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Abstract— This article presents a tutorial on multiuser
multiple-antenna wireless systems with a very large number of
antennas, known as massive multi-input multi-output (MIMO)
systems. Signal processing challenges and future trends in the
area of massive MIMO systems are presented and key application
scenarios are detailed. A linear algebra approach is considered
for the description of the system and data models of massive
MIMO architectures. The operational requirements of massive
MIMO systems are discussed along with their operation in time-
division duplexing mode, resource allocation and calibration
requirements. In particular, transmit and receiver processing
algorithms are examined in light of the specific needs of massive
MIMO systems. Simulation results illustrate the performance of
transmit and receive processing algorithms under scenarios of
interest. Key problems are discussed and future trends in the
area of massive MIMO systems are pointed out.

I. INTRODUCTION

Wireless networks are experiencing a very substantial in-
crease in the delivered amount of data due to a number
of emerging applications that include machine-to-machine
communications and video streaming [1]–[3]. This very large
amount of data exchange is expected to continue and rise in the
next decade or so, presenting a very significant challenge to de-
signers of wireless communications systems. This constitutes
a major problem, not only in terms of exploitation of available
spectrum resources, but also regarding the energy efficiency in
the transmission and processing of each information unit (bit)
that has to substantially improve. The Wireless Internet of the
Future (WIoF) will have therefore to rely on technologies that
can offer a substantial increase in transmission capacity as
measured in bits/Hz but do not require increased spectrum
bandwidth or energy consumption.

Multiple-antenna or multi-input multi-output (MIMO) wire-
less communication devices that employ antenna arrays with
a very large number of antenna elements which are known as
massive MIMO systems have the potential to overcome those
challenges and deliver the required data rates, representing a
key enabling technology for the WIoF [4]- [6]. Among the
devices of massive MIMO networks are user terminals, tablets,
and base stations which could be equipped with a number
of antenna elements with orders of magnitude higher than
current devices. Massive MIMO networks will be structured by
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the following key elements: antennas, electronic components,
network architectures, protocols and signal processing.

The first important ingredient of massive MIMO networks
is antenna technology, which allows designers to assemble
large antenna arrays with various requirements in terms of
spacing of elements and geometries, reducing the number of
required radio frequency (RF) chains at the transmit and the
receive ends and their implementation costs [7]–[9]. In certain
scenarios and deployments, the use of compact antennas with
closely-spaced elements will be of great importance to equip
devices with a large number of antennas but this will require
techniques to mitigate the coupling effects especially at the
user terminals [10]. The second key area for innovation is that
of electronic components and RF chains, where the use of low-
cost amplifiers with output power in the mWatt range will play
an important role. Architectures such as the direct-conversion
radio (DCR) [11] are very attractive due to their flexibility
and ability to operate with several different air interfaces,
frequency bands and waveforms. Existing peripherals such as
large coaxial cables and power-hungry circuits will have to be
replaced with low-energy solutions.

Another key element of massive MIMO networks is the
network architecture, which will evolve from homogeneous
cellular layouts to heterogeneous architectures that include
small cells and the use of coordination between cells [12].
Since massive MIMO technology is likely to be incorporated
into cellular and local area networks in the future, the network
architecture will necessitate special attention on how to man-
age the interference created [13] and measurements campaigns
will be of fundamental importance [14]- [16]. The coordination
of adjacent cells will be necessary due to the current trend
towards aggressive reuse factors for capacity reasons, which
inevitably leads to increased levels of inter-cell interference
and signalling. The need to accommodate multiple users while
keeping the interference at an acceptable level will require
significant work in scheduling and medium-access protocols.

The last ingredient of massive MIMO networks and the
main focus of this article is signal processing. In particular,
MIMO signal processing will play a crucial role in dealing
with the impairments of the physical medium and in providing
cost-effective tools for processing information. Current state-
of-the-art in MIMO signal processing requires a computational
cost for transmit and receive processing that grows as a cubic
or super-cubic function of the number of antennas, which is
clearly not scalable with a large number of antenna elements.
We advocate the need for simpler solutions for both transmit



and receive processing tasks, which will require significant
research effort in the next years. Novel signal processing
strategies will have to be developed to deal with the problems
associated with massive MIMO networks like computational
complexity and its scalability, pilot contamination effects, RF
impairments, coupling effects, delay and calibration issues.
Another key point for future massive MIMO technology is the
application scenarios, which will become the main object of
investigation in the coming years. Amongst the most important
scenarios are multi-beam satellite networks, cellular systems
beyond LTE-A [2] and local area networks.

This article is structured as follows. Section II reviews
the system model including both uplink and downlink and
discusses the application scenarios. Section III is dedicated to
transmit processing techniques, whereas Section IV concen-
trated on receive processing. Section V discusses the results of
some simulations and Section VI presents some open problems
and suggestions for further work. The conclusions of this
article are given in Section VII.

II. APPLICATION SCENARIOS AND SIGNAL MODELS

In this section, we discuss several application scenarios for
multiuser massive MIMO systems which include multibeam
satellite systems, cellular and local area networks. Signal
models based on elementary linear algebra are then presented
to describe the information processing in both uplink and
downlink transmissions. These models are based on the as-
sumption of a narrowband signal transmission over flat fading
channels which can be easily generalized to broadband signal
transmission with the use of multi-carrier systems.

A. Application Scenarios
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Fig. 1. Multi-beam satellite network.

Amongst the most promising application scenarios of mul-
tiuser massive MIMO techniques are multibeam satellite [17],
cellular and local area networks. Multibeam satellite systems
are perhaps the most natural scenario for massive MIMO
because the number of antenna elements is above one hundred.
The major benefit of satellite communications is that all users
can be served within the coverage region at the same cost.
In this context, the next generation of broadband satellite
networks will employ multibeam techniques in which the
coverage region is served by multiple spot beams intended for
the users that are shaped by the antenna feeds forming part of

the payload [17], as depicted in Fig 1. A fundamental problem
with the multibeam approach is the interference caused by
multiple adjacent spot beams that share the same frequency
band. This interference between spot beams must be miti-
gated by suitable signal processing algorithms. Specifically,
multiuser interference mitigation schemes such as precod-
ing or multiuser detection can be jointly designed with the
beamforming process at the gateway station. The interference
mitigation must be applied to all the radiating signals instead
of the user beams directly. In the downlink (also known as
the forward link in the satellite communications literature),
the interference mitigation problem corresponds to designing
transmit processing or precoding strategies that require the
channel state information (CSI). For the uplink (also known
as the reverse link), the interference mitigation problem can
be addressed by the design of multiuser detectors.
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Fig. 2. Mobile cellular network.

The second highly-relevant scenario is that of mobile cel-
lular networks beyond LTE-A [2], which is illustrated in Fig.
2. In such networks, massive MIMO would play a key role
with the deployment of hundreds of antenna elements at the
base station, coordination between cells and a more modest
number of antenna elements at the user terminals. At the base
station, very large antenna arrays could be deployed on the
roof or on the façade of buildings. With further development
in the area of compact antennas and techniques to mitigate
mutual coupling effects, it is likely that the number of antenna
elements at the user terminals (mobile phones, tablets and
other gadgets) might also be significantly increased from 1−4
elements in current terminals to 10 − 20 in future devices.
In these networks, it is preferable to employ time-division-
duplexing (TDD) mode to perform uplink channel estimation
and obtain downlink CSI by reciprocity for signal processing
at the transmit side. This operation mode will require cost-
effective calibration algorithms. Another critical requirement is
the uplink channel estimation, which employs non-orthogonal
pilots and due to the existence of adjacent cells and the
coherence time of the channel needs to reuse the pilots [18].
Pilot contamination occurs when CSI at the base station in



one cell is affected by users from other cells. In particular, the
uplink (or multiple-access channel) will need CSI obtained
by uplink channel estimation, efficient multiuser detection
and decoding algorithms. The downlink (also known as the
broadcast channel) will require CSI obtained by reciprocity
for transmit processing and the development of cost-effective
scheduling and precoding algorithms.
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Fig. 3. Wireless local area network.

The third and last highly-relevant scenario is represented
by wireless local area networks (WLANs) [3], which are
shown in Fig. 3. The deployment of WLANs has increased
tremendously in the last few years with the proliferation
of hot spots and home users. These systems have adopted
orthogonal frequency-division multiplexing (OFDM) for their
air interface and are equipped with a number of antennas
of up to 8 at the access point and up to 4 antennas at the
user terminals [3]. Massive MIMO could play an important
role in the incorporation of a substantial number of antenna
elements at the access point using compact antennas and
planar array geometries to keep the size of the access point at
reasonable physical dimensions. The user terminals (laptops,
tablets and smart phones) could also rely on compact antennas
to accommodate a substantial number of radiating elements. In
the future, it is possible that the number of antenna elements
at the user terminals will be significantly increased from 8 to
over 100 elements at the access points terminals and from 4
to over 40 in future devices.

A key challenge in all the three scenarios is how to deal
with a very large number of antenna elements and develop
cost-effective algorithms, resulting in excellent performance in
terms of the metrics of interest, namely, bit error rate (BER),
sum-rate and throughput. In what follows, signal models that
can describe the processing and transmission will be detailed.

B. Donwlink Model

In our description, we consider a multiuser massive MIMO
system with a number of antenna elements equal to NA at
the transmitter, which could be a satellite gateway, a base
station of a cellular network or an access point of a WLAN.
The transmitter communicates with K users in the system,
where each user is equipped with NU antenna elements and
NA > KNU . It should be noted that in massive MIMO
systems, it is desirable to have an excess of degrees of freedom
[4], which means NA should exceed KNU by a significant
margin in order to leverage the array gain. At each time

instant [i], the transmitter applies a precoder to the KNU data
vector s[i] intended for the K users. The KNU data vector
s[i] consists of the stacking of the NU × 1 vectors sk[i] =[
sk,1[i], sk,2[i], . . . , sk,NU

[i]
]T

of the K users, where each
entry is a data symbol taken from a modulation constellation
A = {a1, a2, . . . , aN} with zero mean and variance σ2

s ,
where (·)T denotes transpose. The NA×1 precoded data vector
for user k is given by xk[i] = P(sk[i]), where P(·) is the
mathematical mapping applied by the precoder, and is then
transmitted over flat fading channels.

The received signal at each user after demodulation,
matched filtering and sampling is collected in an NU × 1

vector rk[i] =
[
rk,1[i], rk,2[i], . . . , rk,NU

[i]
]T with sufficient

statistics for processing and given by

rk[i] =
K∑

k=1

Hkxk[i] + nk[i], (1)

where the NU × 1 vector nk[i] is a zero mean complex
circular symmetric Gaussian noise with covariance matrix
E
[
nk[i]n

H
k [i]

]
= σ2

nI , where E[·] stands for expected value,
(·)H denotes the Hermitian operator, σ2

n is the noise variance
and I is the identity matrix. The NA×1 precoded data vectors
xk[i] have covariance matrices E

[
xk[i]x

H
k [i]

]
= σ2

xk
I , where

σ2
xk

is the signal power. The elements hnU ,nA of the NU×NA

channel matrices Hk are the complex channel gains from the
nAth transmit antenna to the nU th receive antenna.

C. Uplink Model
Let us now consider the uplink of a multiuser massive

MIMO system with K users that are equipped with NU

antenna elements and communicate with a receiver with NA

antenna elements, where NA > KNU . At each time instant,
the K users transmit NU symbols which are organized into a
NU ×1 vector sk[i] =

[
sk,1[i], sk,2[i], . . . , sk,NU

[i]
]T taken

from a modulation constellation A = {a1, a2, . . . , aN}.
The data vectors sk[i] are then transmitted over flat fading
channels. The received signal after demodulation, matched
filtering and sampling is collected in an NA × 1 vector
r[i] =

[
r1[i], r2[i], . . . , rNR

[i]
]T

with sufficient statistics
for processing as described by

r[i] =

K∑
k=1

Hksk[i] + n[i], (2)

where the NA × 1 vector n[i] is a zero mean complex
circular symmetric Gaussian noise with covariance matrix
E
[
n[i]nH [i]

]
= σ2

nI . The data vectors sk[i] have zero mean
and covariance matrices E

[
sk[i]s

H
k [i]

]
= σ2

sk
I , where σ2

sk
is the signal power. The elements hnA,nU

of the NA × NU

channel matrices Hk are the complex channel gains from the
nU th transmit antenna to the nAth receive antenna.

III. TRANSMIT PROCESSING

In this section, we discuss several aspects related to transmit
processing in massive MIMO systems. Fundamental results
in information theory have shown that the optimum transmit
strategy for the multiuser massive MIMO downlink channel
involves a theoretical dirty paper coding (DPC) technique that
performs interference cancellation combined with an implicit



user scheduling and power loading algorithm [37]. However,
this optimal approach is extremely costly and unlikely to
be used in any practical deployment. In what follows, we
consider several aspects of transmit processing in massive
MIMO systems which include TDD operation, pilot contam-
ination, resource allocation and precoding, and related signal
processing tasks.

A. TDD operation
One of the key problems in modern wireless systems is the

acquisition of CSI in a timely way. In time-varying channels,
TDD offers the most suitable alternative to obtain CSI because
the training requirements in a TDD system is independent of
the number of antennas at the base station (or access point)
[18] and there is no need for CSI feedback. In particular, TDD
systems rely on reciprocity by which the uplink channel is
used as an estimate of the downlink channel. An issue in this
operation mode is the difference in the transfer characteristics
of the amplifiers and the filters in the two directions. This can
be addressed through measurements and appropriate calibra-
tion [5]. In contrast, in a frequency division duplexing (FDD)
system the training requirements is proportional to the number
of antennas and CSI feedback is essential. For this reason,
massive MIMO systems will most likely operate in TDD mode
and will require further investigation in calibration methods.

B. Pilot contamination
The adoption of TDD mode and uplink training in massive

MIMO systems with multiple cells results in a phenomenon
called pilot contamination. In multi-cell scenarios, it is difficult
to employ orthogonal pilot sequences because the duration of
the pilot sequences depends on the number of cells and this
duration is severely limited by the channel coherence time due
to mobility. Therefore, non-orthogonal pilot sequences must be
employed and this affects the CSI employed at the transmitter.
Specifically, the channel estimate is contaminated by a linear
combination of channels of other users that share the same
pilot [18]. Consequently, the precoders and resource allocation
algorithms will be highly affected by the contaminated CSI.
Strategies to control or mitigate pilot contamination and its ef-
fects are very important for massive MIMO networks. Possible
approaches include work on optimization of waveforms, blind
channel estimation techniques, implicit training approaches
and precoding and resource allocation techniques that take into
account pilot contamination to mitigate its effects.

C. Resource allocation
Prior work on multiuser MIMO [32]–[34] has shown that

resource allocation techniques are fundamental to obtain fur-
ther capacity gains. In massive MIMO this will be equally
important and will have the extra benefit of more accurate CSI.
From a multiuser information theoretic perspective, the capac-
ity region boundary is achieved by serving all K active users
simultaneously. The resources (antennas, users and power) that
should be allocated to each user depend on the instantaneous
CSI which may vary amongst users. Since the total number
of users Q that could be served is often much higher than the
number of transmit antennas NA, the system needs a resource
allocation algorithm to select the best set of users according

to a chosen criterion such as the sum rate or a user target rate.
The resource allocation task is then to choose a set of users and
their respective powers in order to satisfy a given performance
metric. In massive MIMO systems, the spatial signatures of
the users to be scheduled might play a fundamental role
thanks to the very large number of antennas and an excess
of degrees of freedom [4], [5]. The multiuser diversity [32]
along with high array gains might be exploited by resource
allocation algorithm along with timely CSI. In particular, the
problem of user selection, i.e., scheduling, corresponds to a
combinatorial problem equivalent to the combination of K
choosing Q. Hence, it is clear that the exhaustive search over
all possible combinations is computationally prohibitive when
the K in the system is reasonably large, and thus cost-effective
user selection algorithms will be required. Strategies based on
greedy, low-cost and discrete optimization methods [33], [34],
[36] are very promising for massive MIMO networks because
they could reduce the cost of resource allocation algorithms.

D. Precoding and Related Techniques

Strategies for mitigating the multiuser interference at the
transmit side include transmit beamforming [5] and precoding
based on linear minimum mean square error (MMSE) [38] or
zero-forcing (ZF) [39] techniques and nonlinear approaches
such as DPC, Tomlinson-Harashima precoding (THP) [58] and
vector perturbation [43]. Transmit matched filtering (TMF)
is the simplest method for processing data at the transmit
side and has been recently advocated by several works for
massive MIMO systems [4], [5]. The basic idea is to apply
the conjugate of the channel matrix to the data symbol vector
s[i] prior to transmission as described by

x[i] = HHs[i], (3)

where the NA ×KNU matrix H contains the parameters of
all the channels and the NA×1 vector x[i] represents the data
processed by TMF.

Linear precoding techniques such as ZF and MMSE precod-
ing are based on channel inversion operations and are attractive
due to their relative simplicity for MIMO systems with a small
to moderate number of antennas. However, channel inversion
based precoding requires a higher average transmit power
than other precoding algorithms especially for ill conditioned
channel matrices, which could result in poor performance. A
linear precoder applies a linear transformations to the data
symbol vector s[i] prior to transmission as described by

x[i] = W ksk[i] +

K∑
l=1,l ̸=k

W lsl[i], (4)

where the NA×NU matrix W l contains the parameters of the
channels and the NU × 1 data symbol vectors sk[i] represent
the data processed by the linear precoder. The linear MMSE
precoder is described by WMMSE = HH(HHH + γI)−1,
where γ is a gain factor, and the linear ZF precoder is
expressed by W ZF = HH(HHH)−1.

Block diagonalization (BD) type precoding algorithms have
been proposed in [39]–[41] for MU-MIMO systems. The main
advantage of BD type algorithms is the sum-rate performance
that is not far from that obtained by DPC techniques and
the relative simplicity for implementation in systems with a



modest number of antennas. However, existing BD solutions
are unlikely to be used in massive MIMO systems due to the
cost associated with their implementation in antenna arrays
with hundreds of elements. This suggests that there is need
for cost-effective BD type strategies for very large antenna
arrays. THP [58] is a non-linear precoding technique that
employs feedforward and feedback matrices along with a
modulo operation to cancel the multiuser interference in a
more effective way than a standard linear precoder. With THP,
the NA × 1 precoded data vector is given by

x[i] = F x̃[i], (5)

where F is the NA × KNU feedforward precoding matrix
which can be obtained by an LQ decomposition of the channel
matrix H and the input data x̃[i] is computed element-by-
element by

x̃l[i] = mod
{
sl[i]−

l−1∑
q=1

blqxq[i]
}
, l = 1, . . . ,KNU , (6)

where blq are the elements of the KNU × KNU lower
triangular matrix B that can also be obtained by an LQ
decomposition. Amongst the appealing features of THP are its
excellent BER and sum-rate performances which are not far
from DPC and its flexibility to incorporate channel coding.
Future work on THP for massive MIMO networks should
concentrate on the reduction of the computational cost to
compute the feedforward and feedback matrices since existing
factorization algorithms would be too costly for systems with
hundreds of antenna elements.

Vector perturbation employs a modulo operation at the
transmitter to perturb the transmitted signal vector and to avoid
the transmit power enhancement incurred by ZF or MMSE
methods [43]. The task of finding the optimal perturbation
involves solving a minimum distance type problem that can
be implemented using sphere encoding or full search-based
algorithms. Let H denote a NA ×KNU multiuser composite
channel. The idea of perturbation is to find a perturbing vector
p from an extended constellation to minimize the transmit
power. The perturbation p is obtained by solving

p[i] = arg min
p′[i]∈ACZK

||W (s[i] + p′[i]||2 (7)

where W is some linear transformation or precoder such that
Tr(WHW ) ≤ P , the scalar A is chosen depending on the
constellation size (e.g., A = 2 for QPSK), and CZK is the
K-dimensional complex lattice. The transmit matched filter,
linear ZF or MMSE precoders can be used for W . After pre-
distortion using a linear precoder, the resulting constellation
region also becomes distorted and thus a modulo operation
is employed. This problem can be regarded as K-dimensional
integer-lattice least squares problem, which can be solved by
search based algorithms [43].

IV. RECEIVE PROCESSING

In this section, we discuss receive processing in massive
MIMO systems. In particular, we examine parameter estima-
tion and detection algorithms, iterative detection and decoding
techniques, mitigation of RF impairments and related signal
processing tasks.

A. Parameter Estimation and Detection Algorithms

Amongst the key problems in the uplink of multiuser
massive MIMO systems are the estimation of parameters
such as channels gains and receive filter coefficients, and
the detection of the transmitted symbols sk of each user as
described by the signal model in (2). The parameter estimation
task usually relies on pilot (or training) sequences and signal
processing algorithms. In multiuser massive MIMO networks,
non-orthogonal training sequences are likely to be used in
most application scenarios and the estimation algorithms must
be able to provide the most accurate estimates and to track
the variations due to mobility. Standard MIMO linear MMSE
and least-squares (LS) channel estimation algorithms [44] can
be used for obtaining CSI. However, the cost associated with
these algorithms is often cubic in the number of antenna
elements at the receiver, i.e., NA in the uplink. Moreover,
in scenarios with mobility the receiver will need to employ
adaptive algorithms [73] which can track the channel varia-
tions. Interestingly, massive MIMO systems have an excess
of degrees of freedom that translates into a reduced-rank
structure to perform parameter estimation. This is an excellent
opportunity that massive MIMO offers to apply reduced-rank
algorithms [28]- [31] and further develop these techniques.

In order to separate the data streams transmitted by the
different users in a multiuser massive MIMO network, a
designer must resort to detection techniques, which are similar
to multiuser detection methods [45]. The optimal maximum
likelihood (ML) detector is described by

ŝML[i] = argmin
s[i]

||r[i]−Hs[i]||2 (8)

where the KNU × 1 data vector s[i] contains the symbols of
all users. The ML detector has a cost that is exponential in the
number of data streams and the modulation order that is too
complex to be implemented in systems with a large number of
antennas. Even though the ML solution can be alternatively
computed using sphere decoder (SD) algorithms [46]- [50]
that are very efficient for MIMO systems with a small number
of antennas, the cost of SD algorithms depends on the noise
variance, the number of data streams to be detected and the
signal constellation, resulting in high computational costs for
low signal-to-noise ratios (SNR), high-order constellations and
a large number of data streams.

The high computational complexity of the ML detector
and the SD algorithms in the scenarios described above have
motivated the development of numerous alternative strategies
for MIMO detection, which often rely on signal processing
with receive filters. The key advantage of these approaches
with receive filters is that the cost is typically not dependent on
the modulation and the receiver can compute the receive filter
only once per data packet and perform detection. Algorithms
that can compute the parameters of receive filters with low
cost are of central importance to massive MIMO systems. In
what follows, we will briefly review some relevant suboptimal
detectors, which include linear and decision-driven strategies.

Linear detectors [51] include approaches based on the
receive matched filter (RMF), ZF and MMSE designs and are
described by

ŝ[i] = Q
(
WHr[i]

)
, (9)

where the receive filters are WRMF = H for the RMF,



WMMSE = (HHH + σ2
s/σ

2
nI)

−1H for the MMSE and
W ZF = (HHH)−1H for the ZF design, and Q(·) represents
the slicer used for detection.

Decision-driven detection algorithms such as successive in-
terference cancellation (SIC) approaches used in the Vertical-
Bell Laboratories Layered Space-Time (VBLAST) systems
[52]- [56] and decision feedback (DF) [57] detectors are tech-
niques that can offer attractive trade-offs between performance
and complexity. Prior work on SIC and DF schemes has been
reported with DF detectors with SIC (S-DF) [57], [63] and
DF receivers with parallel interference cancellation (PIC) (P-
DF) [66], [67], combinations of these schemes [24], [66], [70]
and mechanisms to mitigate error propagation [71], [72]. DF
detectors [57], [63], [66] employ feedforward and feedback
matrices that can be based on the receive matched filter (RMF),
ZF and MMSE designs as described by

ŝ = Q
(
WHr[i]− FH ŝo[i]

)
, (10)

where ŝo corresponds to the initial decision vector that is
usually performed by the linear section of the DF receiver
(e.g., ŝo = Q(WHr)) prior to the application of the feedback
section. The receive filters W and F can be computed using
design criteria and optimization algorithms.

An often criticized aspect of these sub-optimal schemes is
that they typically do not achieve the full receive-diversity
order of the ML algorithm. This led to the investigation of
detection strategies such as lattice-reduction (LR) schemes
[58]- [59], QR decomposition, M-algorithm (QRD-M) detec-
tors [60], probabilistic data association (PDA) [61], [62] and
multi-branch [24], [26] detectors, which can approach the ML
performance at an acceptable cost for small to moderate sys-
tems. The development of cost-effective detection algorithms
for massive MIMO systems is a formidable task that calls for
new approaches and ideas in this exciting area.

B. Iterative Detection and Decoding Techniques

Iterative detection and decoding (IDD) schemes have re-
ceived considerable attention in the last years following the
discovery of Turbo codes [74] and the use of the Turbo
principle for mitigation of several sources of interference [75]-
[83]. More recently, work on IDD schemes has been extended
to low-density parity-check codes (LDPC) [79], [81] and their
variants which rival Turbo codes in terms of performance.
The basic idea of an IDD system is to combine an efficient
soft-input soft-output (SISO) detection algorithm and a SISO
decoding technique. In particular, the detector produces log-
likelihood ratios (LLRs) associated with the encoded bits
and these LLRs serve as input to the decoder. Then, in the
second phase of the detection/decoding iteration, the decoder
generates a posteriori probabilities (APPs) after a number
of (inner) decoding iterations for encoded bits of each data
stream. These APPs are fed to the detector to help in the next
iterations between the detector and the decoder, which are
called outer iterations. The joint process of detection/decoding
is then repeated in an iterative manner until the maximum
number of (inner and outer) iterations is reached. In massive
MIMO systems, it is likely that either Turbo or LDPC codes
will be adopted in IDD schemes for mitigation of multiuser,
multipath, intercell and other sources of interference. LDPC
codes exhibit some advantages over Turbo codes that include

simpler decoding and implementation issues. However, LDPC
codes often require a higher number of decoding iterations
which translate into delays or increased complexity. The
development of IDD schemes and decoding algorithms that
perform message passing with reduced delays [84]- [86] are
of paramount importance in future wireless systems.

C. Mitigation of RF Impairments

The large antenna arrays used in massive MIMO systems
will pose several issues to system designers such as coupling
effects, in-phase/quadrature (I/Q) imbalances [87], and failures
of antenna elements, which will need to be addressed. The
first potential major impairment in massive MIMO systems
is due to reduced spacing between antenna elements which
result in coupling effects. In fact, for compact antenna arrays
a reduction of the physical size of the array inevitably leads
to reduced spacing between antenna elements, which can
severely reduce the multiplexing gain. In order to address
these coupling effects, receive processing approaches will
have to work with transmit processing techniques to undo the
coupling induced by the relatively close spacing of radiating
elements in the array. Another major impairment in massive
MIMO systems is I/Q imbalances in the RF chains of the
large arrays. This problem can be addressed by receive or
transmit processing techniques and require modelling of the
impairments for subsequent mitigation. When working with
large antenna arrays, a problem that might also occur is the
failure of some antenna elements. Such sensor failures are
responsible for a reduction in the degrees of freedom of the
array and must be dealt by signal processing algorithms.

V. SIMULATION RESULTS

In this section, we illustrate some of the techniques outlined
in this article using massive MIMO configurations, namely,
a very large antenna array, an excess of degrees of freedom
provided by the array and a large number of users with mul-
tiple antennas. We consider QPSK modulation and channels
that are fixed during a data packet and that are modeled
by complex Gaussian random variables with zero mean and
variance equal to unity. The signal-to-noise ratio (SNR) in dB
is defined as SNR = 10 log10

NTσ2
s

σ2 , where σ2
s is the variance

of the symbols, σ2
n is the noise variance, and we consider data

packets of 1000 QPSK symbols.
In the first example, we compare the BER performance

against the SNR of several detection algorithms, namely, the
RMF with K = 8 users and with a single user, the linear
MMSE detector [51] and the DF MMSE detector using a
successive interference cancellation [24], [57], [66]. In par-
ticular, a scenario with NA = 128 antenna elements at the
receiver, K = 8 users and NU = 8 antenna elements at the
user devices is considered, which corresponds to an excess of
degrees of freedom equal to NA − KNU = 64. The results
shown in Fig. 4 indicate that the RMF with a single user has
the best performance, followed by the DF MMSE, the linear
MMSE and the RMF detectors. Unlike previous works [5]
that advocate the use of the RMF, it is clear that the BER
performance loss experienced by the RMF should be avoided
and more advanced receivers should be considered. However,
the cost of linear and DF receivers is dictated by the matrix
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Fig. 4. BER performance against SNR of detection algorithms in a scenario
with NA = 128, K = 8 users and NU = 8 antenna elements.

inversion of NA × NA matrices which must be reduced for
large systems.

In the second example, we compare the sum-rate per-
formance against the SNR of several precoding algorithms,
namely, the TMF with a varying number of users and with a
single user, the linear MMSE precoder and the THP MMSE
precoder. The sum-rate is calculated using [90]:

C = log(det(I + σ−2
n HPPHHH))(bits/Hz). (11)

We consider a similar scenario to the previous one in which
the transmitter is equipped with NA = 128 antenna elements,
and there are K = 8 users with NU = 8 antenna elements.
The results in Fig. 5 show that the TMF with a single user has
the best sum-rate performance, followed by the THP MMSE,
the regularized BD (RBD), the linear MMSE and the TMF
precoding algorithms. From the curves in Fig. 5, we can notice
that the performance of TMF is much worse than that of THP
and of RBD . This suggests that more sophisticated precoding
techniques with lower complexity should be developed to
maximize the capacity of massive MIMO systems.

VI. FUTURE TRENDS AND EMERGING TOPICS

In this section, we discuss some future signal processing
trends in the area of massive MIMO systems and point
out some emerging topics that might attract the interest of
researchers. The topics are structured as:

• Transmit processing:

→ Cost-effective scheduling algorithms: The
development of methods that have low cost and
are scalable such as greedy algorithms [33] and discrete
optimization techniques [36] will play a crucial role in
massive MIMO networks.

→ Calibration procedures: The transfer characteristics
of the filters and amplifiers used for TDD operation will
require designers to devise algorithms that can efficiently
calibrate the links.
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Fig. 5. Sum-rate performance against SNR of precoding algorithms in a
scenario with NA = 128, K = 8 users and NU = 8 antenna elements.

→ Precoders with scability in terms of complexity: The
use of divide-and-conquer approaches, methods based on
sensor array signal processing and sectorization will play
an important role to reduce the dimensionality of the
transmit processing problem. Moreover, the investigation
and development of TMF strategies with non-linear
cancellation strategies and low-cost decompositions for
linear and non-linear precoders will be important to
obtain efficient transmit methods.

• Receive processing:

→ Cost-effective detection algorithms: Techiques to
perform dimensionality reduction [28]- [31] for detection
problems will play an important role in massive MIMO
devices. By reducing the number of effective processing
elements, detection algorithms could be applied. In
addition, the development of schemes based on RMF
with non-linear interference cancellation capabilities
might be a promising option that can close the gap
between RMF and more costly detectors.

→ Decoding strategies with low delay: The development
of decoding strategies with reduced delay will play
a key role in applications such as audio and video
streaming because of their delay sensitivity. Therefore,
we argue that novel message passing algorithms with
smarter strategies to exchange information should be
investigated along with their application to IDD schemes.

→ Mitigation of impairments: The identification of im-
pairments originated in the RF chains of massive MIMO
systems will need mitigation by smart signal processing
algorithms. For example, I/Q imbalance might be dealt
with using widely-linear signal processing algorithms
[88] and [89].

VII. CONCLUDING REMARKS

This article has presented a tutorial on massive MIMO
systems and discussed signal processing challenges and future



trends in this exciting reseach topic. Key application scenarios
which include multibeam satellite, cellular and local area
networks have been examined along with several operational
requirements of massive MIMO networks. Transmit and re-
ceive processing tasks have been discussed and fundamental
signal processing needs for future massive MIMO networks
have been identified. Numerical results have illustrated some
of the discussions on transmit and receive processing functions
and future trends have been highlighted. Massive MIMO
technology is likely to be incorporated into the applications
detailed in this article on a gradual basis by the increase in
the number of antenna elements and by the need for more
sophistical signal processing tools to transmit and process a
large amount of information.
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