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Sparsity-Aware Adaptive Algorithms Based on
Alternating Optimization and Shrinkage

Rodrigo C. de Lamare, Senior Member, IEEE, and Raimundo Sampaio-Neto

Abstract—This letter proposes a novel sparsity-aware adaptive
filtering scheme and algorithms based on an alternating optimiza-
tion strategy with shrinkage. The proposed scheme employs a two-
stage structure that consists of an alternating optimization of a di-
agonally-structured matrix that speeds up the convergence and an
adaptive filter with a shrinkage function that forces the coefficients
with small magnitudes to zero. We devise alternating optimization
least-mean square (LMS) algorithms for the proposed scheme and
analyze its mean-square error. Simulations for a system identifi-
cation application show that the proposed scheme and algorithms
outperform in convergence and tracking existing sparsity-aware
algorithms.

Index Terms—Adaptive filters, iterative methods, sparse signal
processing.

I. INTRODUCTION

I N THE last few years, there has been a growing interest in
adaptive algorithms that can exploit the sparsity present in

various signals and systems that arise in applications of adap-
tive signal processing [1]–[10]. The basic idea is to exploit prior
knowledge about the sparsity present in the data that need to be
processed for applications in system identification, communi-
cations and array signal processing. Several algorithms based
on the least-mean square (LMS) [1], [2] and the recursive least-
squares (RLS) [3], [4], [5], [6] techniques have been reported
in the literature along with different penalty or shrinkage func-
tions. These penalty functions perform a regularization that at-
tracts to zero the coefficients of the adaptive filter that are not
associated with the weights of interest. With this objective in
mind, several penalty functions that account for the sparisty
of data signal have been considered, namely: an approxima-
tion of the -norm [1], [6], the - norm penalty [2], [5], and
the log-sum penalty [2], [5], [8]. These algorithms solve prob-
lems with sparse features without relying on the computation-
ally complex oracle algorithm, which requires an exhaustive
search for the location of the non-zero coefficients of the system.
However, the available algorithms in the literature also exhibit
a performance degradation as compared to the oracle algorithm,
which might affect the performance of some applications of
adaptive algorithms.
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Motivated by the limitation of existing sparse adaptive tech-
niques, we propose a novel sparsity-aware adaptive filtering
scheme and algorithms based on an alternating optimization
strategy with shrinkage. The proposed scheme employs a two-
stage structure that consists of an alternating optimization of a
diagonally-structured matrix that accelerates the convergence
and an adaptive filter with a shrinkage function that attracts
the coefficients with small magnitudes to zero. The diagonally-
structure matrix aims to perform what the oracle algorithm does
and helps to accelerate the convergence of the scheme and im-
prove its steady-state performance.We devise sparsity-aware al-
ternating optimization least-mean square (SA-ALT-LMS) algo-
rithms for the proposed scheme and derive analytical formulas
to predict their mean-square error (MSE) upon convergence.
Simulations for a system identification application show that
the proposed scheme and algorithms outperform in convergence
and tracking the state-of-the-art sparsity-aware algorithms.

II. PROBLEM STATEMENT AND THE ORACLE ALGORITHM

In this section, we state the sparse system identification
problem and describe the optimal strategy known as as the
oracle algorithm, which knows the positions of the non-zero
coefficients of the sparse system.

A. Sparse System Identification Problem

In the sparse system identification problem of interest, the
system observes a complex-valued signal represented by an

vector at time instant , performs filtering and
obtains the output , where is an -length
finite-impulse-response (FIR) filter that represents the actual
system. For system identification, an adaptive filter with
coefficients is employed in such a way that it observes

and produces an estimate . The system
identification scheme then compares the output of the actual
system and the adaptive filter , resulting in an error
signal , where is the measurement
noise. In this context, the goal of an adaptive algorithm is to
identify the system by minimizing the MSE defined by

(1)

A key problem in electronic measurement systems which are
modeled by sparse adaptive filters, where the number of non-
zero coefficients , is that most adaptive algorithms do
not exploit their sparse structure to obtain performance benefits
and/or a computational complexity reduction. If an adaptive al-
gorithm can identify and exploit the non-zero coefficients of the
system to be identified, then it can obtain performance improve-
ments and a reduction in the computational complexity.
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Fig. 1. Proposed adaptive filtering scheme.

B. The Oracle Algorithm

The optimal algorithm for processing sparse signals and sys-
tems is known as the oracle algorithm. It can identify the posi-
tions of the non-zero coefficients and fully exploit the sparsity of
the system under consideration. In the context of sparse system
identification and other linear filtering problems, we can state
the oracle algorithm as

(2)

where is an diagonal matrix with the actual
positions of the non-zero coefficients. It turns out that the oracle
algorithm requires an exhaustive search over all the possible
positions over possibilities, which is an -hard problem
with extremely high complexity if is large. Moreover, the
oracle algorithm also requires the computation of the optimal
filter, which is a continuous optimization problem. For these
reasons, it is fundamental to devise low-complexity algorithms
that can cost-effectively process sparse signals.

III. PROPOSED ALTERNATING OPTIMIZATION
WITH SHRINKAGE SCHEME

In this section, we present an adaptive filtering scheme that
employs an alternating optimization strategywith shrinkage that
exploits the sparsity in the identification of linear systems. Un-
like existing methods, the proposed technique introduces two
adaptive filters that are optimized in an alternating fashion, as
illustrated in Fig. 1. The first adaptive filter with coeffi-
cients is applied as a diagonal matrix diag to
and performs the role of the oracle algorithm, which was defined
as in the previous section. The second adaptive filter
with coefficients is responsible for the system identification.
Both and employ -norm shrinkage techniques to at-
tract to zero the coefficients that have small magnitudes. The
output of the proposed adaptive filtering scheme is given by

(3)

A. Adaptive Algorithms

In order to devise adaptive algorithms for this scheme, we
need to cast an optimization problem with a cost function that
depends on , and a shrinkage function , where
represents this function applied to a generic parameter vector
with coefficients. Let us consider the following cost function

(4)

where and are the regularization terms. In order to derive
an adaptive algorithm to minimize the cost function in (4)
and perform system identification, we employ an alternating
optimization strategy. We compute the instantaneous gradient
of (4) with respect to and and devise LMS-type
algorithms:

(5)

(6)

where is the error signal
and and are the step sizes of the LMS recursions, which are
used in an alternating way. In Table I, different shrinkage func-
tions are shown with their partial derivatives and other features.
A key requirement of the proposed scheme is the initialization
which results in the adjustment of to shrink the coefficients
corresponding to zero elements of the system and to esti-
mate the non-zero coefficients. Specifically, is initialized as
an all-one vector ( or ) and is initialized
as an all-zero vector ( ). When is fixed, the scheme
is equivalent to a standard shrinkage algorithm. The two-step
approach outperforms the single-step method since strives
to perform the role of the Oracle algorithm ( ) by decreasing
the values of its entries in the positions of the zero coefficients.
This helps the recursion that adapts to perform the estima-
tion of the non-zero coefficients. This process is then alternated
over the iterations, resulting in better performance. When
is employed, has the information about the actual positions
of the zero coefficients.

B. Computational Complexity

We detail the computational complexity in terms of arith-
metic operations of the proposed and some existing algorithms.
Specifically, we consider the conventional LMS algorithm,
sparsity-aware LMS (SA-LMS) algorithms, and the proposed
SA-ALT-LMS algorithm. The details are shown in Table II.

IV. MEAN-SQUARE ERROR ANALYSIS

In this section, we develop an MSE analysis of the proposed
SA-ALT-LMS algorithm and devise analytical expressions
to describe the transient and steady-state performances. By
defining as the optimal filter and as the oracle vector
( diag ) with the non-zero coefficients, we can write

and (7)

The error signal can then be rewritten as

(8)
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TABLE I
SHRINKAGE FUNCTIONS

TABLE II
COMPUTATIONAL COMPLEXITY OF ALGORITHMS

where diag is the error
signal of the optimal sparse filter. The MSE is written as

(9)

Using the independence assumption between , and
, we have:

MSE diag diag

diag diag

diag diag (10)

where . The expectation of the scalar
values that are functions of triple vector products can be
rewritten [11] and the MSE expressed by

MSE

(11)

where is the Hadamard product, ,
, , , and
. Using (5) and (6) into and , we obtain

(12)

(13)

where and
appear in (12) and (13). The other

quantities are ,
, ,

and is the partial derivative
with respect to the variable of the argument. In Table I, we use
the variable that plays the role of or . We obtained
approximations for , where is a
generic function, to compute the matrices and for a
given shrinkage function as shown in the 3rd column of Table I.

We can express and as and
, where and

. To simplify the analysis, we assume that the sam-
ples of the signal are uncorrelated, i.e., with
being the variance. Using the diagonal matrices

, and
, we can write

(14)

(15)

Due to the structure of the above equations, the approxima-
tions and the quantities involved, we can decouple them into

(16)

(17)

where and are the th elements of the main
diagonals of and , respectively. By taking

and , we obtain

(18)

(19)

where and
. For stability, we must have

and , which results in

and (20)

where ,
, with and being the

th elements of and , respectively. The MSE is then
given by

MSE

(21)
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where and are the elements of and , respectively.
This MSE analysis is valid for uncorrelated input data, whereas
a model for correlated input data remains an open problem
which is highly involved due to the triple products in (11).
However, the SA-ALT-LMS algorithms work very well for
both correlated and uncorrelated input data.

V. SIMULATIONS

In this section, we assess the performance of the existing
LMS, SA-LMS, and the proposed SA-ALT-LMS algorithms
with different shrinkage functions. The shrinkage functions
considered are the ones shown in Table II, which give rise to the
SA-LMS with the -norm [2], the SA-LMS with the log-sum
penalty [2], [5], [8] and the -norm [1], [6]. We consider
system identification examples with both time-invariant and
time-varying parameters in which there is a sparse system with
a significant number of zeros to be identified. The input signal

and the noise are drawn from independent and iden-
tically distributed complex Gaussian random variables with
zero mean and variances and , respectively, resulting in a
signal-to-noise ratio (SNR) given by SNR . The filters
are initialized as and . In the first experiment,
there are coefficients in a time-invariant system,
only coefficients are non-zero when the algorithms
start and the input signal is applied to a first-order auto-re-
gressive filter which results in correlated samples obtained by

that are normalized. After 1000
iterations, the sparse system is suddenly changed to a system
with coefficients but in which coefficients are
non-zero. The positions of the non-zero coefficients are chosen
randomly for each independent simulation trial. The curves are
averaged over 200 independent trials and the parameters are
optimized for each example. We consider the log-sum penalty
[2], [5], [8] and the -norm [1], [6] because they have shown
the best performances.
The results of the first experiment are shown in Fig. 2,

where the existing LMS and SA-LMS algorithms are compared
with the proposed SA-ALT-LMS algorithm. The curves show
that that MSE performance of the proposed SA-ALT-LMS
algorithms is significantly superior to the existing LMS and
SA-LMS algorithms for the identification of sparse system.
The SA-ALT-LMS algorithms can approach the performance
of the Oracle-LMS algorithm, which has full knowledge about
the positions of the non-zero coefficients. A performance
close to the Oracle-LMS algorithm was verified for various
situations of interest including different values of SNR, degrees
of sparsity ( ) and for both small and large sparse systems
( ).
In a second experiment, we have assessed the validity of

the MSE analysis and the formulas obtained to predict the
MSE as indicated in (21) and in Table II for uncorrelated input
data. In the evaluation of (18) and (19), we made the fol-
lowing approximations ,
and . We have considered a scenario where
the input signal and the observed noise are white Gaussian
random sequences with variance of 1 and , respectively,
i.e., SNR dB. There are coefficients in a
time-invariant system that are randomly generated and only

coefficients are non-zero. The positions of the non-zero
coefficients are again chosen randomly for each independent

Fig. 2. MSE performance against number of iterations for correlated input data.
Parameters: SNR dB, , , , ,

, , and .

Fig. 3. MSE performance against step size for . Parameters: SNR
dB, , , , , and .

simulation trial. The curves are averaged over 200 independent
trials and the algorithms operate for 1000 iterations in order
to ensure their convergence. We have compared the simulated
curves obtained with the SA-ALT-LMS strategy using the
-norm [2], the SA-LMS with the log-sum penalty [2], [5],
[8] and the -norm [1], [6]. The results in Fig. 3 indicate that
there is a close match between the simulated and the analytical
curves for the shrinkage functions employed, suggesting that
the formulas obtained and the simplifications made are valid
and resulted in accurate methods to predict the MSE perfor-
mance of the proposed SA-ALT-LMS algorithms.

VI. CONCLUSION

We have proposed a novel sparsity-aware adaptive filtering
scheme and algorithms based on an alternating optimiza-
tion strategy that is general and can operate with different
shrinkage functions. We have devised alternating optimiza-
tion LMS algorithms, termed as SA-ALT-LMS for the pro-
posed scheme and developed an MSE analysis, which re-
sulted in analytical formulas that can predict the performance
of the SA-ALT-LMS algorithms. Simulations for a system
identification application show that the proposed scheme and
SA-ALT-LMS algorithms outperform existing sparsity-aware
algorithms.
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