !̄(i)!̄
H(i). We can operate the

transformations as follow:

s̄HR!̄(i)s̄= s̄
H!̄(i)!̄H(i)s̄= 1: (67)

Thus, performance of the same operation in (eq:step1)

again, we have

s̄s̄HR!̄(i)s̄s̄
H = s̄s̄H: (68)

By multiplying the inversion (s̄s̄H)¡1 on the both sides
of (68) and combining the indentity matrix, the result

is
R¡1!̄ (i) = s̄s̄

H: (69)

Substituting (66) and (69) into (35) and using the

constrained condition again, we can get a simpler

expression for the projection matrix as (36)

SD(i) =
R̂¡1(i)s!̄(i)s̄s̄H

sHR̂¡1(i)s
=
R̂¡1(i)ss̄H

sHR̂¡1(i)s
: (70)
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