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Abstract—We propose a reduced-rank beamformer based on the
rank- Joint Iterative Optimization (JIO) of the modified Widely
Linear Constrained Minimum Variance (WLCMV) problem for
non-circular signals. The novel WLCMV-JIO scheme takes ad-
vantage of both the Widely Linear (WL) processing and the re-
duced-rank concept, outperforming its linear counterpart as well
as the full-rankWL beamformer.We develop an augmented recur-
sive least squares algorithm and present an improved structured
version with a much more efficient implementation. It is shown
that the improved adaptive scheme achieves the best convergence
performance among all the considered methods with a low compu-
tational complexity.

Index Terms—Adaptive beamforming, linear constrained min-
imum variance, non-circular data, recursive least squares algo-
rithms, reduced-rank methods, widely linear processing.

I. INTRODUCTION

A DAPTIVE beamforming techniques have been widely
used in the areas of radar, sonar, speech enhancement,

and wireless communications. In general, a beamformer design
requires the second-order statistics of the observation data
vector , which can be fully described by its covariance matrix

and its pseudo-covariance matrix .
In the situations when is second-order non-circular, i.e.,

, Widely Linear (WL) processing can improve the per-
formance as compared to the conventional linear counterpart
[1], [2], [3], [4], [5]. Some WL beamforming algorithms based
on the Minimum Mean Square Error (MMSE) criterion [6] and
the Linearly Constrained Minimum Variance (LCMV) criterion
[7], [8], [9], [10] have been discussed and analyzed.
However, in applications with a large number of antennas,

the parameter estimation requires a considerable number of data
samples. Moreover, WL processing has to consider both the ob-
servation data and its complex conjugate so that the in-
formation contained in both and can be fully exploited.
This leads to an increased beamformer length and considerably
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slows down the convergence speed of adaptive algorithms. Re-
duced-rank techniques can provide a faster convergence by es-
timating a reduced number of coefficients, which motivates the
combination of reduced-rank schemes with the WL processing.
Prior work concerning WL reduced-rank techniques is based
on the eigen-decomposition [1], the multi-stage Wiener filter
(MSWF) [11], or the auxiliary vector filter (AVF) [12]. How-
ever, thesemethods are relatively costly andmay suffer from nu-
merical problems. In comparison, the Joint Iterative Optimiza-
tion (JIO) method proposed in [13] shows a better performance
and lends itself to an efficient adaptive implementation.
In this work, we propose a WL JIO beamformer based on

the Widely Linear Constrained Minimum Variance (WLCMV)
criterion with regularization, namely the WLCMV-JIO. After
introducing the WLCMV-JIO algorithm, we develop the corre-
sponding Recursive Least Squares (RLS) adaptive algorithms,
namelyAugmentedRLS (A-RLS) and StructuredRLS (S-RLS).
TheA-RLSdirectly dealswith the concatenation of and . The
S-RLS exploits the block conjugate structure of the covariance
matrix and the resulting estimation is carried out in a structured
manner, yielding a much more efficient implementation than
the A-RLS. We evaluate the computational complexity of the
proposed schemes in terms of complex additions andmultiplica-
tions. Simulation results on the convergence and rank-dependent
performances are also shown.

II. WIDELY LINEAR JOINT ITERATIVE OPTIMIZATION
BEAMFORMER BASED ON WLCMV

Let us assume that narrowband signals impinge on an array
with an arbitrary geometry, consisting of ( ) sensor
elements. The sources are assumed to be in the far field with Di-
rections-Of-Arrival (DOAs) . The received vector
can be modeled as

(1)

where contains the DOAs,
consists of the steering vectors
, is the data vector

from sources, and is the additive white Gaussian
noise vector with zero mean and power spectrum density .
The steering vector of the Signal-of-Interest (SOI) is .

A. WLCMV Beamformer

Given a received signal , the original vector and its
complex conjugate are often combined into an augmented
vector using a bijective transformation

(2)
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Fig. 1. Block diagram of the WL reduced-rank scheme.

in order to exploit the information contained in both the co-
variance matrix and the pseudo-covariance matrix . The
output of a WL beamformer is , where the com-
plex weight vector is designed for the augmented
received vector .
The WLCMV beamformer is calculated by solving the

following constrained optimization problem [7], [8], [9], [10]

(3)

where is the augmented array steering
vector of the SOI and is a constant. The augmented covari-
ance matrix with a block structure is represented as

(4)

For the non-circular data sources, , which means that
is second-order non-circular. The weight vector designed from
(3) minimizes the output power while preserving the response
in the direction of the augmented SOI. The optimum solution is
written as

(5)

It is shown in [14], [15] that if the data to be estimated
are real, i.e., strictly non-circular such as Binary Phase Shift
Keying (BPSK) signals, and the MMSE criterion [15] or the
minimum output-energy criterion [16] is used, it follows that

, where . Therefore, a key
property of the WL filtering is the conjugate symmetry defined
as .

B. WLCMV-JIO Design

The block diagram of the proposed WL reduced-rank beam-
former is shown in Fig. 1. After the augmented received vector

is obtained, it is transformed by a rank-reduc-
tion matrix into a subspace with dimension
( ). The beamformer is designed by pro-

cessing the reduced-rank vector and
its output is expressed as .
Both and can be calculated according to the fol-

lowing proposed rank- WLCMV optimization criterion,

(6)

where and are small positive constants used for regular-
ization and to ensure that has rank and is a con-
stant corresponding to the constraint. The augmented steering
vector of the SOI is expressed as .
Furthermore, is a pinning vector, which is the -th
column of the identity matrix . The matrix represents
an -by- matrix with 1s on the diagonal and zeros elsewhere.
Thus, .
The above problem can be solved by the method of Lagrange

multipliers. The unconstrained Lagrangian can be written as

(7)

where is a scalar corresponding to the Lagrange multiplier.
A two-step optimization procedure is applied to derive

and . Firstly, we fix and minimize (7) by taking its
gradient with respect to . The resulting reduced-rank beam-
forming vector can be expressed as

(8)

where is a scalar,
is the reduced-rank augmented array steering

vector of the SOI, and
is the reduced-rank augmented covariance matrix. Sec-

ondly, by fixing , the solution to the minimization of (7)
with respect to is given by

(9)

where is a rank
matrix, is a scalar and

is the reduced-rank weight
matrix.
It is worth remarking that by using such a joint optimization,
and expressed in (8) and (9) depend on each other and

thus they are not closed-form solutions. Therefore, the computa-
tion of and should be carried out in an iterative fashion
with the corresponding initial values. The rank-reduction ma-
trix designed in WLCMV-JIO transforms the augmented
vector into a subspace with a much smaller dimension to
improve the convergence performance. One advantage lies in
the iterative exchange of the information between the rank-re-
duction matrix and the WL reduced-rank beamformer, which
leads to a faster convergence. It offers a simpler implementation
as compared to the existing WL reduced-rank schemes such as
the MSWF or the AVF [13], because it is possible to devise ef-
ficient adaptive algorithms to solve (7). The WLCMV-JIO also
benefits from fully exploiting the second-order statistics of the
non-circular signals, leading to a better estimation performance.
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C. Adaptive Algorithms

Two adaptive algorithms, namely Augmented RLS
(A-RLS) and Structured RLS (S-RLS), are developed for
the WLCMV-JIO scheme to estimate and 1.
1) Augmented RLS: One straightforward way is to apply the

RLS adaptation based on the augmented received vector ,
i.e., the A-RLS algorithm. Either (8) or the adaptation of the
rank-reduction matrix in (9) requires estimating the in-
verse of a matrix. According to the matrix inversion lemma, for
example, we can update as

(10)

where the gain vector is

(11)

and is the forgetting factor which is a positive constant close
to but less than 1. Similarly, the updates of can be per-
formed by replacing the relevant variables with .
To estimate , we avoid the direct matrix inversion by

applying the matrix inversion lemma and obtain

(12)

2) Structured RLS: In A-RLS, the calculation of re-
quires the calculation of parameters with a dimension of ,
which is computationally inefficient especially when is large.
By exploiting the structured property of the augmented covari-
ance matrix as shown in (4), the adaptive estimation algo-
rithm can be implemented in a much more efficient way [6]. Let
us rewrite as

(13)

where it follows that and . Thereby, the
estimation of can be broken down into the calculation
of and , respectively, so as to reduce the computational
complexity. By inserting (13) into (10), we can obtain

(14)

(15)

where

(16)

(17)

Moreover, applying (13) to (9) and using the property of con-
jugate symmetry, we get

(18)

1For simplicity, we consider the constraint and assume that all the
users transmit real-valued data, i.e., strictly non-circular.

TABLE I
THE A-RLS ADAPTIVE ALGORITHM FOR WLCMV-JIO

TABLE II
THE S-RLS ADAPTIVE ALGORITHM FOR WLCMV-JIO

where and
. The expression for in (18) breaks the calcula-

tion of matrices in the denominator from down to , which
reduces the computational complexity.
The A-RLS and S-RLS algorithms of WLCMV-JIO are sum-

marized in Tables I and II, where , , , are initialization
scalars to ensure the numerical stability.
In what follows, we compare the proposed algorithms with

the full-rank LCMV-RLS algorithm [17], the JIO-RLS scheme
based on the LCMV criterion (denoted by LCMV-JIO-RLS)
[13], as well as the full-rank WLCMVmethods in terms of both
A-RLS and S-RLS adaptations.

III. COMPLEXITY ANALYSIS

The computational complexity of the proposedWLCMV-JIO
algorithms and other considered schemes is estimated and com-
pared in Table III. Fig. 2 illustrates the total number of complex
additions and multiplications per iteration per symbol for each
algorithm as a function of , where the rank of the JIO schemes
is chosen as . It can be observed that the complexity of
WLCMV-JIO-S-RLS is only slightly higher than the full-rank
LCMV-RLS, but it exhibits a lower complexity than the A-RLS
algorithms, which are based on both the WLCMV-JIO and the
full-rank WLCMV.

IV. SIMULATION RESULTS

This section presents the Signal-to-Interference plus Noise
Ratio (SINR) performance of the proposed algorithms and the
other considered schemes. The output SINR of the reduced-rank
algorithms can be calculated by

(19)
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TABLE III
ESTIMATED COMPUTATIONAL COMPLEXITY ACCORDING TO THE

NUMBER OF COMPLEX OPERATIONS

Fig. 2. Computational complexity in terms of complex additions and multipli-
cations per iteration per symbol versus .

where and are the augmented covariance matrices
of the SOI and the interference plus noise, respectively. A
uniform linear array consisting of sensors is con-
sidered. We assume that among sources, the DOA of the
SOI is known a priori at the receiver and let without
loss of generality. The interfering signals impinge on the
array with DOAs of . The source signals
( ) are assumed to be BPSK-modulated with an input
Signal-to-Noise Ratio (SNR) of 10 dB and the Signal-to-In-
terference Ratio (SIR) of dB. The calculation of the
reduced-rank beamforming vector is achieved by ini-
tializing the rank-reduction matrix with
a chosen rank . The initialization of the other matrices is
chosen so that the best performance of each method is achieved
in order to ensure a fair comparison.
Fig. 3 shows the convergence performance of various adap-

tive schemes in terms of the SINR, where the maximum
achievable SINRs for LCMV and WLCMV (cf. [12]) are in-
cluded. We can observe that the WLCMV-JIO-S-RLS and
the WLCMV-JIO-A-RLS outperform their linear counterpart
(i.e., LCMV-JIO-RLS) as well as the full-rank schemes. Since
the WLCMV-JIO-S-RLS estimates the parameters in a struc-
tured way, it converges faster than the WLCMV-JIO-A-RLS,
which has to deal with the augmented received vector of size

.
The performance of the WLCMV-JIO algorithms also

depends on the rank . We analyze such a rank-dependent

Fig. 3. The output SINR versus the number of snapshots.

Fig. 4. The output SINR versus the rank using snapshots.

performance as a function of and depict the corresponding
performance using snapshots in Fig. 4. It is shown
that the best performance for both RLS versions of the WL-JIO
can be achieved when or 5.

V. CONCLUSION

We propose a novel reduced-rank WLCMV beamformer
based on the rank- JIO concept for non-circular signals. The
WLCMV-JIO scheme aims at minimizing the output power
of the sensor array while preserving the desired response in
the direction of the “augmented” SOI. As the second-order
statistics are fully exploited, it outperforms its linear counter-
part. The rank- JIO is performed according to the modified
WLCMV criterion such that the information between the re-
duced-rank beamforming vector and the rank-reduction matrix
can be iteratively exchanged. In this way, the proposed scheme
yields a better convergence performance with a small rank than
the full-rank case. Two adaptive algorithms, namely A-RLS
and S-RLS, are developed for the WLCMV-JIO beamformer.
Thanks to the structured property of the augmented covariance
matrix , the S-RLS method converges faster and has a much
lower complexity than the A-RLS version.



SONG et al.: ADAPTIVE WIDELY LINEAR REDUCED-RANK BEAMFORMING 269

REFERENCES

[1] P. J. Schreier and L. L. Scharf, “Second-order analysis of improper
complex random vectors and processes,” IEEE Trans. Signal Process.,
vol. 51, no. 3, pp. 714–725, Mar. 2003.

[2] D. Mandic et al., Complex Valued Nonlinear Adaptive Flters: Non-
circularity, Widely Linear and Neural Models. Hoboken, NJ, USA:
Wiley, 2009, vol. 59.

[3] P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Com-
plex-Valued Data: The Theory of Improper and Noncircular Signals.
Cambridge, U.K.: Cambridge Univ. Press, 2010.

[4] P. Chevalier, A. Oukac, and J. P. Delmas, “Glrt-based array receivers
for the detection of a known signal with unknown parameters corrupted
by noncircular interferences,” EURASIP J. Adv. Signal Process., vol.
2011, no. 1, pp. 1–20, 2011.

[5] J. P. Delmas, A. Oukaci, and P. Chevalier, “On the asymptotic distri-
bution of glr for impropriety of complex signals,” Signal Processing
(Elsevier), vol. 91, no. 10, pp. 2259–2267, 2011.

[6] S. C. Douglas, “Widely-linear recursive least-squares algorithm for
adaptive beamforming,” in IEEE Int. Conf. Acoustics, Speech and
Signal Processing, ICASSP’09, 2009, pp. 2041–2044.

[7] P. Chevalier and A. Maurice, “Constrained beamforming for cyclosta-
tionary signals,” in Proc. Int. Conf. Acoustics, Speech, and Signal Pro-
cessing (ICASSP 1997), 1997, vol. 5, pp. 3789–3792.

[8] T. McWhorter and P. Schreier, “Widely-linear beamforming,” in the
Thirty-Seventh Asilomar Conf. Signals, Systems and Computers, 2003,
vol. 1, pp. 753–759.

[9] P. Chevalier and A. Blin, “Widely linear MVDR beamformers for the
reception of an unknown signal corrupted by noncircular interferences,”
IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5323–5336, 2007.

[10] P. Chevalier, J. P. Delmas, and A. Oukaci, “Optimal widely linear
MVDR beamforming for noncircular signals,” in IEEE Int. Conf.
Acoustics, Speech and Signal Processing, ICASSP’09, 2009, pp.
3573–3576.

[11] N. Song, R. C. de Lamare, M. Haardt, and M. Wolf, “Adaptive widely
linear reduced-rank interference suppression based on the multi-stage
wiener filter,” IEEE Trans. Signal Process., vol. 60, no. 8, 2012.

[12] N. Song, J. Steinwandt, L. Wang, R. C. de Lamare, and M.
Haardt, “Non-data-aided adaptive beamforming algorithm based on
the widely linear auxiliary vector filter,” in Proc. Int. Conf. Acous-
tics, Speech, and Signal Processing (ICASSP 2011), Prague, Czech
Republic, May 2011.

[13] R. C. de Lamare, L. Wang, and R. Fa, “Adaptive reduced-rank lcmv
beamforming algorithms based on joint iterative optimization of fil-
ters: Design and analysis,” Signal Process., vol. 90, no. 2, pp. 640–652,
2010.

[14] S. Buzzi, M. Lops, and A. M. Tulino, “A new family of MMSE mul-
tiuser receivers for interference suppression in DS/CDMA systems em-
ploying BPSK modulation,” IEEE Trans. Commun., vol. 49, no. 1, pp.
154–167, Jan 2001.

[15] B. Picinbono and P. Chevalier, “Widely linear estimation with com-
plex data,” IEEE Trans. Signal Process., vol. 43, no. 8, pp. 2030–2033,
1995.

[16] A. S. Cacciapuoti, G. Gelli, L. Paura, and F. Verde, “Finite-sample per-
formance analysis of widely linear multiuser receivers for DS-CDMA
systems,” IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1572–1588,
2008.

[17] L. S. Resende, J. M. T. Romano, and M. G. Bellanger, “A fast least-
squares algorithm for linearly constrained adaptive filtering,” IEEE
Trans. Signal Process., vol. 44, no. 5, pp. 1168–1174, 1996.


