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Abstract

Di Renna, Roberto Brauer; de Lamare, Rodrigo Caiado (Advisor).
Channel Estimation and Multiuser Detection Techniques
for Machine-Type Communications. Rio de Janeiro, 2021.
204p. Tese de doutorado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

Machine-type communications supports a plenty new applications, as
environment sensing, vigilance surveillance, remote manufacturing, among
others. Due to unique traffic and medium access characteristics, new esti-
mation, detection and decoding techniques are required.
This work, presents an extensive literature review that highlights innovation
opportunities and presents novel solutions for the main uplink mMTC
problems. Based on the adaptive Recursive Least Squares (RLS) algorithm,
the proposed regularized techniques jointly performs activity detection and
signal decoding, without the need to perform explicit channel estimation. In
order to improve the detection performance, a list detection technique that
uses two candidate-list schemes is developed. Rewriting the problem with
factor-graphs, novel message-passing algorithms with dynamic scheduling
that jointly estimates the channels and detects devices activity are proposed.
Lastly, a complete message-passing solution is presented, where LDPC
decoding beliefs are introduced in the system, in a way that the algorithm
besides the channel estimation and activity detection, also jointly decodes
the signals.
In order to evaluate the proposed techniques, numerical results are provided
as well as a computational complexity, state-evolution, convergence and
a diversity analysis. Uplink sum-rate expressions that take into account
metadata collisions, interference and a variable activity probability for
each user are also derived. Finally, conclusions and future directions are
discussed.

Keywords
massive Machine-Type Communication Grant-free random access Er-

ror propagation mitigation Detection Decoding



Resumo

Di Renna, Roberto Brauer; de Lamare, Rodrigo Caiado. Estima-
ção de Canal e Técnicas de Detecção para Comunicações
entre Máquinas. Rio de Janeiro, 2021. 204p. Tese de Doutorado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.
As comunicações massivas do tipo máquina-a-máquina (mMTC) co-

brem diversas novas aplicações, como sensoriamento ambiental, segurança
pública, cidades inteligentes, entre outras. Devido à características únicas de
tráfego e acesso, novas técnicas são necessárias para resolver os problemas
de estimação de canal, de detecção de atividade e decodificação de sinais.
Esse trabalho realiza uma extensa revisão bibliográfica da literatura, onde
pontos de inovação são observados e novas soluções para os principais pro-
blemas no uplink são propostas. Baseados no algoritmo adaptativo Recursive
Least Squares (RLS), são apresentadas duas variações regularizadas que con-
juntamente detectam a atividade e decodificam os sinais dos dispositivos,
sem a necessidade de estimação explícita do canal. Além disso, duas técni-
cas de detecção por listas são desenvolvidas de modo a refinar o processo de
ajuste dos pesos do algoritmo RLS e assim mitigar possíveis propagações de
erros. Dividindo o problema em grafos fatoriais, são propostos algoritmos
baseados em troca de mensagens de modo a realizar conjuntamente a esti-
mação de canal e detecção de atividade. Além de uma nova derivação das
mensagens, são exploradas técnicas de agendamento dinâmico, com base na
convergência do algoritmo. Por fim, é apresentada uma solução completa
baseada na troca de mensagens, que realiza conjuntamente a estimação de
canal, detecção de atividade e decodificação dos dados transmitidos.
Resultados numéricos são fornecidos com o objetivo de comparar o desem-
penho dos algoritmos propostos aos existentes na literatura. Análises de
complexidade computacional, evolução dos estados, convergência e ordem
de diversidade também são realizadas, assim como a derivação da soma das
taxas para o uplink. Por fim, são apresentadas as conclusões obtidas dos
trabalhos realizados e discutidas direções para trabalhos futuros.

Palavras-chave
Comunicação massiva entre máquinas Acesso aleatório Mitigação de

propagação de erro Detecção Decodificação
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1
Introduction

The application focus of mobile communication systems in the past

decades was on the human interaction. Starting from the beginning of the

nineties, mobile communication systems progressed from supporting voice calls

only to data packets transmitted from and to the internet. The introduction of

the smart phones in the market can be seen as the key to the ever-increasing

demand for higher data rates and coverage. To this end, the current com-

munication standard 3GPP Long Term Evolution (LTE) has been developed

to exactly target the requirements of human-based communication. However,

the rise of new applications that demand communication between autonomous

entities without human communication in mind, known as machine-type com-

munications (MTC), brought new requirements. Covering different industries

as healthcare, logistics, manufacturing, process automation and utilities, the

growth of MTC applications is huge and it is believed that MTC connections

will be half of the global connected devices and connections by 2023 [4]. The

share of MTC connections will grow from 33% in 2018 to 50% by 2023. There

will be 14.7 billion MTC connections by 2023 [5, 6]. Despite the fact that the

traffic caused by these MTC devices (MTCD) only represent 7% of the total

traffic nowadays, it is also believed that the amount of traffic will be higher.

It is due to the increase of deployment of video applications on MTC connec-

tions and the increased use of applications, such as telemedicine and smart car

navigation systems, which require greater bandwidth and lower latency.

The characteristics of MTC fundamentally differ from the well-known

human-type communications (HTC). While HTC often requires high data-

rates for transmission of large packets, MTC traffic is characterized by small
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packets (∼ 100 bits) transmitted sporadically, generally with low data-rate

and loose delay constraints. On the other hand, there are also some MTC

applications that are less delay tolerant as video surveillance and healthcare

monitoring. Besides that, MTC traffic is characterized to be concentrated

on the uplink, whereas HTC is mainly driven by large downlink packages.

In spite of the sporadic transmission pattern of each device, future mobile

communication systems will have to support a massive number of MTCDs, as

it is expected up to 300, 000 devices per cell [7, 8].

Given the MTC features described, it is possible to notice that MTC

leads a paradigm shift in the evolution of mobile communication systems.

Thus, upcoming generations of communication systems have to handle a

diverse traffic originating from different type of sources. In this way, discussions

regarding the standardization of the fifth generation of mobile communications

(5G) were, among others, also driven by the challenge of aggregating MTC. It

is also possible to divide MTC in two areas: massive MTC (mMTC) and ultra

reliable MTC [9, 10]. Applications that consist of a large number of devices

as smart cities, home automation or road and environmental monitoring are

categorized as mMTC. Ultra reliable MTC summarizes critical applications

with strict requirements on latency and packet error rates, such as autonomous

vehicle control, factory automation and smart grid.

Therefore, this chapter presents the research background, motivations

and objectives of this thesis. Moreover, the main contributions are described

along with the structure of the thesis. In order to make reading this thesis

easier, there is a section with the notation used throughout the work. The last

section lists the publications and the papers under preparation that refers to

this thesis.



Chapter 1. Introduction 20

1.1
Motivation and State of the Art

The inclusion of MTC in communication systems is not recent. Even the

second generation of mobile communications systems has a few statements

regarding MTC, as the Extended Coverage GSM for IoT [11]. Recently, the

3GPP have been considering to schedule a separate narrow frequency band to

aggregate MTCDs, as described in the technical report TS 36.888 [7] and under

the name Narrowband Internet of Things (NB-IoT), as a LTE extension [12].

Although it is possible to make extensions in the current mobile communication

systems, in order for the network to support all the features of MTC and the

expected growth of the number of MTCDs, it requires improvements made by

the ongoing standardization of 5G and future communication systems.

The main challenges for aggregating MTC traffic lies in the aggregation

of a massive number of MTCDs that sporadically transmit small packets to

the base station (BS). One of the major issues is the design of the medium

access. The current communication system LTE uses an orthogonal medium

access with access reservation, that is, the BS allocates time and frequency

resources prior to any transmission of payload data. As depicted in Fig. 1.1a,

after a BS (or eNodeB, access point) broadcasts the system information to

the devices, the access reservation procedure follows a four-stage message

handshake [13], which mainly involves the following four stages: (i) Random

Access (RA) preamble transmission from the device to the BS (Message 1), (ii)

RA Response (RAR) from the BS to the device (Message 2), (iii) connection

request message from the device to the BS (Message 3) and (iv) connection

resolution message from the BS to the device (Message 4). Message 1 is the

randomly selected preamble previously broadcast by the BS during the initial

network synchronization phase. The next step is the BS answer with the

preamble index being acknowledged, instructions for the timing alignment and

the command for the resource blocks allocation. In the third message, after the

device recognizes its response by the preamble index, it requests the connection.
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Device BS
System Information

Broadcast

Random Access Preamble (Message 1)
On the PRACH

Random Access Response (Message 2)

On the PDCCH

Connection Request (Message 3)

On the PUSCH

Connection Resolution (Message 4)
On the PDSCH

Connection set-up complete,
service request

(a) Access reservation.

Device BS

System Information
Broadcast

Random Access with

Random Access Response 

Preamble and Data

(b) Grant-Free Random Access.

Figure 1.1: Comparison of medium access schemes. Access reservation as employed in
LTE (a) and Grant-Free Random Access as candidate technology for mMTC (b).

Subsequently, for the devices which Message 3 are successfully decoded, the

BS sends a connection resolution message (Message 4). In the case that more

than one device chooses the same preamble, such transmissions will go through

collisions.

Despite the fact that this random access procedure is used in LTE, it is

not suitable for mMTC. Due to the aforementioned MTC characteristics, the

limited number of available preambles for the access reservation procedure,

the massive number of concurrent transmissions of the same preambles would

cause the overload of the RA procedure both in the uplink and the downlink,

resulting in a high collision probability, access failure rate and the access delay.

Another point to be highlighted is that additional downlink resources would

need to be allocated since each RAR message for one MTC device consists

of 56 bits. Beyond that, the signalling overhead degrades the overall system

efficiency since the size of the upload data payload from the MTC device is

significantly smaller than the traditional HTC [14]. In this way, an approach

that does not require orthogonal preambles with reduced signalling would fit

better.

One promising approach is the Grant-Free Random Access (GFRA) [15,

16]. This mechanism allows the MTCDs to simply transmit their packages to
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the BS directly, without the need to wait for a specific uplink grant from the

BS. Fig. 1.1b shows the procedure, in order to be compared to the one used

in LTE. The main advantages of this scheme are the reduced transmission

latency, smaller signalling overhead due to the simplification of the scheduling

procedure and improved energy efficiency (battery life) of MTCDs with the

reduction in signalling. As all MTCDs simply transmit, the work of the BS is

increased, since it should deal with the reception of many packets of multiple

MTCDs at the same time and has to resolve the multiuser interference caused.

Furthermore, the BS has no knowledge which MTCD was active at the given

time instance such that the physical layer task is to jointly estimate the

channels and detect the activity and the data of the devices [10,17].

Therefore, it has been shown that the physical layer aspects of random

access can be optimized. The research problem to be solved consists of how

to allocate resources as time, frequency or code to devices that are known

to be only sporadically active. Due to the intermittent traffic, the orthogonal

resource allocation leads to a waste of resources. Thus, recent works have

focused on the use of non-orthogonal resource allocation in the GFRA [18–24].

Although detection techniques have been investigated for more than 50

years, at each new emerging application, novel schemes are required. In a

scenario as mMTC, with an accurate CSI, it is possible to deal with the

sparse pattern of transmissions in order to detect the data. Therefore, in

recent years many recent works have studied multiuser detection (MUD) in this

scenario. First, solutions which considered perfect channel state information

(CSI) at the BS have been reported. Originally from the compressed sensing

(CS) field [25], techniques based on regularization that exploits the sparsity

of the scenario have been studied. In this way, several works which perform

regularized versions of the Maximum a Posteriori Probability (MAP) [26],

Sphere Detection (SD) [27], K-Best [28], MMSE-SIC [29, 30] detectors have

been studied and an algorithm based on the direction method of multipliers
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(ADMM) has been reported in [31]. There are also iterative solutions to the

class of Bayesian inference algorithms, as the works in [32] and [33]. Solutions

based on approximate message passing (AMP) [34] have also been discussed

in the literature, as in [35–37]. As envisaged, mMTC networks support a

massive number of devices, where a common assumption is that the system is

underdetermined. That is, the number of devices capable of accessing the BS

at the same time instant is much higher than the number of resources at the

BS. Owing to the sporadic traffic pattern, greedy algorithms emerged as CS-

MUD schemes. The well-known orthogonal matching pursuit (OMP) [38] and

orthogonal least squares (OLS) [39] were first applied in the mMTC context

in [40] and then some improvements have appeared in [41–47]. Employing

channel coding, the schemes in [48–51] propose adaptive and iterative solutions

that exchange extrinsic information between activity and symbol detectors.

Moreover, prior work on activity detection and channel estimation, [52–55]

has focused on the AMP, verifying the missed device detection and false alarm

performance. There are other works, as in [56–63] that use the factor graph

approach. There are also works as in [64–68] that use the machine-learning as

a tool to estimate the channels. Recently, there are a few solutions that jointly

perform the activity and data detection and channel estimation. Due to the

computational cost, most of them are message-passing solutions, as [69–74].

1.2
Objectives of this thesis

The objectives of this thesis are to present and discuss novel channel

estimation, activity detection and signal decoding techniques for mMTC. As

in this scenario the BS has no knowledge which device is active, besides having

data-errors only mMTC techniques also suffer from activity errors known as

false alarm and missed detection. The analysis of data and activity errors

show that each type of error has a fundamental impact on the underlying

communication. As long as false alarm rates may be identified by higher layers,
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missed detection errors lead to a loss of data that can not be recovered. In

order to address the challenge of joint channel estimation, activity detection

and data decoding, this thesis focuses on four main goals. With this in mind,

this thesis presents novel algorithms that seek to optimize the mean squared

error (MSE), false alarm (FAR), missed detection (MDR) and bit error rates

(BER).

1.3
Contributions and Structure of this Thesis

The goal of this thesis is to address the challenges of channel estimation,

activity detection and data decoding in the mMTC scenario. Throughout

the thesis, different solutions based on receive filter estimation, regularized

recursive least squares (RLS) and message-passing strategies are presented.

Thus, the main contributions are:

1. A review of the main detection techniques for mMTC scenarios and

a performance comparison of the literature approaches in the same

evaluation framework in terms of the key performance indicators.

2. Development of a regularized version of the adaptive RLS algorithm,

that jointly detects the activity and signals of devices without the need

to perform explicit channel estimation. Iterative detection and decoding

(IDD) schemes that exploit the sparse scenario are also developed for

mMTC to mitigate the interference from other devices. A list detection

technique is then designed that uses two candidate-list schemes that

improves detection performance.

3. The development of novel message-passing algorithms that jointly esti-

mates the channels and detects devices activity is carried out along with

a bilinear solution that also performs signal decoding. Dynamic schedul-

ing techniques are then developed that aim to find the best sequence of

message updates, reducing the computational cost. A comparison and
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discussion of two uplink scenarios is then conducted with the devices

transmitting in synchronous and asynchronous patterns.

4. A comparison of the proposed algorithms with the state-of-the art, in

terms of NMSE, FAR, MDR and BER is carried out. The derivation

of uplink sum-rate expressions, steady-state, convergence and computa-

tional cost analyses is also presented.

The next chapters of this thesis include the following content:

- Chapter 2 gives some technical background on this thesis. Firstly, ba-

sic concepts of multiuser MIMO are presented, which includes channel

estimation, multiuser detection and channel capacity. In order to intro-

duce the mMTC scenario, its unique features are described, as traffic,

medium access, challenges and the general assumptions. The rest of the

chapter categorizes and provide a comprehensive overview of the main

detection techniques designed specifically for mMTC, presenting a per-

formance evaluation of the main state-of-the-art approaches in the same

evaluation framework.

- Chapter 3 presents the regularized version of the adaptive RLS algorithm,

that jointly detects the activity and signal of devices without the need to

perform explicit channel estimation. The IDD scheme is also explained,

describing how it is incorporated in the proposed scheme. Simulation

results of Symbol Error Rate (SER), FAR, MDR and the comparison of

computational complexity between this solution and the state-of-the-art

are also described in this chapter.

- Chapter 4 presents two candidate-list detection schemes for mMTC that

employ the regularized version of the adaptive RLS algorithm to adjust

the receive filter parameters. Moreover, a diversity analysis and uplink

sum-rate expressions are presented. Numerical results show the excellent

performance of the proposed detection schemes as compared to existing

approaches.
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- Chapter 5 introduces a joint active device detection and channel esti-

mation framework based on factor graphs. Given the aforementioned

mMTC characteristics, the chapter consider the problem under two dif-

ferent scenarios, uplink synchronous and asynchronous transmissions.

A message-scheduling GAMP (MSGAMP) algorithm that uses a fac-

tor graph approach is devised with three different message-scheduling

techniques. Simulation results of NMSE, AER and a convergence anal-

ysis that compares MSGAMP performance and the state-of-the-art are

also shown in this chapter.

- Chapter 6 presents the bilinear message-scheduling GAMP (BiMS-

GAMP) scheme, that jointly performs active device detection, channel

estimation and data decoding. BiMSGAMP uses the channel decoder

beliefs to refine the activity detection and data decoding. This chapter

also presents a convergence and computational cost analyses, in addition

to a comparison of BiGAMP’s efficiency over other approaches in terms

of NMSE, FAR, MDR, FER and BER.

- Chapter 7 presents the conclusions of this thesis, discussing the obtained

results, future directions and research opportunities.

1.4
Notation

The following notation is used throughout the work. Matrices and vectors

are denoted by boldfaced capital letters and lower-case letters, respectively.

The space of complex (real) N -dimensional vectors is denoted by CN
(
RN

)
.

The i-th column of a matrix A ∈ CM×N is denoted by ai ∈ CM . The

superscripts (·)T and (·)H stand for the transpose and conjugate transpose,

respectively. For a given vector x ∈ CN , ||x|| denotes its Euclidean norm. E [·]

stands for expected value, I is the identity matrix and diag [·] is to reshape a

vector in the main diagonal of a matrix.
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2
Technical Background and Literature Review

2.1
Chapter Overview

This chapter starts with a review of some basic concepts related to

this thesis and then proceeds to introduce the massive Machine Type-

Communications (mMTC) scenario. The first section briefly introduces topics

related to MU-MIMO systems, including sum-rate capacity, channel estima-

tion and multiuser detection. The second section presents the mMTC sce-

nario, describing its unique features as traffic, medium access, challenges and

the general assumptions. The rest of the chapter categorizes and provides a

comprehensive overview of the main detection techniques designed specifically

for mMTC, presenting a performance evaluation of the main state-of-the-art

approaches in the same evaluation framework.

2.2
MIMO Wireless Communication Systems

Wireless systems continue to strive for ever higher data rates. This goal is

particularly challenging for systems that are power, bandwidth, and complexity

constrained. The first studies [75, 76] that indicated high spectral efficiencies

for wireless systems with multiple antennas attracted attention of worldwide

researchers, that aimed to characterize the theoretical and practical issues

associated with multiple-input multiple-output (MIMO) wireless channels and

to extend these concepts to multiuser systems. Now in the core of many

existing and emerging wireless standards as IEEE 802.11, IEEE 802.16 and

IEEE 802.20, the usage of multiple antennas either at the transmitter or at
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the receiver side provides a number of benefits that enable the system to face

the impairments in the wireless channel as well as resource constraints [77,78].

One of the main advantages of using multiple antennas is the increase

in spatial diversity. Spatial diversity relies on the use of multiple antennas at

one end of the communication link, either at the transmitter or at the receiver

side. The idea is that the receiver has multiple (ideally independent) copies of

the transmitted signal in space, frequency or time. Therefore, the more copies

are available on the receiver, the more likely it is that at least one of the copies

is not experiencing strong channel and noise effects, thereby improving the

quality and reliability of reception. Thus, the spatial diversity gain mitigates

fading.

In addition to that, a communication system with multiple antennas also

benefits from spatial multiplexing [75,79]. Spatial multiplexing is the ability to

send several independent data streams simultaneously within the bandwidth

of operation. The linear increase in data rate observed in MIMO systems is due

to the fact that each data stream experiences at least the same channel quality

that would be experienced by a system with only one antenna at the receiver

and at the transmitter (SISO), thus increasing the capacity by a multiplicative

factor equal to the number of streams.

Besides the above advantages, interference mitigation and array gain

are also key features. Although the interference in wireless networks is due

to the sharing of resources (time and frequency) from multiple users, it can

be mitigated by exploiting the spatial dimension to increase the separation

between users. The increase of the receive SNR due to the coherent combining

effect of the received signals is the array gain. This increase of receive SNR

naturally improves resistance to noise, thereby improving the coverage and the

range of a wireless network [77].

With the advantage of using multiple-antennas in the transmitter and the

receiver briefly explained, a MIMO communication system is presented. The



Chapter 2. Technical Background and Literature Review 31

first operation is the encoding of the information bits to be transmitted and its

interleaving. The codeword is modulated in the symbol mapping block and then

encoded on one or more spatial data streams, by a space-time encoder. Lastly,

those streams are mapped to the transmitting antennas by the space-time

precoding block. After that, the signals are transmitted through the channel

and, after being received by the multiple antennas, the signal suffers the inverse

operations on the receiver side. Since this thesis focuses on a special case of

MIMO systems, the next subsection is devoted to explaining the channel and

signal models of massive MIMO [80].

2.2.1
Massive MIMO

In order to maximize the gains described in the previous subsection,

Thomas Marzetta introduced the idea of using a huge number of antennas

in the base station (receiver) in his seminal work [1]. The main idea is

that a multiplicity of physically small, individually controlled antennas could

perform an aggressive multiplexing/demultiplexing for all active users, utilizing

directly measured channel characteristics. Taking advantage of time-division

duplexing (TDD), massive MIMO is scalable to any desired degree with respect

to the number of BS antennas. Adding more antennas is always beneficial

for increased throughput, reduced radiated power, uniformly great service

everywhere in the cell, and greater simplicity in signal processing.

It is possible to define massive MIMO network as a multi-carrier cellular

network with L cells that operate according to a synchronous TDD protocol,

that is, uplink and downlink transmissions within different cells are synchro-

nized. A BS is equipped with M >> 1 antennas and communicate with N

single-antenna1 users simultaneously on each time/frequency sample, with the

ratio M/N > 1. Each BS operates individually ans processes its signals using

linear receive combining and linear transmit precoding [1, 81].
1Each user can be equipped with more than one antenna, but the simplification of the

model is a common assumption in wireless communication systems [1].
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Figure 2.1: Uplink operation of a massive MIMO link. Each user transmits
data stream that occupy the same time/frequency resources, and the signals
received by the elements of the antenna array are processed to recover the
individual data streams [1, 2].

In general, multiuser MIMO systems can be divided in two categories,

uplink (or multiple access channel, MAC) and downlink (or broadcast channel,

BC). Since the machine-type communications traffic, which is the main topic

of this work, is concentrated on the uplink, the next subsection will focus only

on the MAC case.

2.2.2
System Model

The considered uplink massive MIMO system [1, 2] model is depicted

in Fig. 2.1, where a single BS with M antennas communicates with N single-

antenna users. Each user has the coherence interval2 to transmit its frames

and receive the downlink data. Assuming the block fading assumption, the

channel realizations are independent between any pair of blocks. Since it is a

massive MIMO system, M >> N . The received signal vector y ∈ CM×1 of

each sample, at the BS is given by

y =
N∑
n=1

hnxn + v = Hx + v, (2-1)

where the CN×1 vector x represents the transmitted symbols of each device

in the observed time instant and v ∈ CM×1 is the independent additive
2Time interval over which the channel responses are approximately constant.
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receiver noise vector with zero mean and variance σ2
n. The matrix H ∈ CM×N

represents the channel response between each user and BS antenna. The

channels are constant within a coherence interval, while signals and noise

take new realization at every sample. A fading channel h ∈ CM×1 is spatially

uncorrelated if the channel gain ‖h‖2 and the channel h/‖h‖ are independent

random variables, and it is uniformly distributed over the unit-sphere in

CM . Otherwise, the channel is spatially correlated. Practical channels are,

in general, spatially correlated. The spatial correlation is important for large

arrays since these have good spatial resolution [81,82]. Thus, in massive MIMO,

the common channel model is the correlated Rayleigh fading, as given by

H =



h1,1 h1,2 · · · h1,N

h2,1 h2,2 · · · h2,N

... ... . . . ...

hM,1 hM,2 · · · hM,N


, (2-2)

where hM,N is the single-input single output channel gain between the m-th

receive antenna and n-th user. The n-th column of H is often referred to as

the spatial signature of the n-th transmit antenna across the receive antenna

array. Thus, each channel response is given by

hn ∼ Nc (0M ,Rn) , (2-3)

where Rn ∈ CM×M is the positive semi-definite spatial correlation matrix.

The Gaussian distribution is used to model the small-scale fading variations.

In a new coherence interval, the matrix H is assumed to take new realizations

from this distribution. The spatial correlation matrix represents the large-scale

effects, as antenna gains and environment scattering [77]. In this model, the

normalized trace determined the average channel gain from one of the antennas

at the BS to the user and is given by

βn = 1
M

tr (Rn) . (2-4)
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As an special case, we have the uncorrelated Rayleigh fading, where

Rn = βnIM and the classical, independent, identically distributed (i.i.d.)

Rayleigh fading model. Under ideal conditions, when the channel elements

are perfectly decorrelated, hnm ∼ i.i.d. Nc (0, 1). After defining the channel

model and the basics of massive MIMO, the next subsection details the channel

estimation.

2.2.3
Channel Estimation

Channel estimation is a key factor in order to equip the BS with the

capability to correctly detect the transmitted data. In this scenario each user

transmits, as depicted in Fig. 2.1, a pilot sequence from a list of sequences

previously broadcast by the BS. In general, the pilot sequence is assumed to

have unit-magnitude elements, to obtain a constant power level. Thus, dividing

the transmitted block in X = [Xp, Xd] and rewriting (2-1), we have

Yp︸︷︷︸
M×τp

= H︸︷︷︸
M×N

Xp︸︷︷︸
N×τp

+ Vp︸︷︷︸
M×τp

, (2-5)

where τp is the number of pilots. Ideally, the pilot sequences of all users would

be orthogonal. In order for the BS to estimate the channel of the n-th user,

it can multiply/correlate the received Yp with the pilot sequence of this user,

thus
yp = Yp xpHn =

N∑
n=1

hn xpTn xpHn + Vp xpHn , (2-6)

and then, separating the desired pilot from the other users pilots,

yp = Yp xpHn = hn xpTn xpHn︸ ︷︷ ︸
desired pilot

+
N∑
i 6=n

hi xpTi xpHn︸ ︷︷ ︸
other users pilots

+ Vp xpHn︸ ︷︷ ︸
noise

. (2-7)

It is possible to notice that due to the pilot inner products, if the pilot

sequences are orthogonal, they will not act as an interference. However, since

the number of orthogonal pilot sequences are finite it is a constraint for a

massive MIMO scenario and, as will be detailed in the next sections, for
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mMTC.

As an example of channel estimation approach, the linear minimum mean

squared (MMSE) is shown. We firstly rewrite (2-5) as given by

yp︸︷︷︸
Mτp×1

=
(
XT
p ⊗ IM

)
h + vp = vec {Xp}︸ ︷︷ ︸

Mτp×MN

h︸︷︷︸
MN×1

+ vp︸︷︷︸
Mτp×1

. (2-8)

Exploiting the knowledge of covariance matrices, the linear MMSE

is widely used for channel estimation in MIMO systems, despite its high

computational cost. In a nutshell, the linear filter is given by

WMMSE = arg min
W

E
{
‖h−Wyp‖2

}
= ChypC−1

yp , (2-9)

where E
{
hyHp

}
= Chyp and E

{
ypyHp

}
= C−1

yp . Then, the linear MMSE channel

estimator is given by

ĥMMSE = WMMSE yp = ChypC−1
yp yp. (2-10)

Therefore, the next subsection introduce one of the main advantages of

massive MIMO, the channel capacity.

2.2.4
Channel Capacity

Firstly presented in Claude Shannon’s pioneering work [83], the chan-

nel capacity refers to the maximum data rates that can be transmitted over

wireless channels under certain conditions. Considering a scenario of wireless

channels with asymptotically small error probability and without any con-

straints on transmitter and receiver complexity, the theory is based on the

notion of mutual information between the input and the output of a channel.

Shannon defined channel capacity as the channel’s mutual information max-

imized over all possible input distributions [82]. Considering a random input

X and random output Y , the mutual information of a single-user channel is

defined as
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I (X;Y ) =
∫
SX ,SY

f (x, y) log2

(
f (x, y)
f (x) f (y)

)
dx dy, (2-11)

where the integral is taken over the supports Sx, Sy of the random variables

X and Y , respectively, and f (x), f (y), and f (x, y) denote the probability

density functions of the random variables. Since the mutual information unit

is bits per channel use, the base of the log is 2. As Shannon’s definition, the

channel capacity is the maximization of the channel mutual information. Thus,

we have

C = max
f(x)

I (X;Y ) = max
f(x)

∫
Sx,Sy

f (x, y) log2

(
f (x, y)
f (x) f (y)

)
. (2-12)

For the MIMO channel case, the definition above stands for entropy and

mutual information. Considering a constant MIMO channel perfectly known

at the transmitter and the receiver, the capacity in the uplink is given by

C = max
Q:tr(Q)=P

log det
(
IM + HQHH

)
(2-13)

where the optimization is over the input covariance matrix Q, which is N ×N

and must be positive semi-definite by definition and P is the power of the

MIMO parallel channels. For a time-invariant AWGN channel with bandwidth

B and received SNR γ, the input distribution that maximizes the mutual

information is Gaussian, which results in the following

C = B log2 (1 + γ) bps. (2-14)

The advantage of massive MIMO regarding the channel capacity is due

to the fact that even without transmitter CSI, random matrix theory dictates

that the singular values of the channel matrix converge to the same constant.

Hence, the capacity of each spatial dimension is the same, and the total system

capacity is given by

C = min (N,M) B log2 (1 + γ) . (2-15)
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Thus, capacity grows linearly with the size of the antenna arrays in massive

MIMO systems [1]. After presenting the basic concepts of MIMO systems and

the massive MIMO advantages, the next subsection will briefly comment on

the classic detectors.

2.2.5
Classic Multiuser Detectors

The study of the MIMO detection problem dates to the 1960s. The first

work [84] proposes a solution inspired by the Nyquist’s problem [85], which

faces the intersymbol interference (ISI) over a SISO channel. Through the

years, the MIMO detection problem has been studied in different contexts

and can be categorized from various perspectives, such as optimum, linear,

adaptive, blind, iterative, among others [86]. Considered an optimal detector,

the maximum a posteriori (MAP) minimizes the error probability based

only on the observed signals and a given set of hypotheses AN , that is

x̂MAP = arg max
x∈AN

Pr (x|y) = arg max
x∈AN

p (y|x) Pr (x)∑
x′∈AN p (y|x′) Pr (x′) , (2-16)

using Bayes’ rule. Pr (x) is the a priori probability of x, p (y|x) is the

conditional probability density function (PDF) of the received vector y given

x and x̂ is the detected transmitted vector. Under the assumption that p(y)

is independent of x and considering that the receiver does not have knowledge

of Pr(x), the MAP detector becomes equivalent to the maximum likelihood

(ML) detector [86], as given by

x̂ML = arg min
x∈AN

‖y−Hx‖2
2. (2-17)

Since the MAP and ML detectors have a tremendous computational cost,

other solutions have emerged over the years. Considering W as a filter matrix

computed in each detector, the matched filter (MF) detector is given by
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x̂MF = HH︸︷︷︸
WMF

y. (2-18)

The linear matched filter (MF) is optimal for maximizing the received

SNR in the presence of additive noise. Since it is essentially based on single-

user detection, it normally exhibits poor performance in MIMO systems. The

zero-forcing (ZF) receiver is optimal in terms of maximizing the received

signal-to-interference ratio (SIR). By contrast, the linear minimum mean

squared error (MMSE) criterion based detector takes into account the

received signal-to-interference-plus-noise ratio (SINR), which makes it possible

to surpass all linear detectors in performance. Thus, the ZF and MMSE filters

are given by

x̂ZF =
(
HHH

)−1
HH︸ ︷︷ ︸

WZF

y, (2-19) x̂MMSE =
(
HHH + 2σ2I

)−1
HH︸ ︷︷ ︸

WMMSE

y. (2-20)

The class of detectors that focus on the multiuser interference problem,

generally outperforms the linear ones. On the other hand, this efficiency occurs

with the increase of the computational cost. The classic approaches are the

parallel interference cancellation (SIC) and the successive interference

cancellation (SIC), that perform better in scenarios in which the interfering

users have a much stronger signal strength than the desired user.

Initiating with the most popular interference cancellation detector, SIC

detects a single symbol at a time. Then the interference imposed by this partic-

ular symbol on the other symbols yet to be detected is subtracted after recre-

ating the interference upon generating the modulated signal corresponding to

this symbol. In this way, if a wrong detection is performed, SIC suffers from

error propagation. Another point to highlight is that it is very important to

cancel the effect of the strongest interfering signal before detecting the weaker

signals. Therefore, a specific symbol detection ordering is crucial for a good

performance [87–89]. One well-known alternative to avoid the need to find the

strongest interfering signal is the PIC based MIMO detector. In this algorithm,
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all symbols are detected simultaneously, that is, for each symbol, the initial

estimate of the interfering symbols is used to reconstruct the interference and

then to subtract it from each of the composite received signals. In order to

refine the detection, this process is repeated for several iterations [90–92]. De-

spite that, the PIC detector exhibits a lower processing delay than SIC, but is

worse in a scenario of different-power streams [86,93].

With the basic concepts of MIMO systems and classic detectors pre-

sented, the next section introduces the mMTC scenario and provides a compre-

hensive literature review of main detection approaches, presenting performance

and complexity cost comparisons.

2.3
Massive Machine-Type Communications Scenario

While the existing data aggregation technologies support various appli-

cations, there are still open problems to be investigated. How to deal with

the massive access of hundreds of billion devices with small-sized transmission

payloads and sporadic features is one of the main challenges of this kind of net-

work [15, 16]. Indeed, promising techniques such as compressed sensing (CS),

non-orthogonal multiple access (NOMA) and massive MIMO based random

access that can effectively address the lack of spectrum resources and enhance

spectrum usage efficiency have been proposed.

MTC devices can be applied to various scenarios, enabling real-time

monitoring and control of any physical environment. The major application

scenarios are [94], [95]:

1. E-health: Applications as tracking or monitoring a patient, identification

and authentication of patients, diagnosing patient conditions and provid-

ing real-time information on patients’ health related data to the remote

monitoring center;

2. Smart-environment: This category encompasses all forms of automation,

whether in home/office, agriculture, environmental monitoring, lighting;
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3. Intelligent transportation: This field is related to services as smart

parking, smart car counting, M2M assisted driving and e-ticketing;

4. Security and public safety: Remote surveillance, personal tracking and

public infrastructure alarm protection from disasters such as fire, earth-

quakes, hazardous spills or crimes. Collaboration among relevant organi-

zations, including medical support, police, military and fire department;

5. Smart-grid: Mainly related to power monitoring, this category also in-

cludes applications as meter reading, electricity distribution and trans-

mission tower protection;

6. Industrial automation: Productivity enhancement possible by commu-

nications among machines and supply chain automation applications.

Other example of applications are production on demand, quality con-

trol, optimization of packaging and inventory tracking.

In general, MTC devices access the network sporadically to transmit

frames with a few bits. Despite that, mMTC traffic comprises specific patterns

due to diversity in the application scenarios. For instance, an agriculture sensor

network sends few bits of data periodically while a smart-grid application

consumes high bandwidth and requires connection with a higher frequency.

In case of a catastrophe event, the network must be prepared to receive

simultaneous transmissions of emergency data. Unlike HTC communications,

mMTC traffic is mainly in the uplink and can be generated any time of the day.

While the human-type communication traffic follows a certain data volume,

session length, and interaction frequency during daytime and evening, mMTC

should have an infrastructure that handles different traffic patterns. A few

works as [96] and [97] investigate the difference between HTC and mMTC

and the competition for resources. The study in [51] considers different traffic

patterns and their impact with detection algorithms. Therefore, mMTC have

challenging traffic aspects such as scalability, periodic, low frame size and data
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rates, no mobility and deals mostly with the uplink, which requires special

attention to design the infrastructure and coexist with the established cellular

networks [94], [96]. 3G and LTE networks can support a few MTC applications

but not all of them. Thus, it is expected that 5G handles the massive number

of MTCD and the services already available. In the following, we mostly focus

on the challenges on the PHY and MAC layers but shortly discuss other issues.

One of the open problems is the limitation of available pilot sequences.

Due to the huge number of devices, the reuse of pilots significantly increases

the frame collision probability. In addition, as each transmitted frame has a

few bits, very high signalling overhead per data frame becomes another critical

issue. Thus, an efficient signalling reduction technique is required.

Many MTC devices can be coined low-cost and will have batteries

as the main source of power. Therefore, energy efficiency is a concern for

mMTC. Since it is required that MTCD operate autonomously for a few

years, the communication design should be power efficient. Since long distance

communications to the BS is challenging the use of relays could help. Another

issue related to energy efficiency is the geographic positions of MTCDs. As

they can be located anywhere in the cell, at edges or shadow areas, it would

be hard for the BS to serve all devices at any time.

In higher layers, there are also open challenges. For instance, a new

transport protocol is required for mMTC, as the Transmission Control Protocol

(TCP) is not efficient for mMTC traffic features. The connection setup of

TCP is unnecessary and the congestion control would probably degrade the

performance as mMTC uses a wireless medium and the amount of data is

very small. As it was not designed for it, real-time applications would not

work properly with TCP as it requires data to be stored in a memory buffer.

Furthermore, low-cost MTCDs have limited capabilities to implement security

algorithms. In this way, authentication and data integrity may be a security

concern in mMTC.
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Some detection techniques take into consideration most of those chal-

lenges and propose solutions to deal with them. The next subsection details

the general system model assumptions in order to present the main schemes

in the literature.

2.3.1
MMTC System model

In order to reduce signalling overhead, grant-free random access (GFRA)

has been proposed [17]. In the uplink of such systems, each device transmits

metadata3 along with data. This massive uplink connectivity scenario is

illustrated in Fig. 2.2, where N devices with a single antenna each access

a single base station (BS), equipped with M antennas.

In general, there are two types of metadata considered in GFRA, namely

orthogonal [23, 24] and non-orthogonal metadata [36, 52]. Compared with the

non-orthogonal counterpart, orthogonal metadata detection is much simpler

and effective and channel estimation is more accurate thanks to the orthogo-

nality of metadata. Nevertheless, frame collision restricts its performance due

to the limited number of orthogonal-metadata sequences. On the other hand,

non-orthogonal metadata can alleviate metadata collisions since it has a larger

number of sequences, but its channel estimation would be affected due to

non-orthogonality of metadata. Since it is expected to MTC handle a massive

number of connections, the insufficient number of resources in a orthogonal

metadata approach implies the usage of non-orthogonal metadata in GFRA.

In the literature, there are works that address the GFRA in different ways.

In [20], sparse sequences were used instead of binary sequences for data signal

spreading in order to increase the number of MTC devices and allow device

identification. With the aim to reduce the metadata collision and improve the

GFRA throughput, the work in [21] suggests the usage of multiple resource

blocks. In [22], another GFRA scheme was proposed where each device’s chan-
3In the mMTC context, pilot sequences are also referred as “metadata”. This thesis will

use both nomenclatures.
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Figure 2.2: System model represented by a block diagram.

nel impulse response is used as a unique signature to differentiate signals that

are simultaneously transmitted and the works in [18, 19] studies where the

wireless signal of each device is spread by a unique sequence.

Using GFRA with non-orthogonal sequences, we have established a com-

mon system model to compare the performance of the detection algorithms.

We define that when a device has data to transmit, it splits the codeword in

multiple frames and transmit them in multiple transmission slots. In each time

slot, each active device selects randomly a non-orthogonal metadata sequence

from a predetermined codebook and sends the rest of the codeword. Since in

practice the BS would have a list of devices that are associated with it, and

their unique identifiers, we assume that the metadata sequences are known

at the BS. Since these unique identifiers are known to the BS, the metadata

sequence is also known at the BS. Given the sporadic activity of devices, they

will communicate to the BS only when it is needed, so not all of them will be

active during the same coherence time.

As illustrated in Fig. 2.2, in this chapter, it is considered that devices

are synchronized in time4, i.e., devices are turned on or turned off in the same

transmission slot. This assumption is valid since the frame size of mMTC is

typically very small (between 10 and 100 bytes) [16]. Thus, it is considered that

the whole transmitted frame experience the same channel in such a way that
4Although this assumption implies an overhead increase, regarding the frame synchro-

nization, it is commonly used in the literature.
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the duration of a transmission slot (τ = τφ + τx) is smaller than the coherence

time and coherence bandwidth of the channel. The time index t indicates each

transmitted vector in the same transmission slot. As we consider a grant-free

random access model, each frame has metadata and data. Thus, the time index

indicates how each frame is divided.

In a given coherence time, at the t-th symbol interval, the received signal

y [t] is organized in a M × 1 vector that contains the transmitted metadata

(φ [t]) or the data (x [t]), as

y [t] =


H√τφ Bφ [t] + v [t] , if 1 ≤ t ≤ τφ

H√τx B x [t] + v [t] , if τφ < t ≤ τ
(2-21)

where H is the M × N channel matrix, B is the N × N transmission power

matrix, v is theM×1 noise vector, while τφ and τx are the number of metadata

and data symbols, respectively. For each time instant t, the metadata and data

are represented by the N × 1 vectors

φ [t] = ∆ϕ [t] = [δ1 ϕ1 [t] , . . . , δN ϕN [t]]T and (2-22)

x [t] = ∆ s [t] = [δ1 s1 [t] , . . . , δN sN [t]]T , (2-23)

where ϕ [t] and s [t] are N × 1 vectors of symbols from a regular modulation

scheme denoted by A, as quadrature phase-shift keying (QPSK). The N ×

N diagonal matrix ∆ controls the activity of each device in the specific

transmission slot with 
Pr (δn = 1) = ρn,

Pr (δn = 0) = 1− ρn,
(2-24)

where ρn is the probability of being active of the n-th device. Thus, each

transmitted vector (φ [t] or x [t]) is composed by the augmented alphabet A0,

where A0 = A∪ {0}. The N ×N diagonal B matrix gathers the transmission

power component of each device, as in mMTC systems each MTCD has a
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different power level [5, 16]. The noise vector v is modelled as an independent

zero-mean complex-Gaussian M × 1 vector with variance σ2
v .

The block fading model is adopted, where the values change indepen-

dently from slot to slot, that is, the channel is constant over a transmission

slot duration. The M ×N channel matrix H corresponds to the channel real-

izations between the BS and devices as modeled by

H = A Υ1/2, (2-25)

where H gathers independent fast fading, geometric attenuation and log-

normal shadow fading. A is the M × N matrix of fast fading coefficients

circularly symmetric complex Gaussian distributed, with zero mean and unit

variance. It is also considered the effects of path loss and shadowing experienced

by each MTCD, modelling them in the N ×N diagonal matrix Υ, where each

component is given by β = 10 log10 (χ) + ω, where χ is the signal-to-noise

ratio (SNR) and ω is a Gaussian random variable with zero mean and variance

σ2
ω [98]. Thus, each vector hn can be written as

hn = an
√
βn, ∀n = 1, . . . , N. (2-26)

The βn coefficients are assumed to be known at the BS and changes very slowly,

reaching a new value just in a new transmission slot. Given the features of

mMTC scenarios, the number of devices N is larger than that of antennas M

at the base station, in a way that it consists of an underdetermined system.

All signal model parameters are described in Table 2.1.

2.3.2
Key Performance Indicators

To evaluate the performance of detection techniques, we consider three

key performance indicators (KPI):

- The Frame Error Rate (FER) denotes the total number of frames

incorrectly detected by the BS;
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- The Missed Detection Rate (MDR) denotes the total number of

symbols that have been transmitted in a specific time instant that the

detector judged as zero, divided by the number of active devices;

- The False Alarm Rate (FAR) is the number of symbols detected as

different from zero, divided by the difference between the total number

of devices and the number of active devices at a time instant;

Considering Sx as the true support set, that is, the list of active devices

in x, a Venn diagram in Fig. 2.3 represents the key performance indicators.

For the techniques that perform channel estimation, we evaluate the efficiency

by the normalized mean-squared error (NMSE).

Estimated
Support Set Sx̂

True
Support Set Sx

All indices
{1, . . . , N}

False Alarms
Sx̂\Sx

True Actives
Sx̂ ∩ Sx

Missed Detections
Sx\Sx̂

Figure 2.3: Venn Diagram of False Alarm and Missed Detection Errors.

2.3.3
General Simulation Parameters

In order to evaluate the performance of the cited algorithms, we consider

N = 128 MTCDs connected to a single base-station equipped with M = 64

antennas. The evaluated solutions experience an independent and identically-

distributed (i.i.d.) random flat-fading channel model and the values am,n of

(2-26) are taken from complex Gaussian distribution of Nc (0, 1). When the

device is active, it radiates QPSK symbols with power values drawn uniformly

at random in 0.1 W to 0.3 W and the probability of being active of each device
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ρn is drawn uniformly at random in [0.1, 0.3]. Each frame has 256 symbols, split

into 128 pilots and 128 data symbols. This balance between pilots and data is

suggested in [52].

Table 2.1: Description of mMTC signal model parameters.

Parameter Description
M Number of base station antennas;
N Number of devices;
K Number of active devices;
τ Number of transmitted symbols per trans. slot, given by τ =

τx + τφ, where τx represents the data and τφ the metadata;
ρn Random variable with a beta distribution that represents the

probability of being active of the n-device;
y [t] M × 1 received symbol vector of the time instant t;
φ [t] N × 1 metadata vector of the time instant t composed by the

augmented alphabet A0;
x [t] N×1 data vector of the time instant t composed by the augmented

alphabet A0;
∆ N × N diagonal matrix that controls each device activity in the

specific transmission slot;
B N × N diagonal matrix that gathers the transmission power of

each device;
v [t] noise component, modelled as a independent zero-mean complex-

Gaussian M × 1 vector with variance σ2
v ;

H M ×N channel matrix, where H = A Υ1/2;
A M ×N matrix of fast fading coefficients;
Υ N ×N diagonal matrix that gathers the path loss and shadowing

experienced by each device;

2.3.4
Joint Activity and Data Detection Techniques

In this section we present and compare relevant state-of-the-art al-

gorithms divided in four different classes of detectors: regularized, greedy,

message-passing and machine learning based. First, we start with the algo-

rithms that aim to perform activity and data detection, discussing the results

based on the KPIs.
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2.3.4.1
Regularized Detectors

In order to perform MAP detection of the mMTC sparse problem, the

Sparse Maximum a Posteriori Probability (S-MAP) detection was proposed

in [26]. This work was the first that applied a regularization parameter into the

cost function, inspiring the following works to propose suboptimal algorithms.

The authors of [26] considered a simplified version of (2-21), that ignores the

number of symbols, transmission power and time instant, as given by

y = Hx + v. (2-27)

Recalling that A0 is the augmented modulation alphabet and ρn the

activity probability for the n-device, [26] described the prior distribution of x

as
Pr (x) =

N∏
n=1

Pr (xn) =
N∏
n=1

(1− ρn)1−|xn|0
(
ρn
|A|

)|xn|0
, (2-28)

where |A| is the cardinality of the modulation alphabet and |xn|0 is the

element-wise l0-norm that is equal to 1 if xn is a non-zero value, otherwise

it is zero. The output of the S-MAP detector maximizing the a posteriori

probability Pr (x|y) is given by Bayes’ rule as

x̂ = arg max
x∈AN0

Pr (x|y) = arg min
x∈AN0

− ln Pr (y|x)− ln Pr (x) , (2-29)

which leads to

x̂ = arg min
x∈AN0

1
2‖y−Hx‖2

2 + σ2
v

N∑
n=1

λn|xn|0, (2-30)

where λn = ln [(1− ρn) / (ρn/|A|)] is the regularization parameter for the n-th

symbol detection.

As the main objective of the S-MAP detection is to find a vector in

AN0 that maximizes the cost function in (2-30), naturally, the complexity

of S-MAP is tremendous. In [26] itself the authors propose two relaxing

approaches, called Ridge detector (RD) and Lasso detector. RD regularizes
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the least squares (LS) solution using the l2-norm, while LD uses the l1-norm.

SA-SIC

For the sake of achieving an acceptable detection performance with much lower

complexity compared to other optimal but complex S-MAP detectors, the work

in [27] proposed the sparsity-aware successive interference cancellation (SA-

SIC). Considering that the BS has the perfect knowledge of probability of being

active of each device and perfect CSI, SA-SIC recovers transmitted symbols

in a sequential manner, incorporating the regularization into the problem. As

SA-SIC uses the QR decomposition of H = QR, we have

x̂ = arg min
x∈AN0

1
2

N∑
n=1

∣∣∣∣∣ỹn −
N∑
l=n

Rnlxl

∣∣∣∣∣
2

+ σ2
vλn|xn|0

 , (2-31)

where ỹ = QHy. Like any SIC technique, SA-SIC is sensitive to the error

propagation from the early layers. Therefore, ordering techniques should be

applied to mitigate the error propagation.

SA-SIC with A-SQRD

Considering the same assumptions of the SA-SIC, the authors of [29] proposed

a permutation of columns of channel matrix H based on channel gains. The

idea of SA-SIC with A-SQRD is to replace the l0-norm with the l2-norm in

(2-30), incorporate the regularization factor into the channel matrix H, as

x̂ = arg min
x∈AN0

1
2

∥∥∥∥∥
 y

0N

−
 H

σv diag
(√
λ
)


︸ ︷︷ ︸
H′

x
∥∥∥∥∥

2

2
, (2-32)

find the QR decomposition of the augmented H′, employ the modified

Gram-Schmidt algorithm [99] and reorder the columns of H′ before each

orthogonalization step.

AA-MF-SIC
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Focusing on the filter refinement, we incorporated an l1-norm regularization

in the linear MMSE filter (W) and a constellation-list scheme to increase the

detection performance [30]. The main idea of the AA-MF-SIC algorithm is

to iteratively update the regularized linear MMSE filter at each new symbol

detection n, as

wn =
(

HnH
H
n + σ2

v

σ2
x

I + 2λn
σ2
x

Λ
)−1

Hnδn, (2-33)

where Λ = diag
{

1
|wn,1|+ε ,

1
|wn,2|+ε , . . . ,

1
|wn,M |+ε

}
, δn is a N×1 zero column vector

with 1 at the n-th position and λn is the regularization parameter defined

by [26]. As this algorithm also performs the successive interference cancellation,

Hn denotes the matrix obtained by taking the columns n, n+ 1, . . . , N of the

channel.

As it is precisely described in the next chapter, we included in order

to avoid the error propagation a constellation-list scheme to evaluate the

reliability of each soft symbol estimate. In a nutshell, the constellation-

list consists of a shadow area constraint with the augmented alphabet of a

modulation scheme, that compares the distance between the soft estimate and

all the possible constellation symbols. If the soft estimate is considered reliable,

it is just quantized (Q [·]) to the nearest symbol of A0, as x̃n = Q
[
wH
n yn

]
.

Otherwise, x̃n proceeds to the list scheme as given by

κopt = arg min
i∈ 1,··· ,|A0|

‖yn − hnA0i‖2, (2-34)

where yn is the received vector after the SIC operation and the vector hn

contains the estimate of the channel between the device that performs symbol

detection and the BS. The index κopt indicates which candidate of the list A0i

will replace the quantized version of the unreliable soft symbol estimate x̃n.

After the detection, the algorithm proceeds with SIC.
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AA-RLS-DF

Since prior techniques do not perform channel estimation, our work in [50]

builds on previous decision feedback techniques [93,100] and proposes a scheme

with implicit channel estimation. Since this solution is detailed in Chapter 3,

here it is just introduced in order to be compared in this technical background

chapter.

The AA-RLS-DF uses a regularized recursive least squares (RLS) adap-

tive algorithm that relies on the metadata to update the weights. The de-

tection order is updated at each new layer, using the least squares estimation

(LSE) criterion. The adaptive receive filter is decomposed into feedforward and

feedback filters, where the feedforward one is updated at every new received

vector by the l0-norm regularized RLS algorithm and the feedback filter is a

component that is concatenated to the feedforward filter in order to cancel the

interference of the previously detected symbols.

In order to exploit the sparsity scenario, the detection order is updated

with the minimum argument of the l0-norm regularized cost function. After a

few steps, the l0-norm regularized RLS adaptive expression becomes

wj [t] = wj [t− 1] + k [t] ε∗n [t]− γ ξ sgn (wj,p [t]) fξ (wj,p [t]) , (2-35)

where k is the gain vector, ξ is a positive parameter that regulates the range

of the attraction to zero on small coefficients of the filter and γ is a non-zero

positive constant to balance the regularization and, consequently, the estima-

tion error. After the filters weights are computed with the metadata symbols,

the algorithm uses the same procedure to compute the data soft estimates.

Performance evaluation

Fig. 2.4, shows the Frame Error Rate (FER) performance averaged over

105 runs. Considering the average SNR as 10 log (N σ2
x/σ

2
v), the linear mean
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Figure 2.4: Frame error rate vs. Average SNR. Comparison of regularized
algorithms for N = 128, M = 64 with ρn drawn uniformly at random in
[0.1, 0.3]. 105 Monte Carlo trials.

squared error (LMMSE), unsorted SA-SIC [28], SA-SIC with A-SQRD [29],

AA-MF-SIC [30], AA-RLS [50] and AA-RLS-DF [50] are compared under

the general simulation parameters described in Subsection 2.3.3. As a lower

bound, the Oracle LMMSE detector, which has the knowledge of the index

of nonzero entries, is considered. Since the schemes of [50] do not require

explicit channel state information, in order to perform a fair comparison, we

take into account an imperfect channel estimation to the other approaches.

We considered Ĥ = H + E, where H represents the channel estimate and E

is a random matrix corresponding to the error for each link. Each coefficient

of the error matrix follows a Gaussian distribution, i.e., ∑Nc (0, σ2
e) where

σ2
e = σ2

v/5.

As the linear MMSE is not designed for the sparse scenario, it presents

a poor performance. The unsorted SA-SIC is susceptible to error propagation,

thus it does not perform well. A-SQRD and AA-MF-SIC are effective since both

consider the activity probabilities, but under imperfect CSI conditions, their

performance strongly degrades. On the other hand, as AA-RLS and AA-RLS-

DF do not need an explicit channel estimation, they are more efficient. The
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(a) Missed detection rate vs. Average SNR.
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Figure 2.5: Activity error rates for comparison of regularized algorithms.
Simulation parameters: N = 128,M = 64 with ρn drawn uniformly at random
in [0.1, 0.3]. 105 Monte Carlo trials.

interference cancellation performed by the decision-feedback scheme leads to

an evident FER gain. The activity error rates are shown in Figs. 2.5a and 2.5b,

much of the FER gain of the schemes of [50] is due to the high activity detection

accuracy of the regularized RLS filters illustrated by the MDR performance.
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2.3.4.2
Greedy Detectors

Widely studied in the compressive sensing field, greedy algorithms have

been applied as potential solutions to mMTC activity and data detection.

As this approach has low complexity and generally only requires termination

tuning, that is, the termination of the transmitted vector has to be adapted

for the specific problem instance in order to avoid inaccurate results. The

pioneering work [40] applied the well-known OLS and OMP algorithms to an

uplink sparse scenario as mMTC. As OMP has a better performance, a lot

of improvements of it are available in the literature and some of them were

specifically designed for mMTC.

wGOMP

Drawing inspiration from the block-sparse variant of OMP, the GOMP [44],

the authors in [42] propose an improvement where they refine the activity

detection, exploiting the channel code. Considering perfect CSI and that

the BS has the knowledge of the number of active devices, structuring the

receiver in an iterative feedback approach, the main idea of wGOMP is to pass

weights w based on the channel decoding output to the multiuser detection.

Repeating iterations until w values no longer change and the feedback process

has converged, at each new step, the weights give the likelihood of activity for

each node, improving the activity decision. The weights are introduced in each

correlation in the block selection step of GOMP, as

k̃ = arg max
k∈B(u−1)

1
|γ (k) |

∑
j∈γ(k)

w{j}
|HH
{j}r(u−1)|
‖H{j}‖2

, (2-36)

where k is the index of the block, r is the residual, u the iteration index and H

is the channel matrix. The list of inactive devices given by B and γ is the part

of the channel matrix that should be considered. These weights allow the choice

of devices which are likely active, due to information from channel coding. If

no weights are applied, (w = 1), the wGOMP and GOMP are identical.
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In order to reduce the complexity of the problem, the work in [42]

also considers independent subproblems. The main idea is to apply parallel

CS-MUD detectors to each subproblem, detecting each part of the transmitted

vector separately. Once all parts have been detected, the estimated symbols

can be sorted per node, resulting in the node-specific data vectors, later

decoded by the channel decoder.

bcSIC

In order to improve the last approach, the authors in [43] incorporate the most

likely codeword in the iterative feedback scheme. Known as block-correlation

SIC (bcSIC), the idea is to compute the activity estimation as in wGOMP

and performs the LS estimation for the chosen node k̃ followed by the channel

decoding for this node. Subsequently, the residual is updated with the most

likely codeword of node k̃ for interference cancellation, as

r(u) = r(u−1) −H{γ(k̃)}d̂k̃ (2-37)

where, due to this modification, the estimates d̃k = H†{γ(k)}r(u−1) are never

re-evaluated, unlike wGOMP that performs an LS estimation for all active

nodes B(u) in each iteration.

mSOMP-EXT

Drawing inspiration in other modification of the OMP, the simultaneous

orthogonal matching pursuit (SOMP) [101] with extrinsic information transfer

(SOMP-EXT) [102], the work in [103] developed an algorithm that performs

the joint activity and data detection with no prior knowledge of sparsity

and noise levels, just the channel gains. Named mSOMP-EXT [103], this

algorithm computes the average LLR of each n-th device, where L
(
z

(t)
l,n

)
=

log
(
Pr
[
z

(t)
l,n |n ∈ S

]
/Pr

[
z

(t)
l,n |n /∈ S

])
. S indicates the list of active devices, τ

is the number of symbols in the frame and t is the time index. The scheme
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repeats until l is an iteration marker surpasses the number of subcarriersM . As

part of the essence of SOMP-EXT, the LLR creates and transfers the extrinsic

information through iterations to support detection as, ∀n ∈ {1, . . . , 2N}\Ŝl−1,

Zl,n = 1
τ

τ∑
t=1
L
(
z

(t)
l,n

)
, (2-38)

Al,n =


0 , if l = 1,
(τ−1)
l−1

∑l−1
l′=1 Zl′,n , if l ≥ 2

, (2-39)

and Λl,n = Zl,n+ (τ − 1)Zl,n+Al,n. As this scheme works with real values, the

estimated support list Ŝl has 2N elements, which is updated as follows

Ŝ = (2-40)

Ŝl−1
⋃ arg max

n∈{1,··· ,N}\Ŝl−1

(Λl,n + Λl,n+N) , arg max
n∈{1,··· ,N}\Ŝl−1

(Λl,n + Λl,n+N) +N

 .
Using the estimated list of active devices, the soft estimation and the

residual are computed as x̃(t)
Ŝl

= (H(t)
Ŝl

)†y(t) and r(t)
l = y(t) − H(t)

Ŝl
x̃(t)
Ŝl
. In the

next iteration, the vector z(t)
l,n is computed using the last residual and the

procedure repeats.

The authors in [103] used an LLR approximation in order to not require

the knowledge of the sparsity level K and the noise variance σ2
v . As in the

work [103] was considered Υ-ary QAM symbols, the following LLR approxi-

mation is taken into account:

L
(
z

(t)
l,n

)
(2-41)

= log

 1√
Υ

√
Υ−1∑
υ=0

1√
2πσl,1

exp

−
(
z

(t)
l,n − qυ

)2

2σ2
l,1

/ 1√
2πσl,0

exp

−
(
z

(t)
l,n

)2

2σ2
l,0


 ,

where qυ = 2υ−
√

Υ+1√
2 , υ = (0, 1, . . . ,

√
Υ − 1), is the in-phase component of

an Υ-ary QAM symbol that corresponds to a nonzero element of x̃(t). For

a sufficiently large number of subcarriers M , σ2
l,0 and σ2

l,1 are approximated

as σ2
l,0 ≈ σ2

l,1 ≈ σ2
x, where σ2

x = 1√
Υ
∑√Υ−1
υ=0 q2

h = Υ−1
6 is the average power of

nonzero elements of x(t). This LLR approximation and a threshold parameter
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empirically obtained for a stopping criterion, composes the modification of

mSOMP-EXT.

TA-BSASP

An improvement of the classical subspace pursuit (SP) algorithm is presented

in [46]. The threshold aided block sparsity adaptive subspace pursuit (TA-

BSASP) reconstructs the sparse vector by exploiting the inherent block spar-

sity, as the authors vectorized all data transmitted in different time slots.

TA-BSASP uses a stopping criterion based on the AWGN noise, given by

min


∣∣∣∣∣
∣∣∣∣∣c̃(l) [m]

∣∣∣∣∣
∣∣∣∣∣
2

2

 ≤ τ Pth, (2-42)

where c̃(t) is the estimated solution of the vectorized transmitted vector, m is

an index of the support set, τ is the number of elements in the same block

and Pth is the AWGN noise floor, selected experimentally. Until the stopping

criterion is met, TA-BSASP updates the support estimate list, with the time

index t, as

Λ = Γ(t−1)⋃Ξ
(
‖DH [n] r(t−1)‖2, s

)
, ∀n = 1, 2, . . . , N (2-43)

where Ξ is a set, whose elements are the indices of the largest s elements of

its argument. s is initialized as one and determines how many devices the

algorithm will deal per iteration. D is a sparse version of the channel matrix

H, given by

D=



H (1, 1) Iτ H (1, 2) Iτ . . . H (1, τN) Iτ

H (2, 1) Iτ H (2, 2) Iτ . . . H (2, τN) Iτ
... ... . . . ...

H (N, 1) Iτ H (N, 2) Iτ . . . H (N, τN) Iτ


= H⊗ Iτ . (2-44)

Following this step, TA-BSASP computes the LS estimate w of the set Λ and

performs support pruning, as
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Figure 2.6: Frame error rate vs. Average SNR. Comparison of greedy algorithms
for N = 128, M = 64 with ρn drawn uniformly at random in [0.1, 0.3]. 105

Monte Carlo trials.

Γ̂(t) = Ξ (‖w [n] ‖2, s) , ∀n = 1, 2, . . . , N. (2-45)

Then, the algorithm proceeds with the signal estimate c̃(t)
[
Γ̂(t)

]
, update

of residual r(t) and if ‖r(t)‖2 < ‖r(t−1)‖2 <, the support pruning is updated

(Γ(t) = Γ̂(t)) as the iterative index (t = t + 1). Otherwise, the sparsity level

is updated, with s = s + 1. When the stopping criteria in (2-42) is met, the

algorithm stops and the data are recovered.

Performance evaluation

In order to verify the efficiency of the greedy algorithms, we modify the system

model of (2-21), as the schemes do not consider the metadata, but include in

the signal model spreading sequences. In this way, the general received vector

for this performance analysis is given by

y(t) =
N∑
n=1

diag
(
h(t)
n

)
snx(t)

n + v(t) = G(t)x(t) + v(t), (2-46)

where at a time slot l (1 ≤ l ≤ τ), a transmitted symbol x(t)
n of active user n is

spread onto M subcarriers using a unique spreading sequence sn ∈ CM . The

channel gain hm,n and noise vector are computed as described in Subsection
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Figure 2.7: Activity error rates for comparison of greedy algorithms. Simulation
parameters: N = 128,M = 64 with ρn drawn uniformly at random in [0.1, 0.3].
105 Monte Carlo trials.

2.3.3, as the other simulation parameters.

For simplicity, we assume as a stopping criterion for wGOMP and bcSIC

the number of active devices, even if this is unrealistic. For mSOMP-EXT we

choose vth = −0.4, as in [103]. In TA-BSASP, the Pth used for the stopping

criterion is the same as in [46], 0.68, 0.51, 0.48, 0.38, and 0.28, respectively, at



Chapter 2. Technical Background and Literature Review 60

the SNR of 0 dB, 2 dB, 4 dB, 6 dB, 8 dB.

As none of the greedy solutions perform channel estimation, for this com-

parison we considered perfect CSI. The Frame Error Rate (SER) performance

averaged over 105 runs is depicted in Fig. 2.6. Although wGOMP and bc-

SIC originally use channel coding, we do not use it so that the comparison

with other techniques is fair. As each frame has 128 data symbols, we divided

wGOMP in Nsubp = 16 subproblems, thus considering 8 symbols for each de-

vice (τseg = 128/Nsubp = 8).

It is possible to observe that the well-known OMP has the worst per-

formance, as it does not include any refined activity detection scheme. As

wGOMP exploits block-sparsity across all subproblems via the feedback of ac-

tivity estimation based on the output of the channel decoding (or quantization

of the soft estimation) wGOMP has a lower FER than GOMP for high SNRs.

Since each subproblem only considers changed partial block-sparsity, it enables

the correction of some activity errors in the feedback process. The interference

cancellation incorporated in bcSIC algorithm reduces its FER comparing to

wGOMP and reaches the error floor, due to error propagation, in a low SNR

value, approaching the curve to the lower bound. Showing better results in

high SNRs, mSOMP-EXT and TA-BSASP have worse performance than bc-

SIC for low SNR due to poor activity detection compared to the bcSIC as

seen in Figs. 2.7a and 2.7b. We can also conclude that the FER performance

of OMP, GOMP and wGOMP are primarly limited by activity errors, while

bcSIC is primarily limited by error propagation.

2.3.4.3
Message-Passing Detectors

Initially proposed by Donoho, Maleki and Montanari [34, 104, 105], the

application of factor graphs to CS problems inspired many other works. As this

class of iterative thresholding algorithms considers the posteriori distribution

of the signal to be reconstructed, the usage of factor graphs to marginalize the
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joint probability distribution of the received vector enabled its application in

the communications area.

Non-coherent scenario

The works in [36] and [55] propose a modification in the AMP in a non-coherent

transmission scenario. The main idea of the non-coherent approach is that the

transmitted data bits are embedded in the index of the transmitted pilot se-

quence of each active device. Therefore, if the algorithm correctly detects the

active devices, consequently it will detect the data. The disadvantage of this

method is that the BS is required to allocate for each device not just one meta-

data sequence per frame, but a set of 2J sequences when J bits are transmitted

by each device. Due to the massive number of devices requiring connection at

the same time and non-orthogonal metadata sequences, the probability of two

devices having identical sequences is seen as the probability of frame collisions,

which should be taken account in the performance. Considering a system model

similar to (2-21), both works [36] and [55], incorporate the sparsity not only

in the transmitted vector, but in the channel matrix. In this way, the sparse

structure of H has the rows corresponding to inactive users are zero. Thus, the

activity detection problem reduces to finding the non-zero rows of the channel

matrix H. In this way, the signal model in this case is given by

Y = √τφΦH + V, (2-47)

where the metadata Φ and channel H matrices are

Φ = [Φ1, . . . ,ΦN ] ∈ Cτ×N2J and H = [H1, . . . ,HN ]T ,

in which the channel matrix between the n-th device and the BS is

Hk =
[
δk,1hk, . . . , δk,2Jhk

]
∈ CM×2J and δ is the parameter that defines

if the n−th device is active or inactive, as in (2-22). Due to the rewritten
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signal model, the channel matrix now has 2J more rows than the previous one

but with the same number of active devices, which increases the sparsity level

of the system. In order to exploit these properties, the works in [36] and [55]

proposes a modified AMP algorithm.

M-AMP

The authors in [36] presents the M-AMP where, for the active device n, the

estimate of the row of H =
[
hk,1, . . . ,hk,2J

]
∈ CM×2J corresponding to the

i-th metadata sequence is ĥk,i, with hk,i = δk,ihk. Then, with the k-th device

transmitting the pilot sequence i′, the estimate is

hlk,i =


(
hk +

(
Σl
) 1

2 w
)
∼ Nc

(
0, ηkI + Σl

)
, i = i′,((

Σl
) 1

2 w
)
∼ Nc

(
0,Σl

)
, i 6= i′.

(2-48)

where the update of the state evolution is given by Σl+1 = σ2
v

τφ
I + N

τφ
E{eeH},

e = η(hβ − (Σl) 1
2 w) − hβ and w is a complex Gaussian vector with unit

variance and t is the iteration index. hβ has the following distribution:

phβ = (1− ρ) δ + ρNc(0, βI), (2-49)

Nc(0, βI) is the distribution of the channel vector of the active device and

δ is the dirac Delta at zero corresponding to the inactive device channel

distribution. The expectation in the update of the state evolution expression is

taken with respect to β, parameter of (2-26). Thereby, the resulting modified

denoiser is
η̃l,n

(
ĥln
)

= f
(
ψ
(
ĥlk
))

ηl,n

(
ĥln
)
, (2-50)

where ηl,n is the denoising function equivalent for the MMSE [36]. The idea of

the modification is to design a denoiser capable to suppress the metadata

sequences that do not belong to the evaluated device. For this, a soft-

thresholding function is used, the sigmoid function, defined by
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f
(
ψ
(
ĥlk,i

))
= 1

1 + exp
(
−c

(
ψ
(
ĥlk,i

)
− 1

2

)) , (2-51)

where c is a parameter that determines the sharpness of the sigmoidal transi-

tion, the coefficient ψ
(
x̂lk,i

)
is seen as a measure of the proportional likelihood

of a given sequence allocated to device k and is given by

ψ
(
ĥlk,i

)
=

Λ
(
ĥlk,i

)
∑2J
i′=1 Λ

(
ĥlk,i

) , (2-52)

where the likelihood function is

Λ
(
ĥlk,i

)
= |Σl|
|βkI + Σl|

q
(
ĥlk,i; Σl

)−1
, (2-53)

and

q
(
ĥlk,i; Σl

)
= exp

(
−
(
ĥlk,i

)H ((
Σl
)−1
−
(
Σl + βnI

)−1
)

ĥlk,i

)
. (2-54)

As the main idea is that only a single row corresponding to a device may be

non-zero as it is impossible for a device to transmit both metadata sequences

concurrently, the authors of [36] proposed M-AMP.

NSD-AMP

Also focusing on the non-coherent transmission, the work in [55] proposes

another modification to the AMP. The idea is to develop a section-wise

equivalent model, that decouples the estimation in different sections, in this

way allowing the design of the section-wise Bayes-optimal denoiser for the

AMP, minimizing the MSE section by section. Starting from the classical AMP,

Hl+1
n = ηl,n

(
(Φn)H Rl + Hl

n

)
, n = 1, · · · , N, (2-55)

Rl+1 = Y −ΦHl+1 + Rl

τ

N∑
n=1

η′l,n
(
(Φn)H Rl + Hl

n

)
, (2-56)

and using the analysis presented in [106], the authors argue that the output of
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the denoiser applied to the residual (Φn)H Rl+Hl
n, as in (2-55), is statistically

equivalent to the output of applying the denoiser to

Ĥn = Hn + VnΣ
1
2
l , (2-57)

which is called section-wise equivalent model. Based on the equivalent model

in (2-57), the section-wise MMSE denoiser, in other words, the equivalent of

(2-55) and (2-56) is given by

ηln
(
Ĥl
n

)
=
[
ωn,1Θnĥln,1, · · · , ωn,1Θnĥln,1

]T
(2-58)

in which

Θn = βn (βnI + Σl)−1 , (2-59)

ωn,i = exp (M (πn,i − φn))∑2J
j=1 exp (M (πn,j − φn)) + 2J

(
1−ρ
ρ

) , (2-60)

πn,i =

(
ĥln,i

)H (
Σ−1
l −

(
Σ−1 + βnI

)−1
)

ĥln,i
M

, (2-61)

φn =
log

(
|I + βnΣ−1

l |
)

M
. (2-62)

where ρ refers to the probability of being active of each device (equal for all)

and βn are the large scale coefficients given by (2-26). Besides the section-wise

MMSE denoiser, the authors of [55] describe how to decode the embedded data.

After t iterations with (2-55) and (2-56) the following threshold is computed

Mn,i =
(

1
κ2
t

1
βn + κ2

l

)
ζHn,iζn,i
M

− φn, ∀i, n (2-63)

φn = log
(

1 + βn
κ2
l

)
(2-64)

where ζn,i denotes the i-th row of the matrix (Φn)H Rl + Hl
n, as in (2-55) and

κ2
t is iteratively obtained using the scalar form of state evolution equations
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given by

κ2
0 = 1

SNR + ρ

ε
E [β] (2-65)

κ2
l+1 = 1

SNR + 1
ε

2J∑
i=1

E
[
ωβ,iθβκ2

l

]
+ 1
ε

2J∑
i=1

E
[
Υl
β,i

]
(2-66)

with all expectations with respect to β, Hβ and V and

θβ = β

β + κ2
l

, (2-67)

Υl
β,i =ωβ,i (1− ωβ,i)

(
β

β + κ2
l

)2
(
ĥlβ,i

)H
ĥlβ,i

M
, (2-68)

Ĥl
β =

[
ĥlβ,1, · · · , ĥlβ,2J

]T
+ κlV, (2-69)

where ε = τ/N is a positive value when (τ,N)→∞. Thus,Mn,i is evaluated

as i∗n = arg max
i

Mn,i,∀i, n. Then the support vector δn =
[
δn,1, · · · , δn,2J

]T
of

the n-th device is a vector of zeros ifMn,i∗n ≥ 0 or a vector of zeros with an 1

in the i∗n element, otherwise.

Performance evaluation

As in this section we have two different approaches to deal with the problem,

we have also two simulation scenarios, in order to have the fairest possible

comparison. Firstly, we compare the activity detection performance of the

non-coherent algorithms. As the goal of these algorithms is to improve the

denoiser, we simulated a scenario with 100 devices, 50 receive antennas and

200 metadata sequences for M-AMP and NSD-AMP, while the well-known

AMP has 100 metadata sequences, as suggested in [36] and [55]. If the detector

determines that one of the metadata sequences corresponds to one assigned

to a device, then that device is detected as active, independently of whether

an information bit is transmitted. In all algorithms, the number of iterations

is fixed in 30, the number of embedded data bits transmitted by each active

device is 4(J = 2) and each device has a activity probability drawn uniformly
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Figure 2.8: Activity error rate vs. Average SNR. Comparison of message-
passing algorithms for N = 100, M = 50 with ρn drawn uniformly at random
in [0.1, 0.3] which M-AMP and NSD-AMP consider 200 metadata sequences
and detect devices along with a single embedded information bit. 105 Monte
Carlo trials.

at random in [0.1, 0.3]. As shown in Fig. 2.8, AMP has a better performance

than the M-AMP, as expected. Besides deal with more metadata sequences,

the modification of the denoiser is a function outside of the standard denoiser,

which carries less information than the scheme of NSD-AMP, that incorpo-

rates the system statistics in the new denoiser. Another important point is

that the NSD-AMP has the information of the probability of being active of

each device, which is not available for M-AMP and AMP. Since the setup to

include the bits of each algorithm is different and this is not the main goal

of the paper, the evaluation of the non-coherent boils down to the activity

detection performance.

Coherent scenario

Returning to the coherent scenario, the works in [32], [37] and [41] uses the

message-passing approach to achieve the activity and signal detection.

Joint-EM-AMP
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The authors of [37] proposes the Joint-EM-AMP, solution that uses the

expectation maximization (EM) algorithm to estimate the activity of devices.

As EM is an iterative algorithm that increases the likelihood probability of

each iteration, it guarantees convergence to at least a local maximum of

the likelihood function f (yj|λn,j). Thus, this approach updates the activity

estimate with the detection of each j symbol of the received frame. Considering

a system model similar to (2-27) with rn,j being the estimated mean of xn,j

by decoupling of AMP and φn,j the effective noise variance, the posterior

probability of xn,j is expressed as

f (xn,j|rn,j, λn,j) = f (rn,j|xn,j) p (xn,j|λn,j)
f (rn,j|λn,j)

(2-70)

where

f (rn,j|λn,j) =
∑

xn,j ,∈A
f (rn,j|xn,j) p (xn,j|λn,j) , (2-71)

f (rn,j|xn,j) = Nc (rn,j − xn,j, φn,j) , (2-72)

p (xn,j|λn,j) = (1− λn,j) δ (xn,j) + λn,j

|A|∑
i=1

piAδ (xn,j − di) . (2-73)

Here, δ (·) is the Dirac delta function and (2-73) is the prior information

of the transmitted discrete symbols conditioned on user activity parameter

λn,j, obtained iteratively by the expectation maximization algorithm. pA is

the a priori probability of each di, that is the i-th symbol of the modulation

constellation A. The estimates of the posterior mean and variance of xn,j are

given by

x̂n,j =
∑

xn,j∈A
xn,jf (xn,j|rn,j, λn,j) , (2-74)

vn,j =
∑

xn,j∈A
|xn,j|2f (xn,j|rn,j, λn,j)− |x̂n,j|2. (2-75)

Thus, the updated λn,j is then obtained as
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λt+1
n = 1

τ

τ∑
j=1

∑
xn,j∈A

f
(
xn,j|yn,j, λtn,j

)
(2-76)

where
f
(
xn,j|yn,j, λtn,j

)
=
∑A
i=1 p

i
Aδ (xn,j − di)− δ (xn,j)
p (xn,j|λn,j)

. (2-77)

Thus, the Joint-EM-AMP performs the classical AMP algorithm and

iteratively estimates the activity of devices with the expectation propagation

approach. After t predefined iterations, if λn is greater than 0.5 the k-th device

is considered active and inactive, otherwise. The data of active devices are

recovered from the estimated values of xn,j in this approach.

EM-BSBL

The work in [32] applies the expectation maximization in a different way.

Without requiring the priori knowledge of the activity factor, the work in [32]

modifies the block sparse Bayesian learning (BSBL) [107] that considers the

prior of the row sparsity property and the column coherence of each device.

This Bayesian inference method make use of reasonable priors and a set of

hyperparameters to control the estimated signals which can be learned from

the training progress via expectation maximization.

This method vectorizes the transmitted frame, from the simplified signal

model of (2-27). In order to estimate the vectorized transmitted frame x =

vec (X), two hyperparameters are included in the system, γ and C. The first

one, γ = (γ1, · · · , γN) is a non-negative hyperparameter that controls the row

sparsity property of X and C is a positive definite matrix that controls the

column coherence of X. The likelihood of the received signal y is

p
(
y|x;σ2

v

)
= Nc

(
y|Hx, σ2

vI
)
. (2-78)

The authors assume zero-mean Gaussian prior for the transmitted signals

x, and the variance is composed of γ and C, therefore p (x; γn,Cn) =

Nc (x|0,Σ0) ,∀n, where the variance Σ0 = diag (γ1C1, · · · , γNCN). Then, the
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posterior distribution of x is computed as

p
(
x|y;σ2

v , γ,C
)

= p (y|x;σ2
v) p (x; γ,C)∫

p (y|x;σ2
v) p (x; γ,C) dx = Nc (x|µ,Σ) , (2-79)

where the posterior mean (x̂ = µ) and covariance are respectively

x̂ = ΣHHy(σ2
v)−1 and Σ =

(
Σ−1

0 + σ2
vHHH

)−1
. (2-80)

Knowing that µix is a τ × 1 vector and denotes the i-th block of µ, and

Σi
x is a τ × τ matrix and denotes the i-th block of Σ, the hyperparameters γ,

C, and σ2
v estimation via the iterative EM method are summarized as follows

γi = 1
τ
tr
(
C−1Σi

x + µix(µix)H
)
,

C = 1
N

N∑
i=1

Σi
x + µix(µix)H

γi
(2-81)

σ2
v =
‖y−Dµ‖2

2 + σv2
(
Nτ − tr

(
ΣΣ−1

0

))
Mτ

,

As a stopping criterion, if the mean ‖µt − µt−1‖2 is lower than a pre-

scribed threshold, as 10−6, the algorithm stops.

CS-MPA

The work in [41] proposed a mixture of techniques, a CS approach to real-

ize the user activity and a message-passing method to the data detection.

Named CS-MPA detector, the algorithm is divided in two parts. Initially, the

signal model considered is similar to (2-47) in terms of the channel matrix

contains the sparsity of the system. The compressive sampling matching pur-

suit (CoSaMP) [108] algorithm is used to estimate the number of active users

and the maximum iteration number. Thereby, the algorithm perform a least

squares approach and computes a residual in order to aid in the next itera-

tion. After all iterations, the estimated channel columns different from zero

are considered to be related to an active device.
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For the data detection, CS-MPA considers a simple factor graph in

which transmitted symbols for all devices are variable nodes {xn}Nn=1 and the

observations are factor nodes {ym}Mm=1. In the factor graph, there exists an

edge between a variable node and a factor node if and only if the device is

active. In MPA, the marginal distribution of a variable node can be regarded

as the product of the messages received by that node as it is represented by

µtm→n (xn) ∝
∑

xi|i∈M(m)\n

1√
2πσv

exp
{
− 1

2σ2
v

‖ym − hm,nxn

−
∑

i∈M(m)\n
hm,ixi‖2

} ∏
i∈M(m)\n

µt−1
i→m (xi) , (2-82)

µtn→m (xn) ∝
∏

i∈M(n)\m
µt−1
i→n (xn) , (2-83)

where µtm→n (xn) denotes the message passed from factor node ym to variable

node xn in the i-th iteration, µtn→m (xn) is the message passed from the other

direction and and M(m)\n presents all elements in M(m) except for n. After

all iterations, the (approximate) marginal probability distribution of xn is

computed by
p (xn) ∝

∏
i∈M(n)

µTi→n (xn) . (2-84)

Therefore, each estimated symbol of active users is taken from the modulation

alphabet with the maximum marginal probability.

Performance evaluation

For the coherent scenario, AMP, CS-MPA, EM-BSBL and Joint-EM-AMP

are evaluated. Considering 128 devices transmitting frames with 128 QPSK

symbols to a single base station equipped with 64 antennas, its is possible

to notice that EM-BSBL and Joint-EM-AMP shows better performance than

other schemes. Due to the expectation-maximization procedure, the activity

estimation of each algorithm is more refined. Despite being based on AMP,

the consideration of posterior probability of the transmitted symbols to reach

the update equation of the activity parameter improves considerably the
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Figure 2.9: Frame error rate vs. Average SNR. Comparison of message-passing
algorithms for N = 128, M = 64 with ρn drawn uniformly at random in
[0.1, 0.3]. 105 Monte Carlo trials.

estimation performance. On the other hand, CS-MPA uses a simple scheme

to estimate the activity and the classical message-passing algorithm to detect

the transmitted symbols, which results in intermediate performance.
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(a) Missed detection rate vs. Average SNR.
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(b) False alarms rate vs. Average SNR.

Figure 2.10: Activity error rates for comparison of message-passing algorithms
in a coherent scenario. Simulation parameters: N = 128, M = 64 with ρn
drawn uniformly at random in [0.1, 0.3]. 105 Monte Carlo trials.

2.3.5
Joint Activity Detection and Channel Estimation Techniques

In this subsection we present and compare relevant state-of-the-art

algorithms divided in two different classes of detectors: message-passing and

machine learning based. Each approach is compared under the NMSE and

AER KPIs.
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2.3.5.1
Message-Passing Solutions

Message-passing approaches, besides singal detection, have been also

applied to obtain accurate channel estimation with a low computational

complexity. As most of channel models consider Gaussian approximations, the

use of message passing approaches is attractive.

AMP with MMSE denoiser

One of the first works [52] consists of a robust technique, where a minimum

mean-squared error (MMSE) denoiser in the vector AMP algorithm is designed

for user activity detection and channel estimation based on statistical channel

information. Considering a signal model similar to (2-47), the main difference

between the MMSE denoiser in (2-58) is the component of (2-60), which is

given by
ωn = 1

/(
1 +

(1− ε
ε

)
exp (−M (πn − φn))

)
, (2-85)

being updated in each state. For the device activity detection, a threshold

strategy is adopted as


1, if

(
(Rt)H Φn + ĥtn

)H (
(Rt)H Φn + ĥtn

)
> θt,n,

0, if
(
(Rt)H Φn + ĥtn

)H (
(Rt)H Φn + ĥtn

)
< θt,n,

(2-86)

with the threshold as θt,n = M log
(
1 + βn

κ2
t

)/ (
1
κ2
t
− 1

κ2
t+βn

)
where κt is itera-

tively obtained as in (2-65) and (2-66). Thus, if the device is considered active

then the estimated channel is given by the corresponding ĥ.

MP-BSBL

Based on Bayesian learning, the work in [57] uses a block sparse approach

with belief propagation (BP) and mean field (MF), to achieve low complexity.

Considering a vector version of (2-47) and that the metadata of each device

is composed by Zadoff-Chu sequences, in the signal model of [57], both the
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Figure 2.11: Factor graph of MP-BSBL, where the auxiliary variable zn and
extra constrains δ, denoted by fδn and fyn are introduced. This auxiliary
variables are function of the channel, metadata vector and λ.

metadata and channel matrices are sparse. Based on the idea of separating

the problem in blocks as the well-known block orthogonal matching pursuit

(BOMP) [109], a two-layer hierarchical structure, shown in Fig. 2.11, factorizes

the joint a posteriori pdf of the block sparse channel vector h:

p
(
h,γ, λ|y

)
∝ p

(
y|h,λ

)
p
(
h|γ

)
p (γ) p (λ)

= p (λ)
τφM∏
m=1

p
(
ym|h,λ

) M∏
n=1

(M/N)K∏
i=1

p
(
hn,i|γn

)
p (γn) , (2-87)

where p(h) =
∫
γ p
(
h|γ

)
p (γ) dγ is the prior pdf of h given by the product of a

conditional prior pdf p
(
h|γ

)
and a hyperprior pdf p (γ). Since the parameter

λ here is the noise precision 1/σ2
w and the joint a posteriori pdf is composed

of complex Gaussian pdfs, a Gamma distribution (p (γn)), the factor graph in

Fig. 2.11 can be build. The BP rule is used at the function nodes and MF rule

is used at other function nodes. After a predetermined number of iterations,

the channel is estimated with the mean mhn,i
computed by the exchange of

messages, most of them approximated by complex Gaussian pdfs between the

factor and variable nodes. The activity detection is performed by the evaluation

of the inverse of the estimated hiperprior γ with a predefined threshold.

Iterative EP
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With a different approach, the work in [59] proposes an iterative algorithm

that uses expectation propagation (EP) to perform active user detection and

channel estimation. Considering the signal model as (2-47):

y = Φh + v, (2-88)

where Φ is the metadata matrix and the prior distribution of the channel

vector h is given by

p(h) =
N∏
n=1

[(1− ρn) δ(hn) + ρnNc (hn|0, βn)] , (2-89)

where δ(·) is the dirac function. With this, the idea of the algorithm is

to approximate the target distribution f(h) = p(y|h)p(h) to the Gaussian

distribution q(h) = Nc(h|m̃, Ṽ). After that, the algorithm proceeds in order

to match the mean vector true target m̃ and covariance matrix Ṽ to those of

the true target distribution f(h) based on the iterative EP algorithm.

Thus, using the Kullback-Leibler (KL) divergence criterion and approx-

imating the target distribution as

f(h) = f1(h)f2(h) = p(y|h)p(h),

f1(h) = p(y|h) ≈ q1(h) = Nc(h|m̃1, Ṽ1), (2-90)

f2(h) = p(h) ≈ q2(h) = Nc(h|m̃2, Ṽ2), (2-91)

where, after reconstructing the unnormalized global Gaussian approximation

as f(h) ≈ q(h) = q1(h)q2(h) = Nc(h|m̃, Ṽ), the mean vector m̃ and the

covariance matrix Ṽ are given by

Ṽ =
(
σ−2
w ΦHΦ + Ṽ−1

2

)−1
(2-92)

m̃ = Ṽ
(
σ−2
w ΦHy + Ṽ−1

2 m̃2
)
, (2-93)

where m̃1 and Ṽ1 where approximated. Then, the task of the iterative EP is
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to compute the m̃2 and Ṽ2 parameters. The update equations are given by

ṽt+1
2,n =

[
V t
q [hn]−1 − (ṽt\2,n)−1

]−1
, (2-94)

m̃t+1
2,n =

[
V t
q [hn]−1Et

q[hn]− (ṽt\2,n)−1m̃t
\2,n

]
, (2-95)

where ṽt\2,n corresponds to the contribution of the n-th marginal of qt(h) and

Et
q[hn] and V t

q [hn] are the mean and variance of the distribution to be match

and are computed by method of moments. The algorithm proceeds until a

predefined number of iterations is reached and the mean vector m̃ is the

estimated channel ĥ. Once ĥ is obtained, by performing the likelihood test

on ĥ, the active devices are detected. Considering H1 as the hypothesis for the

active device and H0 as inactive, the log-likelihood ratio test is obtained after

the threshold of each element of ĥ as
H1 if |ĥn|2 ≥ θn,

H0 if |ĥn|2 < θn,
(2-96)

where θn = log(1 + βn
Ṽnn

)/( 1
Ṽnn
− 1

βn+Ṽnn
) and Ṽnn is the n-th diagonal of Ṽ.

Performance evaluation

With the same framework of the previous simulations, the message-passing

algorithms are evaluated in the scenario of N = 128 MTCDs connected to a

single base-station equipped withM = 64 antennas. Each frame is composed of

128 metadata symbols in order to estimate the channels, considered as the same

of (2-26). Initially, Fig. 2.12, shows the Frame Error Rate (SER) performance

averaged over 105 runs. Considering the average SNR as 10 log (N σ2
x/σ

2
v), the

AMP with MMSE denoiser in [52] outperfoms the traditional AMP [34]. On

the other hand, the techniques in [57] and [59] consider the prior distribution

of the channel vector and show better performance, as shown in Figs.2.13a

and 2.13b referred to as the activity detection performance. Using the method

of moments, the Iterative EP [59] has a much better NMSE performance com-



Chapter 2. Technical Background and Literature Review 77

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Average SNR (dB)

N
M
SE

AMP
AMP with MMSE denoiser [52]
MP-BSBL [57]
BOMP with known K [109]
Iterative EP [59]
Oracle MMSE

Figure 2.12: Normalized mean squared error vs. Average SNR. Comparison of
message-passing algorithms for N = 128,M = 64 with ρn drawn uniformly
at random in [0.1, 0.3] and active devices transmitting frames with 128 QPSK
symbols. 105 Monte Carlo trials.

pared to the other schemes, while its computational complexity is quadratic

and that of MP-BSBL [57] is linear. The well-known BOMP [109] algorithm

with knowledge of the the number of active devices is used as a lower bound

for MP-BSBL, as done in the original paper.
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(a) Missed detection rate vs. Average SNR.
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(b) False alarms rate vs. Average SNR.

Figure 2.13: Activity error rates for comparison of message-passing algorithms
for channel estimation. Simulation parameters: N = 128, M = 64 with ρn
drawn uniformly at random in [0.1, 0.3]. Each frame is composed by 128 QPSK
symbols. 105 Monte Carlo trials.

2.3.5.2
Machine-Learning Solutions

Recently, some works investigated the use of machine-learning ap-

proaches to channel estimation. Deep Learning (DL) [110] is a branch of

machine-learning which is also referred to as deep neural networks (DNNs),

uses a large amount of training data to learn parameters in a neural network.
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In order to analyze the complex channel characteristics, the work in [65] uses

a typical branch of DNN, the long short-term memory (LSTM). By implicitly

reproducing the behavior of the channel with the LSTM algorithm, this

approach considers the greedy SISD algorithm [111] to perform activity and

data detection. On the other hand, the works in [64] and [66] uses the DL ap-

proach to explicitly estimate the channels. Using the metadata vectors as the

training set, both works map each received vector y as an input and considers

as the loss function the mean square error (MSE) ‖ĥDNN−h‖2
2, where ĥDNN is

the estimated channel gain and h is the known channel gain in the training set.

BRNN

The work in [64] consists of a feedforward neural network with interleaved fully

connected layers and non-linear transformation layers. A batch normalization

is added for initialization and residual connection is used to avoid vanish-

ing/exploding gradients. The t-th layer of the network can be expressed as

ht+1 = f
(
Wtht + bt

)
, (2-97)

where the parameters to be learned Wt and bt are the weight matrix and the

bias vector, respectively, while f(·) denotes the non-linear operator given by

f (h1, . . . , hM) = sign (0, h1, . . . , hM) · [h1, . . . , hM ] , (2-98)

where sign(·) denotes the sign function. In the back propagation, the gradient

of (2-98) is 1 if f(h) = h and 0 if f(h) = 0. The main goal of this approach

is to detect the active devices and estimate the channel using an MMSE

estimator. Thus, the loss function of the designed network is the cross entropy

loss function given by
L(ẑ) = −

N∑
n=1

zn log(ẑn), (2-99)

where ẑn is the n-th element of the activation vector z with zn = 1 if

‖xn‖2 > 0 and zn = 0 otherwise. This network uses 6 nodes for training
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and test phases, while the optimizer adopted for training neural networks is

a stochastic gradient algorithm with a momentum 0.9 and a learning rate 0.01.

DNN-MP-BSBL

The work in [66] transfers the iterative message-passing process of MP-

BSBL [57], depicted in the last section, to a neural network. Motivated by

the convergence speed of MP-BSBL, the authors of [66] impose weights on

the Gaussian messages represented on the factor graph depicted in Fig. 2.11.

The idea is to simultaneously use the weights on the MF message update

and further train it to improve the activity detection accuracy. Under the

argument that the training of the network is conducted offline, just a small

computational complexity is added to the online process, the authors argue

that it is possible to use the network even though it is necessary to use 105

training sequences. With 9 layers within each iteration block, the received

vector is primarily used as the input and then, at each layer, the quantities

present in the joint a posteriori pdf in (2-87) are updated, as its weights. After

a predefined number of iterations, the activity detection decision is made by

comparing the variable γ with a threshold. If the device is detected as active,

the estimated channel gain is attributed to the device.

Performance evaluation

Differently from the other simulation scenarios, the networks need an offline

training, before the real transmissions. Although the scenario matches with

the previous ones, with N = 128, M = 64, MTCDs sporadically active

with an activity probability drawn uniformly at random in [0.1, 0.3] and the

channel modelled as in (2-26), for both simulations, was necessary a training

set with the size of 105. The rest of the parameters considered specifically

for each algorithm, are consistent with those cited in the original works, as

for DNN-MP-BSBL [66], the threshold to decide the activity of the device
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(a) Normalized mean squared error vs Average SNR.
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(b) Activity error rate vs. Average SNR.

Figure 2.14: KPI results of machine-learning algorithms. Simulation parame-
ters: N = 128, M = 64 with ρn drawn uniformly at random in [0.1, 0.3]. 105

Monte Carlo trials.

is 0.1, the epoch number is 20, the learning rate is 10−3 and 20 iterations.

For BRNN, we used 106 samples for training, and the rest of the parameters

followed the description in the section and the original paper. To evaluate

the channel estimates, we used the normalized mean square error (NMSE),

NMSE = ‖ĥ− h‖2
2

/
‖h‖2

2.

Only the channels associated with active devices were considered.

Fig. 2.14a shows the simulation results of the NMSE performance of BRNN
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and DNN-MP-BSBL under different SNR scenarios. With the results averaged

under 105 runs, it is possible to realize that DNN-MP-BSBL achieves an effi-

ciency closer to the lower bound, the oracle linear MMSE. The weight update

scheme and the joint a posteriori pdf of the model, considerably outperforms

BRNN, since that network only estimates the activity of devices. The superi-

ority of the DNN-MP-BSBL scheme is even more evident in Fig. 2.14b, where

the activity detection is shown.

2.4
Discussions and Complexity Analysis

The results demonstrate that each solution provides a direct relation

between activity detection rates and data detection. In order to verify the best

approach, Fig. 2.15 compares the schemes with the best performance in each

family of algorithms. Considering the unified evaluation framework and perfect

channel estimation, we notice that the regularized and greedy detectors show

better performance with a few techniques being as efficient as the lower bound.

As part of the performance analysis, each technique should have their

computational cost evaluated. Concerning the channel estimation algorithms,

as shown in Fig. 2.16, Iterative EP shows the best performance, but requires a

cubic complexity order. As for machine learning schemes, even though BRNN

has high complexity due to the use of the linear MMSE channel estimator,

DNN-MP-BSBL has linear complexity at least in the online process. Compared

with message-passing schemes, machine learning approaches present better

performance but require the offline process, which consumes a large amount of

training data to learn parameters in the neural network.

Figs. 2.17 and 2.18 depicts the detailed complexity analysis of simulated

approaches based on required floating-point operations (FLOPs). Fig. 2.17a

shows that the regularization approaches exhibits a competitive performance

as compared to the greedy techniques (Fig. 2.17b) exhibit a high computational

complexity as those schemes require matrix inversions. Since the expected
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Figure 2.15: Frame error rate vs Average SNR. Comparison between better
performance algorithms.

number of devices is huge, a cubic computational complexity order would be

an issue to be dealt with at the BS. As for the message-passing techniques,

Fig 2.18a shows a competitive performance as the number of iterations have

greater influence on the computational cost. In particular, the algorithms

that exhibit lower computational cost are compared in Fig. 2.18b. One can

see that there is a trade-off between computational cost and data detection

performance as the algorithms with lowest computational cost are not those

with lowest frame error rates. Table 2.2 details the FLOPs counting of the

analyzed techniques, for each detected vector. Parameters that have not been

previously presented, such as T1, T2, c, and c′, are constants determined in the

original papers.

In addition to the techniques analyzed here, it is important to highlight

that recent relevant papers were published that jointly perform all the three

tasks in the same scheme, channel estimation and activity and data detection.

Given the performance and computational cost shown before, it is no surprise

that those works are message-passing schemes that employ a factor graph

representation for the problem. The work in [69] considers the uplink SCMA

scenario and uses the expectation propagation to project the intractable
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Figure 2.16: Floating-point operations vs. Number of devices of activity detection and
channel estimation algorithms.

distributions into Gaussian families in order to obtain a linear complexity

decoder. With the aim of investigating the time-slotted and non-time-slotted

grant-free NOMA, the work in [70] applies the bilinear generalized approximate

message passing (BiG-AMP) [112] algorithm to mMTC. In order to address

the overhead problem, the work in [74] proposes a Bayesian receiver design for

grant-free low density signature orthogonal frequency division multiplexing

(LDS-OFDM). This approach is composed by the belief propagation (BP),

expectation propagation (EP) and mean field (MF) techniques, so that the

scheme jointly estimates the channels and performs activity and data detection,

avoiding the use of metadata signals.
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(a) Regularized algorithms for activity and data detection.
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(b) Greedy algorithms for activity and data detection.

Figure 2.17: Floating-point operations of regularized and greedy algorithms vs.
Number of devices. Simulation parameters: Number of receiver antennas M is
N/2 and the number of active devices K is 10% of N . The number of symbols
in each frame τ = 128, τφ = 64, constants c = 5 and c′ = 10 of GOMP, bcSIC
and wGOMP, the latter, still with Nsubp = 8, τseg = 128 and Nfb = τseg/Nsubp.
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(a) Message-passing algorithms for activity and data detection.
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(b) Comparison of algorithms with lowest FLOPs for activity and
data detection.

Figure 2.18: Floating-point operations of message-passing and best algorithms
vs. Number of devices. Simulation parameters: Number of receiver antennasM
is N/2 and the number of active devicesK is 10% of N . The number of symbols
in each frame τ = 128, τφ = 64. Regarding the non-coherent approaches, the
number of bits J in the NSD-AMP is 2.
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Table 2.2: FLOPs counting of considered techniques in detail.

Type Category Algorithm Complexity
A
ct
iv
ity

an
d
da

ta
de

te
ct
io
n

Linear MMSE 2M3 +4 (N + 1)M2 +2
(
N2 +N + 1

)
M −

(N2 +N)

Regularized

SA-SIC [27] |A0|
(
N3 +N2 + 6

)
SA-SIC with A-
SQRD [29]

2N3 + 4 (M + 1)N2 + (M − 1)N

AA-MF-SIC
(high SNR) [30]

≤ (1/6)
(
2N3 + 11N2 + 21N − 2

)
AA-MF-SIC
(low SNR) [30]

≥ (1/6)
(
2N3 + 11N2 + 21N − 2

)
+ 10N2

AA-RLS [50]
(
6M2 + 10M

)
N

AA-RLS-
DF [50]

∑N
i=1

[
6 (M + i)2 + 10 (M + i)

]

Greedy

TA-BSASP [46] 5N +3Nτ +3NMτ2 +2Mτ (τK)2 +(τK)3

mSOMP-
EXT [103]

2N3 + 2N2 + (1 + 2M) 4N − 2M − 1

OMP
∑K
i=1 cMi2 + c′i3

GOMP [44]
∑K
i=1 2M (iτ)2 + c′ (iτ)3

bcSIC [43]
∑K
i=1K

(
cMτ2 + c′τ3)

wGOMP [42]
∑NfbK
u=1 NfbNsubp

∑K
i=1 cbM/Nsubpc (iτseg)2+

c′ (iτseg)3

Message
passing

AMP τM (11N + 4) + 4 (|A|+ 1)

M-AMP [36] N
(
M3 + 7M2 + 2N + 2MN + 1

)
NSD-AMP [55] N

(
M3 + 9M2 + 12M + 4MN + 5

)
+

2J+1 (N + 1)
Joint-EM-
AMP [37]

Mτ
(
4|A|2 + 17|A|+ 11N + 21

)
+

3τ |A| (|A|+ 1)
CS-MPA [41] [T1 (3N − 1) 2M + T2 (MN)] τ

EM-BSBL [32] (Nτ)3 + 2(Mτ + 3/2)(Nτ)2 + (Mτ + 1)Nτ

A
ct
iv
ity

de
te
ct
io
n
an

d
ch
an

ne
le

st
im

at
io
n Message

passing

AMP + MMSE
denoiser [52]

τM (11N + 4) + 4 (|A|+ 1)

MP-BSBL [57] [(10τφ + 10)MK + (7K + 14) τφM +N + 2]

Iterative
EP [59]

[
3N3 + 5

2N
2 + (M + 1)N2 + (7M + 5

2)N−
2M + 15]

Machine
learning

BRNN [64] 2M3 +4 (N + 1)M2 +2
(
N2 +N + 1

)
M −

(N2 +N)
DNN-MP-
BSBL [66]

[M(K(17τφ + 16) + 27τφ) +N + 2]
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2.5
Chapter Summary

In this chapter, the technical background of MIMO systems has been

reviewed in order to introduce the massive MTC scenario. A brief introduction

of mMTC has been given, where applications, traffic features and challenges are

discussed. The signal model used in the unified evaluation framework adopted

has been presented, highlighting the grant-free random access model and the

key performance indicators used to evaluate the efficiency of the techniques.

Subsequently, detection techniques have been presented, where relevant

works were categorized as regularized, greedy and message-passing detectors,

which have the objective of performing activity and data detection, were

explained and discussed along with their simulation results. Moreover, activity

detection and channel estimation schemes classified as message-passing and

machine-learning techniques were presented and had its simulation results

compared. In the discussions section, the simulation results were evaluated

along with a complexity analysis of each simulated approach.

With the state-of-the-art presented, the next chapters describes the pro-

posed approaches. Chapters 3 and 4 presents regularized solutions for joint

activity detection and signal decoding that does not need explicit channel

estimation. Keeping in mind the trade-off between performance and compu-

tational cost, message-passing approaches are proposed in Chapter 5 were the

joint activity detection and channel estimation problem is addressed, and in

Chapter 6 there is a complete solution for joint activity detection, channel

estimation and signal decoding.



3
Adaptive and Iterative Detection and Decoding

3.1
Chapter Overview

In this chapter an adaptive detector that considers the activity and data

detection task jointly in an iterative soft information framework without the

need to perform explicit channel estimation is described. The problem is formu-

lated in a signal processing fashion, where firstly it is shown the system model,

followed by the proposed adaptive decision feedback structure, the detection

order update procedure and the inclusion of an l0-norm regularization factor

in the RLS algorithm cost function. Furthermore, the proposed IDD scheme

is derived, addressing the question of how channel coding and knowledge of

the probability of each device activity can jointly be exploited to enhance the

detection performance. The chapter ends with the performance comparison of

the proposed detection and decoding scheme and the state-of-the-art solutions.

3.2
System Model

Recalling the the massive uplink connectivity scenario presented in the

previous Chapter where N devices with a single antenna access a single base

station (BS), equipped withM antennas is illustrated in Fig. 3.1 is considered.

As the frame size of mMTC is typically very small (between 10 and 100

bytes) [113], it is possible to assume the devices are synchronized in time. That

is, the devices are turned on or turned off in the same transmission slot, as

represented in Fig. 3.1. The duration of a transmission slot (τ = τφ + τx) is

smaller than the coherence time and coherence bandwidth of the channel. The

BS has the knowledge of the metadata sequences and the time index t indicates
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Figure 3.1: mMTC single-cell system model. When active, each device trans-
mits τφ and τx symbols of metadata and data, respectively, in the coherence
time.

each transmitted vector in the same transmission slot. As we considered a

grant-free random access model, each frame has metadata and data, in this

way the time index indicates how each frame is divided.

The signal model is the same as in (2-27). Thus, the received signal y [t]

in a given coherence time is organized in a M × 1 vector that contains the

transmitted metadata (φ [t]) or the data (x [t]), as

y [t] =


H√τφ Bφ [t] + v [t] , if 1 ≤ t ≤ τφ

H√τx B x [t] + v [t] , if τφ < t ≤ τ

where H is the M × N channel matrix, B is the N × N transmission power

diagonal matrix, v is the M × 1 noise vector, while τφ and τx are the number

of metadata and data symbols, respectively.

Given the features of mMTC scenarios, the number of devices N is larger

than that of antennas M at the base station, in a way that it consists of an

underdetermined system. However, the transmitted symbols can be detected as

their vectors have a sparse structure as the rows corresponding to the inactive

users are zero. So, the activity detection problem is reduced to finding the

non-zero rows of φ [t]. With the signal model presented, the proposed detector
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structure is derived below.

3.3
Adaptive Activity-Aware Iterative Detection

Recursive least squares (RLS) is one of the most used adaptive algorithm,

that recursively finds the coefficients that minimize a weighted linear least

squares cost function relating to the input signals. It has the advantage of

robust performance and fast convergence. In this section, a modified version of

the RLS algorithm, named AA-RLS-DF, is presented. The detection scheme

is illustrated in a block diagram in Fig. 3.2.

As the transmission slots are separated by metadata and data, AA-RLS-

DF has two modes of operation, training mode (1 ≤ t ≤ τφ) and decision-

directed mode (τφ < t ≤ τ). Although the same scheme is used for both

cases, in the training mode the focus is to use the metadata to update the

RLS algorithm, while the decision-directed mode uses the filter to detect the

received data symbols. AA-RLS-DF detects each symbol at a time, per layer.

The detection order is updated at each new layer, using the least squares

estimation (LSE) criterion. The adaptive receive filter can be decomposed into

feedforward and feedback filters. The feedforward one is updated at every new

received vector by the l0-norm regularized RLS algorithm. The feedback filter

is a component that is concatenated to the feedforward filter in order to cancel

the interference of the previously detected symbols.

In the first layer, the filter is composed by the feedforward part and

obtains a soft estimate of the symbol with the received vector y [t]. After

the first detection, the LSE defines which will be the next layer, the received

vector y [t] is concatenated with the previous detected symbol and the filter

of the selected layer is concatenated with the feedback part. This procedure

is repeated until the last layer. At this point, the scheme has two vectors,

one with all soft estimates (d̃ψ [t]), the second one with the detected symbols

(d̂ψ [t]). After the reordering process, if AA-RLS-DF is in the decision-directed
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Figure 3.2: Block diagram of AA-RLS-DF with IDD structure. For more details
of the scheme, the figure is in landscape format in the Appendix A.1.

mode, the reordered soft estimation vector (d̃ [t]) is converted to LLRs in order

to be decoded by the iterative scheme. Otherwise, the reordered vectors of soft

estimates and detected symbols (d̂ [t]), are used to define the first symbol to

be detected in the next received metadata vector.

The following subsections presents the proposed AA-RLS-DF detector

in detail. Firstly, the adaptive decision feedback structure is explained, how

the receive filters and the received vector concatenation are performed. Then,

it is described the detection order update and the l0-norm regularized RLS

algorithm.

3.3.1
Adaptive Decision Feedback Structure

The main idea is to use a feedforward filter to detect the transmitted

symbol and a feedback filter to cancel the interference. For each operation

mode, both filters are concatenated and written as

wψn [t] =


wf
ψn

[t] , n = 1;[
wf
ψn

T [t] ,wb
ψn

T [t]
]T
, n = 2, . . . , N.

(3-1)

where wψn [t] corresponds to both filters used for the detection of the symbol of
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the n-th device (or layer). Both filters update their weights and the detection

order ψ at each new symbol detection. The received vector y [t] is concatenated

with the vector d̂ψn−1 [t] which contains the previously detected symbols as

yψn [t] =


y [t] , n = 1;[

yT [t] , d̂T
ψn−1 [t]

]T
, n = 2, . . . , N

(3-2)

and each soft symbol estimate of the n-th device is given by

d̃ψn [t] = wH
ψn [t] yψn [t] . (3-3)

Thus, the filter wψn [t] and the received vector yψn [t] increases in length

at each detection. In the last detection, wψN [t] and yψN [t] are a (M +N)× 1

vectors, as wN [t] =
[
wfψN ,1 [t] , . . . , wfψN ,M [t] , wbψN ,M+1 [t] , . . . , wbψN ,M+N [t]

]T
.

3.3.2
Detection Order Update

The metric chosen to update the detection order ψ, is the minimum LSE.

At each symbol detection, we compute the l0-norm cost function Jj [t] for the

symbols that were not detected yet. The set Sj [t] contains the index of the

remaining symbols to be detected and is updated with the output ψj of the

cost function. Thus, the index of the chosen filter is stored in the sequence of

detection ψ, represented as

ψj = arg min
j∈Sj

Jj [t] , (3-4)

where the indicator j in (3-4) belongs to the set Sj = {1, 2, . . . , N} −

{ψ1, ψ2, . . . , ψn−1}, which contains the index of not yet detected symbols.

Hence, the output index of the cost function is removed from the set and this

symbol is chosen to be detected. In the next detection, the already detected

symbol does not participate in the new cost function computation. Therefore,

the l0-norm cost functions of each phase, are respectively given by
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J ϕ
j [t] =

t∑
l=0

λt−l
∣∣∣ϕj [l]−wH

j [t] yψn [t]
∣∣∣2 + γ‖wj [t] ‖0, (3-5)

J d
j [t] =

t−1∑
l=τφ+1

λt−1−l
∣∣∣d̂j [l]−wH

j [t] yψn [t]
∣∣∣2 + γ‖wj [t] ‖0 (3-6)

where ‖·‖0 denotes l0-norm that counts the number of zero entries in wj and γ

is a non-zero positive constant to balance the regularization and, consequently,

the estimation error. Moreover, 0 < λ ≤ 1 is the forgetting factor which gives

exponentially less weight to older error samples. J ϕ
j [t] represents in (3-5) the

cost function for the metadata mode and J d
j [t] for the data mode.

3.3.3
Regularized RLS Algorithm

In order to exploit the sparse activity of devices and compute the pa-

rameters of the proposed DF detector without the need for explicit channel

estimation [114], we devise an l0-norm regularized RLS algorithm that mini-

mizes the cost function. Approximating the value of the l0-norm [115], the cost

function in (3-5) can be rewritten as

J ϕ
j [t] =

t∑
l=0

λt−l
∣∣∣ϕj [l]−wH

j [t] yψn [t]
∣∣∣2 + γ

2M∑
p=1

(1− exp (−ξ|wj,p [t] |)) , (3-7)

where the parameter ξ regulates the range of the attraction to zero on small

coefficients of the filter. Thus, taking the partial derivatives for all entries t of

the coefficient vector wj [t] in (3-7) and setting the results to zero, yields

wj [t] = wj [t− 1] + k [t] ε∗n [t]− γ ξ sgn (wj,p [t]) exp (−ξ|wj,p [t] |) (3-8)

where k [t] is the gain vector and sgn (·) is a component-wise sign function

defined as

sgn (wj,p [t]) =


wj,p [t] /|wj,p [t] |, wj,p [t] 6= 0;

0, otherwise.
(3-9)

In order to reduce computational complexity in (3-8), the exponential
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Algorithm 1: Activity-Aware Recursive Least Squares Decision-
Feedback (AA-RLS-DF)

input : M , N , ρ, ξ, γ, λ, Pψn = ρ IM
output: x̂

1 begin

For training mode

B For each metadata sequence, d̂ [t] and yψn [t],
2 kψn [t] = (Pψn [t] yψn [t])/(λ+ yH

ψn [t] Pψn [t] yψn [t])
3 d̃ψn [t] = wH

n [t] yn [t]
4 εψn [t] = d̂ψn [t]− d̃ψn [t]
5 Update the filters with Eq. (3-11)
6 Pψn [t] = λ−1

(
Pψn [t]− kψn [t] yH

ψn [t] Pn [t]
)

7 Concatenate yψn [t] with d̂ψn [t]
8 Update the sequence of detection with Eq. (3-4)

For decision-directed mode
9 Compute the a priori probability with Eqs. (3-13) and (3-14)

10 Repeat steps 2 to 8
11 Compute µψn [t] and ζ2

ψn [t] with Eqs. (3-16) and (3-17)
12 Verify the likelihood function P

(
d̃n [t] |x

)
with Eq. (3-15)

13 Compute the LLR value according to Eq.(3-18)
end

function is approximated by the first order of the Taylor series expansion,

given by

exp (−ξ |wj,p [t] |) ≈


1− ξ |wj,p [t] |, |wj,p [t] | ≤ 1/ξ;

0, otherwise.
(3-10)

As the exponential function is positive, the approximation of (3-10) is

also positive. In this way, (3-8) becomes

wj [t] = wj [t− 1] + k [t] ε∗n [t]− γ ξ sgn (wj,p [t]) fξ (wj,p [t]) (3-11)

where the function fξ (wj,p [t]) is given by

fξ (wj,p [t]) =


ξ2 (wj,p [t]) + ξ, −1/ξ ≤ wj,p [t] < 0;

ξ2 (wj,p [t])− ξ, 0 ≤ wj,p [t] ≤ 1/ξ;

0, otherwise.

(3-12)
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We notice that the function fξ (wj,p [t]) in (3-11) imposes an attraction to

zero of small coefficients. So, if the value of wj,p [t] is not equal or in the range

[−1/ξ, 1/ξ], no additional attraction is exerted. Thus, the convergence rate

of near-zero coefficients of parameters of devices in mMTC applications that

exhibit sparsity will be increased [115]. The pseudo-code, which also considers

an IDD scheme with AA-RLS-DF, is described in Algorithm 1.

3.3.4
Parameter Adjustment

AA-RLS-DF has three parameters that can be freely chosen, γ, λ and ξ.

The first one, γ is a non-zero positive constant to balance the regularization

and, consequently, the estimation error. The forgetting factor of the RLS

algorithm gives exponentially less weight to older error samples and ξ regulates

the range of the attraction to zero on small coefficients of the filter.

For practical reasons, it was decided to keep the value suggested of ξ = 10

in [115] and to optimize the others. The effects of variation of λ and γ are shown

in Figs. 3.4 and 3.3. The simulation results were obtained with the parameters

of scenario which are described in section 3.5.

All results are evaluated using the symbol error rate (SER), which

considers only the active devices. As a lower bound, the oracle linear mean

squared error (LMMSE) which has the knowledge of the index of nonzero

entries, is considered. Fig. 3.3 evaluates the effect in the SER for different

values of the forgetting factor λ. As this parameter must respect 0 < λ ≤ 1, it

was decided to start with it, keeping the value of γ present in the literature. As

shown in Fig. 3.3, the results are similar for a range of values. When choosing

the value λ = 0.92, its possible to proceed to evaluate the range of values

of γ, as depicted in Fig. 3.4. It is shown that for smaller values than 0.01 of

γ, the best performance is achieved. The higher the value, the worse is the

performance. In this way, in order to incorporate the AA-RLS-DF in the IDD

scheme, the parameters chosen are λ = 0.92, γ = 0.001 and ξ = 10.
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Figure 3.3: Effects of variation of λ, with γ = 0.001 and ξ = 10.
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Figure 3.4: Effects of variation of γ, with λ = 0.92 and ξ = 10.

3.4
Iterative Soft Information Processing and Decoding

In order to devise an IDD scheme, we incorporate the detected symbols by

AA-RLS-DF in an iterative soft information decoding scheme. Unlike existing

approaches such as [116], we incorporate the probability of each device being

active in the mMTC scenario in the computation of each a priori probability

symbol, which avoids the need for channel estimation.
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The a priori probabilities are computed based on the extrinsic LLRs

Lzen [t], provided by the LDPC decoder. In the first iteration, all Lzen [t] are

zero and, assuming the bits are statistically independent of one another, the a

priori probabilities are calculated as

Pr (xn [t] = x) =
∑
x∈A0

x

(
Mc∏
z=1

[
1 + exp

(
−xzLzen [t]

)]−1
)
, (3-13)

where Mc represents the total number of bits of symbol x, the superscript z

indicates the z-th bit of symbol of x, in xz (whose value is (+1,−1)). As each

device has a different activity probability ρn, the a priori probabilities should

take into account, as

ρn + (1− ρn) Pr (xn [t] = x) , if (x1 and x2) = 0,

(1− ρn) Pr (xn [t] = x) , otherwise.
(3-14)

where in the next iteration of the scheme, the new a priori probabilities

incorporates the probability that the n-th device is active and the extrinsic

LLR values.

As the output of the proposed receive filter has a large number of

independent variables, we can approximate it as a Gaussian distribution [117].

Hence, we approximate d̃n [t] by the output of an equivalent AWGN channel

with d̃n [t] = µn [i]xn [t] + bn [t]. Therefore, the likelihood function P
(
d̃n [t] |x

)
is approximated by

P
(
d̃n [t] |x

)
≈ 1
π ζ2

n [t]exp
(
− 1
ζ2
n [t] |d̃n [t]− µn [t]x|2

)
, (3-15)

where the mean µn [t] is given by

µn [t] = E
{
d̃n [t]xn [t]

}
= E

{
wH
n [t] yn [t]xn [t]

}
≈ wH

n [t]
t−1∑
p=1

λt−1−p yn [p]xn [p]
 . (3-16)

Note that xn is the previously detected symbol. In the first case, µn [t] =
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wH
n [t] yn [t]. Each bn [t] is a zero-mean complex Gaussian variable with variance

ζ2
n [t] as

ζ2
n [t] = var

{
d̃n [t]

}
= E

{
‖d̃n [t] ‖2

}
− µ2

n [t]

= wH
n [t]E

{
yn [t] yH

n [t]
}

wn [t]− µ2
n [t] (3-17)

≈ wH
n [t]

 t∑
p=1

λt−p yn [p] yH
n [p]

wn [t]− µ2
n [i] .

Then, the extrinsic LLRs computed by the AA-RLS-DF detector for the z-th

bit (z ∈ {1, . . . ,Mc}) of the symbol xn transmitted by the n-th device are

given by

Lzcn [t] = log
∑
x∈A+1

z
Pr
(
d̃n [t] |x

)
Pr (x)∑

x∈A−1
z

Pr
(
d̃n [t] |x

)
Pr (x)

− Lzen [t] (3-18)

where A+1
z is the set of 2Mc−1 hypotheses of x for which the z-th bit is +1

(analogously for A−1
z ).

3.5
Numerical Results

The simulation results were obtained considering an under-determinated

mMTC system with N = 128 devices and a single-base station equipped

with M = 64 antennas. The proposed and existing schemes experience an

independent and identically-distributed (i.i.d.) random flat-fading channel

model and the values are taken from complex Gaussian distribution ofNc (0, 1).

The active devices radiate QPSK symbols with the same power and the

activity probabilities {ρn}Nn=1 are drawn uniformly at random in [0.1, 0.3].

Each symbol block has 128 symbols, split in to 60 metadata and 68 data. This

balance between pilots and data is suggested in [118]. All these assumptions

are considered into two scenarios, uncoded and coded systems, in which

numerical results are averaged over 105 runs. The performance of AA-RLS-

DF is compared with other relevant schemes, as the linear mean squared
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error (LMMSE), unsorted SA-SIC [28], SA-SIC with A-SQRD [29], AA-MF-

SIC [30] and a version of AA-RLS-DF without decision feedback, AA-RLS.

As a lower bound, the Oracle LMMSE detector, which has the knowledge of

the index of nonzero entries, is considered. For all algorithms that require

explicit channel estimation, we considered Ĥ = H + E, where H represents

the channel estimate and E is a random matrix corresponding to the error for

each link. Each coefficient of the error matrix follows a Gaussian distribution,

i.e., ∼ Nc (0, σ2
e), where σ2

e = σ2
v/5. For uncoded systems, the average SNR is

given by 10 log (N σ2
x/σ

2
v), while for coded systems is 10 log (NRσ2

x/σ
2
v).

Fig. 3.5a shows the symbol error rate (SER) which considers only the

active devices. LMMSE exhibits poor performance since the system is under-

determined. Due to error propagation, the unsorted SA-SIC does not perform

well. A-SQRD and AA-MF-SIC are effective since both consider the activity

probabilities, but under imperfect CSI conditions, their performance is not so

good. In contrast, as AA-RLS-DF does not need a explicit channel estimation,

it is more efficient. The decision-feedback scheme provides a SER gain due to

the interference cancellation. For the coded systems with IDD, Fig. 3.5b shows

the BER of the already considered algorithms and the modified scheme of

Wang and Poor [117]. The sparsity of mMTC approach degrades the expected

efficiency of LMMSE-PIC, obtaining little variation in relation to LMMSE and

SA-SIC. The hierarchy of performance of the other considered algorithms is

the same as the uncoded case but with better error rate values.

In order to evaluate the activity detection of the algorithms, the false

alarm rate and the missed detection rate are used. The missed detection rate

(MDR) denotes the total number of symbols that have been transmitted in a

specific time instant that the detector judged as zero, divided by the number

of active devices. On the other hand, the false alarm rate (FAR) denotes

the total number of symbols that the detector judged as different of zero,

divided by the difference between the total number of devices and the number
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Figure 3.5: Numerical results under KPI evaluation. Parameters of proposed
schemes are λ = 0.92, γ = 0.001 and ξ = 10, other approaches consider
imperfect CSI. LDPC with block length of 128, symbol rate R = 0.5, refined
by 2 decoding iterations.

of active devices in a specific time instant. For the same scenario described

before, Figs. 3.6a and 3.6b show the activity detection performance of the

considered algorithms. One can see that, regarding the proposed AA-RLS-

DF, the bottleneck to improve the detection is the missed detection rate, that

is, there is a significant number of devices wrongly being judged as inactive.
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Figure 3.6: Numerical results under KPI evaluation. Parameters of proposed
schemes are λ = 0.92, γ = 0.001 and ξ = 10, other approaches consider
imperfect CSI. LDPC with block length of 128, symbol rate R = 0.5, refined
by 2 decoding iterations.

Therefore, improvements with respect to decision-making of the activity can

be made.
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3.6
Chapter Summary

In this chapter an adaptive and iterative soft processing algorithm that

jointly estimate the activity and the data of MTCDs has been presented and

studied. The AA-RLS-DF detector augments state-of-the-art solutions by pro-

cessing soft information from a channel decoder and from an activity estimation

jointly. Therefore, the AA-RLS-DF detection scheme consists of three blocks

accounting for the estimation of the multiuser signal, the information bits and

the activity states of the MTCDs. These blocks exchange extrinsic information

and do not perform any explicit channel estimation. Hence, the information

symbols from all devices, active or not, are estimated. Thus, all the key indi-

cator performances (SER, BER, MDR and FAR) should be considered in the

analysis.



4
Adaptive and Iterative List Detection and Decoding

4.1
Chapter Overview

The previous chapter mainly focused on the description and derivation

of the AA-RLS-DF detector. As the results have shown, despite presenting

a performance superior to the state-of-the-art, AA-RLS-DF has a room for

improvement. Since there is a gap between the performance of the considered

lower bound and the proposed algorithm, a new detection scheme, named AA-

VGL-DF, exploits the the system sparsity, and refines the detection provided

for the adaptive l0-norm regularized RLS algorithm using two candidate-list

techniques. Besides that, in order to perform the decoding, an IDD scheme

based on the proposed AA-VGL-DF is also incorporated.

Furthermore, the grant-free access model is improved, where the consid-

ered traffic model is based on a 3GPP technical report. As a means of improving

the performance of the AA-RLS-DF detector, we describe the two candidate-

list techniques incorporated. Subsequently, the chapter provides an evaluation

of AA-VGL-DF in a comprehensive way with the analysis of the computational

complexity, diversity order and the derivation of uplink sum-rate expressions.

The chapter ends with the performance comparison of the proposed AA-VGL-

DF detector and state-of-the-art solutions in terms of SER, BER and spectral

efficiency. The proposed AA-VGL-DF detection scheme is also analysed for

different traffic model scenarios.
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4.2
System Model

As networks should support many different applications with distinct

requirements, naturally each device has its own activity behaviour. In order to

model this scenario, the beta-binomial distribution [119] is considered to model

the problem as the probability of being active ρn is randomly drawn from a

beta distribution, proposed as a traffic model by the 3GPP [120]. Considering

N devices with a single antenna accessing a base station (BS), the probability

mass function is given by

p (K) =
(
N

K

)
ρKn (1− ρn)N−K (4-1)

where ρn is a random variable with a beta distribution that represents the

probability of being active of the n-th device and K is the number of active

devices out of N at the same transmission slot. The sparsity of the scenario is

modified as soon as each random variable ρn with beta distribution is modelled.

Thus, each device has its own activity probability.

Hence, the probability of having K active devices within a total of N at

the same transmission slot is given by

p (K |N,α, β) = Γ (N + 1)
Γ (K + 1) Γ (N −K + 1)

× Γ (N + α) Γ (N −K + β)
Γ (N + α + β)

Γ (α + β)
Γ (α) Γ (β) (4-2)

where Γ (·) is the gamma function, α and β are real positive parameters that

appear as exponents of the random variable ρn and control the shape of the

distribution. The average number of active devices is (Nα) / (α + β) and its

variance is
(
Nαβ (α + β +N)

)/ (
(α + β)2 (α + β + 1)

)
.

In most mMTC applications the devices have low probability of being

active. Fig. 4.1 shows the probability of a specific number of devices to be

active at the same time for different values of α and β in a scenario of N = 120.
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Figure 4.1: Model of probability of having K active devices within a total of N = 120. All
devices become independently active with a probability determined by the random variable
ρn ∈ [0, 0.1, . . . , 1] with a beta distribution.

When adding the traffic model described here, the system model presented in

the previous chapter is considered in remainder of this chapter.

4.3
Variable Group-List Decision Feedback Detection

For the purpose of reducing the detection error propagation of the AA-

RLS-DF scheme, two candidates-list techniques are developed. In this section,

the new activity-aware variable group-list decision feedback (AA-VGL-DF)

detector is presented. The new detection scheme is illustrated in a block

diagram in Fig. 4.2.

Following the same procedure of AA-RLS-DF, AA-VGL-DF has the same

two modes of operation, training mode (1 ≤ t ≤ τφ) and decision-directed mode

(τφ < t ≤ τ), also detecting each symbol at a time, per layer. In the step that

the feedforward filter obtains a soft estimate of the symbol being detected with

the received vector y [t], the soft estimate is analysed by the first candidates-

list technique, named internal list. A criterion, named shadow area constraints

(SAC), is developed in order to evaluate the reliability of the hard decision of

the soft symbol estimate. The idea is that if the symbol is considered unreliable,
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a list of candidates drawn from the constellation symbols is generated and

the best candidate, chosen by the maximum likelihood criterion, replaces the

unreliable symbol. After the first detection, the LSE defines which will be the

next layer, the received vector y [t] is concatenated with the previous detected

symbol and the filter of the selected layer is concatenated with the feedback

part. This procedure is repeated until the last layer. At this point, the scheme

has three vectors, one with all soft estimates (d̃ψ [t]), the second one with the

detected symbols (d̂ψ [t]) and the third one (ϑψ [t]) that keeps the information

about the reliability of each soft estimate. Those three vectors are reordered

to the original sequence and the second list of candidates, named external

list, begins. The idea of this list is to perform a group list verification of the

most unreliable symbols, after the last detection. With more reliable detected

vectors, a more accurate decision of the first filter to be used in the next

detection will be taken. In order to define which soft estimates will be rechecked

with the second list, we apply the SAC criterion again, but with a larger radius.

After the reordering process, if AA-VGL-DF is in the decision-directed mode,

the reordered soft estimation vector (d̃ [t]) is converted to LLRs in order to

be decoded by the iterative scheme. Otherwise, the reordered vectors of soft

estimates and detected symbols (d̂ [t]), are used to define the first symbol to be

detected in the next received metadata vector. The candidates-list techniques

are detailed in the following subsections.

4.3.1
Internal List

In order to improve the detection performance, we include a SAC, to

evaluate the reliability of the soft estimates. As shown in Fig. 4.2, with the

augmented alphabet of a QAM modulation scheme, the SAC compares the

distance between the soft estimate and all the possible constellation symbols

with
r = arg min

i∈ 1,··· ,(|A|+1)
‖A0i − d̃ψn [t] ‖2, (4-3)
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Figure 4.2: Detailed structure of the AA-VGL-DF detector and the IDD
scheme. To simplify notations, just one received vector is considered in the
base station. For more details of the scheme, the figure is in landscape format
in the Appendix A.2.

where |A| is the modulation order. If the soft estimate falls into the shadow

area (r > rth or r > rth0), the estimate is considered unreliable and then

d̃ψn [t] proceeds to the list scheme. Otherwise, it is just quantized to the nearest

symbol of the augmented constellation A0, as

d̂ψn [t] = Q
[
wH
ψn [t] yψn [t]

]
. (4-4)

The rth and rth0 radius of each reliability region are defined by the probability

of being active of each device and the radius of the region around the zero

(inactive device) is the complement of the radius of the regions around the

constellation symbols, rth0 = 1 − rth. This radius was chosen given the

simulations results shown in Fig. 4.3. Instead of choosing a fixed radius value,

use the probability of being active of each device provided a better result.

The list scheme is a verification of a list of candidates drawn from

constellation symbols to the actual detection. The list κ =
[
κ1 · · · , κ(|A0|)

]
is used to select the best candidate according to

κopt = arg min
i∈ 1,··· ,(|A0|)

‖y [t]− ĥψn κi‖2, (4-5)



Chapter 4. Adaptive and Iterative List Detection and Decoding 109

0 10 20 30 40
10−3

10−2

10−1

100

Average SNR (dB)

S
y
m
b
ol

E
rr
or

R
at
e

rth : 0.1

rth : 0.2

rth : 0.3

rth : 0.4

rth : 0.5

rth : 0.6

rth : 0.7

rth : 0.8

rth : 0.9

rth : 1− (1/ρn)
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where the vector ĥψn contains the estimate of the channel between the device

that performs symbol detection and the BS. As the channel estimation is not

the focus of this work, we considered the well known linear MMSE (LMMSE)

estimation. The estimate of each ĥψn is detailed in Subsection 4.4.2.2.

The vector with minimum argument κopt indicates which candidate κ will

replace the quantized version of the unreliable soft symbol estimate d̃ψn [t].

4.3.2
External List

The idea of the external list is to carry out a group list verification of the

most unreliable symbols, after the last detection. In the internal list block, AA-

VGL-DF also keeps the information about the reliability of each soft estimate.

The N × 1 binary vector ϑψ [t] gathers this information as ϑψn [t] = 1 when a

soft estimate falls into the shadow area and ϑψn [t] = 0, otherwise. After the

reordering process, the external list block receives the estimated symbols d̃ [t],

the detected symbols d̂ [t] and the vector with the reliability information, ϑ [t].

With the knowledge of which symbols had a reliable soft estimate, the

external list generates all possible combinations G of the symbols of the

considered augmented alphabet A0 and gathers all these vectors in an ν × G



Chapter 4. Adaptive and Iterative List Detection and Decoding 110

10 15 20 25 30 35 40
0

5

10

15

20

25

30

20

40

60

80

100

120

Ext. list

Average number of active devices

A
ve
ra
ge

n
u
m
b
er

o
f
u
n
re
li
ab

le
so
ft

es
ti
m
at
es

Int. list

T
o
ta
l
n
u
m
b
er

o
f
d
ev
ic
es

SNR = 0 dB

SNR = 10 dB

SNR = 20 dB

SNR = 30 dB
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device is randomly drawn from a beta distribution with α = 4 and β = 8.

matrix G given by

G =



A01 A01 A01 · · · A03 · · · A0|A0|

A01 A02 A01 · · · A01 · · · A0|A0|

A01 A01 A02 · · · A02 · · · A0|A0|

... ... ... . . . ... . . . ...

A01 A01 A01 · · · A04 · · · A0|A0|


, (4-6)

where ν is the number of soft estimates considered unreliable. With the

complete candidate vector matrix, the verification of the most appropriate

vector occurs as in the internal list, as follows:

gopt = arg min
i∈ 1,··· ,G

∣∣∣∣∣∣
∣∣∣∣∣∣y [t]−

ν∑
j=1

ĥj gj,i

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, (4-7)

where ĥj is the estimated channel of the unreliable symbol to be verified.

The vector candidate gopt is chosen and its values replace the ones considered

unreliable in d̂ [t] in order to proceed to the detection, ordering and parameter

estimation of the next received vector.

As an example, let us suppose that we have 4 unreliable estimates
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Figure 4.5: The radius rth0 and rth delimits the reliable regions for the internal
list while rext for the external list.

(non-zero elements) in vector ϑψ [t]. Considering a QPSK modulation, the

augmented alphabet A0 would have 5 elements and G would be a 4 × 70

matrix, considering all the 70 combination possibilities of 5 possible symbols

in 4 unreliable estimates.

Since mMTC is a crowded scenario, building the external G matrix

with all possible combinations would be impractical. Thus, considering the

distribution of probability of being active of devices, we notice in Fig. 4.4

that just a few symbols are considered unreliable by the internal list per

received vector and this number is reduced as the SNR grows. Therefore, we

considered a constraint in order to reduce the computational complexity of

the external list. Instead of verifying all the possibilities of all unreliable soft

estimates, we check the worst cases, that is, the soft estimates considered more

unreliable. Thus, we define another radius in the SAC in order to designate

which unreliable symbols should be or not in the external list. As the number of

unreliable estimates varies with the SNR, we choose the radius, represented in

Fig. 4.5, as rext = rth
[(
M/K̂

)
+ (Nσ2

x/σ
2
v)
]
since it follows the increase of the

average SNR value. Thus, the reliability of d̃ [t] will be rechecked, with the new

radius rext. As we have a d̂ [t], we have an estimation of which device is active
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Algorithm 2: Activity-Aware Variable Group List Decision Feed-
back (AA-VGL-DF)

input : M , N , ρ, ξ, γ, λ, Pψn = ρ IM
output: x̂

1 begin

For training mode

B For each metadata sequence, d̂ [t] and yψn [t],
2 kψn [t] = (Pψn [t] yψn [t])/(λ+ yH

ψn [t] Pψn [t] yψn [t])
3 d̃ψn [t] = wH

n [t] yn [t]
4 εψn [t] = d̂ψn [t]− d̃ψn [t]
5 Update the filters with Eq. (3-11)
6 Pψn [t] = λ−1

(
Pψn [t]− kψn [t] yH

ψn [t] Pn [t]
)

7 Concatenate yψn [t] with d̂ψn [t]
8 Update the sequence of detection with Eq. (3-4)

For decision-directed mode
9 Compute the a priori probability with Eqs. (3-13) and (3-14)

10 Repeat steps 2 to 8
11 Evaluate the reliability of the soft estimation d̃ψn [t] with SAC

and proceeds with the internal list if it is judged as unreliable
12 Update the sequence of detection with the output of 11
13 Proceed with the update of ϑψ [t], yψn [t] and wψn [t]
14 After all detections, update d̂ [t] with the external list
15 Compute µψn [t] and ζ2

ψn [t] with Eqs. (3-16) and (3-17)
16 Verify the likelihood function P

(
d̃n [t] |x

)
with Eq. (3-15)

17 Compute the LLR value according to Eq.(3-18)
end

or not, given by K̂. So, the number ν of considered unreliable soft estimates is

reduced as the SNR value grows, as shown in Fig. 4.4. Algorithm 2 summarizes

the procedure and in the next section the AA-VGL-DF is analysed.

4.4
Analysis

This section analyses the AA-VGL-DF in terms of the computational

complexity and both the diversity order achieved by the AA-VGL-DF detector

and the achievable rate of the uplink transmission from the n-th user are

discussed.
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Table 4.1: FLOPs counting of considered techniques in detail.

Algorithms Required number of FLOPs
LMMSE 2M3 + 4 (N + 1)M2 + 2

(
N2 +N + 1

)
M −

(
N2 +N

)
SA-SIC |A0|

(
N3 +N2 + 6

)
SA-SIC A-SQRD [29] 2N3 + 4 (M + 1)N2 + (M − 1)N
AA-RLS

(
6M2 + 10M

)
N

AA-RLS (internal list)
[
6M2 + 10M + ϑn (2M |A0|)

]
N

AA-RLS-DF ∑N
i=1

[
6 (M + i)2 + 10 (M + i)

]
AA-RLS-DF (internal list) ∑N

i=1

[
6 (M + i)2 + 10 (M + i) + ϑn (2M |A0|)

]
AA-VGL-DF ∑N

i=1

[
6 (M + i)2 + 10 (M + i) + ϑn (2M |A0|)

]
+ 2MG

4.4.1
Complexity

The computational complexity of AA-VGL-DF is analyzed below by

counting each required numerical operation in terms of complex FLOPs. In

particular, Table 4.1 compares the number of required FLOPs, for a different

number of devices N , receive antennas M and the G group size. We consider

both well-known algorithms as linear minimum-mean-squared-error (LMMSE)

and modifications for mMTC, as SA-SIC [27], SA-SIC with A-SQRD [29] and

AA-RLS-DF [50], proposed in the previous chapter.

Including the internal list technique in the AA-RLS-DF, as shown in

Fig. 4.6, results in just a slight complexity increase. Recalling that G is the

number of combinations of the unreliable soft estimates, the upper bound of

AA-VGL-DF is a version where there are not constraints in the lists. As verified

in Fig. 4.4, the number of unreliable soft estimates increase as the number of

devices rises. The computational cost of AA-VGL-DF is comparable with a

standard DF detector with an RLS algorithm. Since many other considered

algorithms have a similar computational cost, AA-VGL-DF has a competitive

complexity when compared with other schemes.

4.4.2
Uplink Sum-Rate

As seen that the mMTC has an amount of features that distinguish from

the standard massive MIMO communications, we compute the uplink sum-
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rate considering our detector. Whereas the scenario implies the consideration

of a different number of active devices at the same transmission slot and

the probability of collision due to reuse of metadata sequences, we compute

the achievable rate of each device. We take into account all the possible

contamination events from the active devices, as the number of transmission

slots are large enough. Were also considered that the BS can estimate the

number of active devices, as well as the average channel energy ηn. In this way,

each device has the knowledge of its channel energy and is able to associate it

with its rate, as both parameters are broadcast by the BS.

Differently from the literature, the expressions derived take into account,

beyond the filter computed by each approach, the probability of metadata

collisions, the probability of having a specific number of active devices and

different features of each device, as variable activity probability, transmission

power and the path loss and shadowing experienced.

Theorem 1: An approximation of a lower bound of the maximal achievable

sum-rate (in bits per symbol) is
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R =
N∑
K=1

p (K)K
K−1∑
c=0

p (c|K)E{η} [R (Ci, K, {η})] (4-8)

where p (K), given by (4-1), is the probability of having K active devices in

a total of N and p (c|K) is the probability of having c devices with the same

metadata sequence of the i-th device being observed out of K active devices

and Ci refers to a set of those contaminator devices. The expression of p (c|K)

is given by

p (c|K) =
(
K − 1
c

)(
1
τφ

)c (
1− 1

τφ

)K−1−c

. (4-9)

The procedure and the derivation of the first summations are given

by [121]. E{η} designates the expectation with respect to ηj, j ∈ {i, Ci} and

R (Ci, K, {η}) is a lower bound on the maximal achievable rate of device i

conditioned on a collider set with indices Ci within K active devices is given

by
R (Ci, K, {η}) = log2 (1 + SINR (Ci, K, {η})) . (4-10)

4.4.2.1
Perfect Channel Estimation

We first consider the case when the BS has perfect CSI, i.e., it has the

perfect knowledge of H. Therefore, the channel capacity C, recalling d̃ [t] and

y [t] in (3-3) and suppressing the time index for simplicity, is

C = max
pd̃(d̃)

I
(
y; d̃

)
(4-11)

= max
pd̃(d̃)

H (y)−H
(
d̃|y

)
= max

pd̃(d̃)
H
(
WHy

)
−H

(
WHv

)

where H is the differential entropy and I the mutual information. Thus, as the

considered signals are Gaussian, the mutual information is given by [122]

I
(
y; d̃

)
= log2

(
det

(
E
[
WH yy HW

]))
− log2

(
det

(
E
[
WH vv HW

]))
.

(4-12)
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Thus, computing Ω = E
[
WH yy HW

]
, we have to rewrite the following:

Ω = E

 K∑
j=1

wH
j yjyj

Hwj

 (4-13)

= E

 K∑
j=1

wH
j

(
hj
√
bj xj + v

) (
hj
√
bj xj + v

)H
wj


= E

 K∑
j=1

(
wH
j hj

√
bj xjx

H
j

√
bjhH

j wj

)
+
(
wH
j hj

√
bj xjv

H
j wj

)
+

K∑
j=1

(
wH
j vjx

H
j

√
bjhH

j wj

)
+
(
wH
j vjv

H
j wj

) .
As the main objective is to compute the maximum achievable rate of a

device i out of K active devices in the same time instant t we have,

Ω = E

 K∑
j=1

(
wH
i hj

√
bj xjx

H
j

√
bjhH

j wi

)
+
(
wH
i vvHwi

)
= E

∣∣∣∣wH
i hi

√
bi xi

∣∣∣∣2+
K∑

j=1,j 6=i

∣∣∣wH
i hj

√
bj xj

∣∣∣2 +
∣∣∣wH

i v
∣∣∣2
 (4-14)

where the first term is the signal of interest and the other additive terms

are treated as a Gaussian noise. Thus, substituting (4-14) in (4-12), we get

the expression of the signal-to-noise-plus-interference for the fixed channel

realization H, as

SINR =

∣∣∣wH
i hi
√
bi
∣∣∣2∑

j=1,j 6=i

∣∣∣wH
i hj

√
bj
∣∣∣2 + ‖wH

i ‖2
. (4-15)

4.4.2.2
Imperfect Channel Estimation

In practice, the channel matrix H has to be estimated at the BS. Thus,

we define the computation of the LMMSE estimate of the channel estimate of
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the n-th device, as

yn = Yφϕ
H
n =

∑
n′∈N

(√
τφ bn′ hn′ ϕn′ + Vφ

)
ϕHn ,

=
√
τφ bn hn +

∑
n′ 6=n

√
τφ bn′ hn′ ϕn′ϕHn + Vφϕ

H
n (4-16)

where ϕn is the 1× τφ metadata vector of the n-th device, Vφ is the M × τφ

noise matrix and the components of
(
Vφϕ

H
n

)
are i.i.d., as ‖ϕn‖2. Then, the

LMMSE estimate of hn, ĥn is

ĥn =
E
{
yHn hn

}
E {ynyn}

yn =
ηn
√
τφ bn∑

n′∈N τφ bn′ ηn′ |ϕn′ϕHn |2 + σ2
v

yn. (4-17)

Thus, Ĥ is the N×M matrix of channel estimate. We denote E = Ĥ−H,

where the elements of E = [E1, E2, · · · , EM ] are random variables with zero mean

and variance (ηi) / (biηi + 1). Furthermore, owing to the properties of LMMSE

estimation, E is independent of Ĥ. Splitting (4-14) in devices with and without

the same metadata sequence assigned to the i-th device, we have

Ω = E

 ∑
j∈{i,Ci}

(
wH
i hj

√
bj xjx

H
j

√
bjhH

j wi

)
+

∑
j /∈{i,Ci}

(
wH
i hj

√
bj xjx

H
j

√
bjhH

j wi

)
+
(
wH
i vvHwi

) , (4-18)

Recalling that E = Ĥ−H and considering the independence between E ,

Ĥ and separating the signal of interest we obtain,

Ω = E

∣∣∣∣wH
i ĥi

√
bi xi

∣∣∣∣2+
∑

j∈{Ci}

∣∣∣wH
i ĥj

√
bj xj

∣∣∣2+
∣∣∣wH

i v
∣∣∣2 +

∑
j∈{i,Ci}

∣∣∣wH
i Ej

√
bj xj

∣∣∣2 +
∑

j /∈{i,Ci}

∣∣∣wH
i hj

√
bj xj

∣∣∣2
 (4-19)

where the first term is the signal of interest and the other additive terms are
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treated as a Gaussian noise. Thus, substituting (4-19) in (4-12), we get

SINR =

∣∣∣wH
i ĥi
√
bi
∣∣∣2∑

j∈{Ci}

∣∣∣wH
i ĥj

√
bj
∣∣∣2 + ∑

j∈{j,Ci}

∣∣∣wH
i Ej

√
bj
∣∣∣2 + ∑

j /∈{i,Ci}

∣∣∣wH
i hj

√
bj
∣∣∣2 + ‖wH

i ‖2

(4-20)

=
wH
i bi

(
ηi −

(
(bj η2

i )
/(√

bjηi + ∑
j∈Ci

ηj + 1
)))

wi

wH
i

 ∑
j∈{Ci}

bj

ηi − bj η2
i√

bjηi+
∑
j∈Ci

ηj+1

+ ∑
j∈{j,Ci}

bj
(

ηj
bjηj+1

)
+ ∑
j /∈{i,Ci}

bjηj

wi + %

where % =
(
(1− λ)2 σ2

v σ
2
y + 1

)
/ (2− 2λ).

4.4.3
Diversity Order

This section is devoted to present the diversity order achieved by the AA-

VGL-DF detector. We adopt the geometrical approach presented in [123] and

used in the previous work [124] in order to reach the expression. As for non-

ergodic scenarios the error probability is the probability that the signal level

is less than the specified value, also known as outage probability, the diversity

order, that is, the asymptotic slope of the outage probability curve [125, 126],

is given by

d , lim
x→∞

log
(
Pr

(
Rk,span{k}

)
≤ x

)
log (x) (4-21)

where Rk,span{k} = Rk,span{1,2,...,k−1,k+1,...,K} is the squared projection height

from the kth column vector hK of H. From the definition in [126], Rk,span{k} =

‖Υ hK‖2 where Υ = I−PPH is the projection matrix to the orthogonal space

of span
{
k
}

and P is composed of any orthonormal bases of this subspace.

An important point is that only the K active devices are considered for the

computation of the diversity order.
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Theorem 2: The diversity order achieved by the AA-VGL-DF detector is

given by

dVGL =M −K +
(
ϑT mord + ϑ0

)
+ G (4-22)

where ϑ is the K × 1 binary vector presented in Subsection 4.3.2 that

gathers the information about the reliability of the soft estimates. mord =

[|A|, |A|, . . . , |A|]T is also a K × 1 vector but each column has the number

of symbols of the considered alphabet and G is the number of all the possible

combinations of the symbols of the considered augmented alphabet generated by

the external list. ϑ0 is the total number of zeros in the vector ϑ.

Proof: As the decision feedback scheme applies an interference cancella-

tion at each detection step, as it is common in the literature [127,128], we can

make an analogy to the well-known successive interference cancellation (SIC)

scheme. Assuming the channel model described in Section 3.2 and making the

common assumption that there is no error propagation related to the interfer-

ence cancellation [123–126], the interference nulling out can be expressed as a

general matrix form given by

y⊥ = Υ · y, (4-23)

where (4-23) projects y onto the direction orthogonal to the span
{
k
}
.

Following the procedure in [123], to reach the expression of the diversity order

of each step of the SIC, the idea is to rotate the set of channels [h1, . . . ,hK ]

in a way that hK becomes parallel to pK , one of the orthonormal basis of the

subspace. Considering the detection of the first step, hK is fixed and position

hK−1 into the [pK−1 pK ] plane. In this way, the received signal vector can be

written as
y⊥ =

√
b1τx x1Υ · h1 + v, (4-24)

where the time instants are suppressed to reduce the notation. The rotations

happens until the last channel vector, hK , is positioned into the [p2 p3, . . . ,pK ]
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hyper plane. In the well-known SIC scheme, the diversity order after all rota-

tions is (M −K + 1), as h1⊥ has a total of (M −K + 1) nonzero components.

On the other hand, as the AA-VGL-DF detector has an internal list at each

detection step, the diversity gain can be increased.

Assuming that the first soft estimate was considered unreliable by the

SAC, the internal list scheme would imply more than one possible received

vector to be cancelled. Thus, designating the order of the alphabet of the

chosen modulation scheme as |A|, for the first step, the diversity order is

(M −K + |A|). For the steps that the soft estimation is reliable, the diversity

order is the same as the SIC scheme. Thereby, the result can be achieved by

induction. For the ith step, the diversity order can be represented by
M −K + ϑ0

i , if d̃n is reliable and

M −K + ϑT mord, if d̃n is unreliable,
(4-25)

where ϑ and mord vectors are scaled as i×1 and ϑ0
i is the total number of zeros

in the vector ϑ until the ith step. Therefore, for K = 5 and ϑT = [1 0 1 1 0],

we have 

for i = 1, dVGL = M −K + ϑT mord

for i = 2, dVGL = M −K + ϑT mord + 1

for i = 3, dVGL = M −K + ϑT mord + 1

for i = 4, dVGL = M −K + ϑT mord + 1

for i = 5 = K, dVGL = M −K + ϑT mord + 2.

(4-26)

Thus, considering the internal list, the diversity order achieved by AA-

VGL-DF is M −K +
(
ϑT mord + ϑ0

)
,

The external list also contributes to the diversity gain. As the external

list is comparable as a low complexity ML detector, the increase gain in the

diversity order can follow the same idea. As the ML detector has a diversity

gain of M [125] and the size of the group list is variable, we consider the ν

number of symbols chosen to be verified in a total of G possible vectors. In this

way, the diversity order achieved by the AA-VGL-DF is given by (4-22).
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Figure 4.7: Symbol Error Rate vs. Average SNR of the AA-VGL-DF detector
in different sparsity scenarios. The activity pattern of devices is determined by
a random variable with beta distribution, as shown in Fig. 4.1. In the legend,
are shown the α and β parameters of each considered distribution, for N = 128
and M = 64.

4.5
Numerical Results

In this section, the performance of the AA-VGL-DF and other relevant

mMTC detection schemes are evaluated. Considering an underdetermined

mMTC system with N = 128 devices and a single base-station equipped

with M = 64 antennas. The evaluated schemes experience an independent

and identically-distributed (i.i.d.) random flat-fading channel model and the

values am,n of (2-26) are taken from complex Gaussian distribution of Nc (0, 1).

The active devices radiate QPSK symbols with power values drawn uniformly

at random in [0.1, 0.3] and the activity probabilities are given by a beta-

binomial distribution, as described in Section 4.2. Each transmission slot has

256 symbols, equally split into metadata and data. This balance between

pilots and data is suggested in [118]. For systems that need explicit channel

estimation, we considered the scheme described in Section 4.4.2.2.

Initially, we verify the Symbol Error Rate (SER) performance and the

Spectral Efficiency of the AA-VGL-DF for the six sparsity scenarios shown
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Figure 4.8: Spectral Efficiency vs. Average SNR of the AA-VGL-DF detector
with imperfect CSI in different sparsity scenarios. In the legend, are shown the
α and β parameters of each considered distribution, for N = 128 and M = 64.

in Fig. 4.1. Fig. 4.7 shows that as lower is the activity probability of devices,

better is the SER performance of AA-VGL-DF. The result of Fig. 4.8 illustrates

the achievable spectral efficiency of the system with the AA-VGL-DF detector

and shows that, as the sparsity increases, the spectral efficiency also increases.

This is due to the reduced number of block collisions and better detection

performance, thus reducing the interference. Both plots consider the average

SNR as 10 log (N σ2
x/σ

2
v).

Given the SER results of those different scenarios, we choose the beta-

distribution with α = 4 and β = 8 as it provides an intermediary sparsity, to

compare the SER and Bit Error Rate (BER) performances of the AA-VGL-DF

and other relevant mMTC detection schemes.

The numerical results of both uncoded and coded systems are averaged

over 105 runs. The performance of AA-VGL-DF is compared with other

relevant schemes, as the linear mean squared error (LMMSE), unsorted SA-

SIC [28], SA-SIC with A-SQRD [29], AA-RLS, AA-RLS-DF and a version of

AA-RLS-DF with the internal list of this work. Besides that, we analyze a

version with AA-VGL-DF with perfect activity user detection (AUD) and, as
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Figure 4.9: Symbol Error Rate values vs. Average SNR. Parameters of proposed
schemes are λ = 0.92, γ = 0.001 and ξ = 10. The pattern activity of the
N = 128 devices is modelled with a beta-binomial distribution with α = 4 and
β = 8. Imperfect CSI is considered in the approaches which depends of the
channel estimation.

a lower bound, the Oracle LMMSE detector, which has the knowledge of the

index of nonzero entries, is considered.

Fig. 4.9 shows the symbol error rate performance of the considered

algorithms. LMMSE has a poor performance as the system is underdetermined.

Due to error propagation, the unsorted SA-SIC does not perform well. SA-

SIC with A-SQRD is effective since it considers the activity probabilities, but

under imperfect CSI conditions, its performance is not so good. In contrast,

as AA-RLS-DF does not need explicit channel estimation, it is more efficient.

The decision-feedback scheme provides a SER gain due to the interference

cancellation, which also happens by including the internal list. The proposed

schemes with lists of candidates obtain results that outperform the other

relevant schemes, approaching the lower bound. The AA-VGL-DF with perfect

AUD surpasses the lower bound for high SNRs, where the filter weights are

better adjusted and the list schemes are able to correct more errors.

For the coded systems with IDD, Fig. 4.10 shows the BER of the already

considered algorithms under the same scenario. The LDPC matrix has 256
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Figure 4.10: Bit Error Rate values vs. Average SNR. LDPC with block length
of 128, symbol rate R = 0.5, refined by 2 decoding iterations for the same
scenario of Fig. 4.9.

columns and 128 rows, avoiding length-4 cycles and with 6 ones per column.

The Sum-Product Algorithm (SPA) decoder is used and the average SNR

is 10 log (NRσ2
x/σ

2
v), where R = 1/2 is the rate of the LDPC code. The

sparsity of the mMTC approach degrades the expected efficiency of LMMSE-

PIC, obtaining little variation in relation to LMMSE and LMMSE-SIC. The

hierarchy of performance of the other considered algorithms is the same as the

uncoded case but with better error rate values. The iterative scheme matches

the results for low bit error rate values. Fig. 4.11 exhibits the spectral efficiency

of the considered algorithms. The filter refinement promoted by the internal

and external lists provokes a better spectral efficiency than the other detection

schemes. The oracle LMMSE is the upper bound of the system.
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Figure 4.11: Spectral Efficiency vs. Average SNR. Parameters of proposed
schemes are λ = 0.92, γ = 0.001 and ξ = 10. The pattern activity of the
N = 128 devices is modelled with a beta-binomial distribution with α = 4 and
β = 8 and imperfect CSI..

4.6
Chapter Summary

In this chapter, an adaptive and iterative soft processing detection

scheme, denoted as AA-VGL-DF, that jointly estimates activity and the data

of MTCDs has been presented. The performance of AA-VGL-DF demonstrates

that the two candidates-list techniques proposed successfully improved the

first detector, the AA-RLS-DF. Moreover, the computational complexity has

also been compared, where the AA-VGL-DF demonstrates a competitive cost.

Furthermore, the derivation of the diversity order and the sum-rate expressions

are also presented, which show that the proposed AA-VGL-DF detection

scheme can approach the performance of the optimal detector.



5
Dynamic Message-Scheduling Based on Activity-Aware
Residual Belief Propagation for Channel Estimation

5.1
Chapter Overview

Unlike the solutions presented in the previous chapters that do not re-

quire explicit channel estimation, the joint activity detection and channel es-

timation problem is studied in this chapter. In addition, we replace receive

filters whose solutions require matrix inversions with computationally efficient

factor graphs and message passing strategies. The chapter starts with a system

model discussion where, besides the frame-level synchronized scenario previ-

ously presented, an asynchronous scenario is introduced. Exploiting the fact

that the channel is given by a Gaussian function, the problem is formulated

in a factor graph fashion, separated into loopy belief propagation (LBP) and

a generalized approximate message-passing (GAMP) parts. After the presen-

tation of the message-passing structure, a set of dynamic message-scheduling

techniques are introduced. Each technique is based on different criteria, as

instantaneous activity detection and residual belief propagation (RBP), that

reduce the computational complexity and the number of iterations to reach

convergence. The chapter ends with the performance comparison in terms of

normalized mean squared-error (NMSE), AER and convergence analysis of the

proposed solutions and the state-of-the-art. In addition, an NMSE comparison

is given in order to contrast the performance of all considered solutions in a

synchronous and asynchronous scenario.
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5.2
System Model

Regarding Section 2.3, the use of GFRA in massive MIMO systems is due

to the fact that mMTC traffic characteristics differ substantially from those of

conventional human-based communications. As devices transmit rather short

data packets sporadically, yielding bursty traffic with packet arrival times

of several seconds up to minutes. Moreover, there are high requirements on

energy efficiency due to power limitations of battery driven devices, and

a demand for high reliability for safety-critical services with strict latency

constraints [129,130].

Despite the fact that it is the most used in the literature, considering

the above aspects of mMTC, a time synchronous transmission as required

by conventional OFDM systems is not the most suitable choice to facilitate

an efficient transmission, as the synchronization signalling would generate a

substantial overhead and increase the overall transmission latency. If massive

access is further considered for mMTC, this overhead could quickly eat up the

system capacity and thus limit the number of connected devices. Therefore,

the support for asynchronous transmission would therefore be highly beneficial

for mMTC, enabling transmissions with minimized signalling overhead and

delay [131]. However, the necessary coordination between the base-station

(BS) and the machine-type devices (MTCDs) in the expected massive scenario

would be an issue. Most of the literature, considers a grant-free random access

(GFRA) [118,132] scenario, where frame-level synchronization is assumed. The

GFRA mechanism allows the MTCDs to simply transmit their packages to the

BS directly, without the need to wait for a specific uplink grant from the BS.

With the massive number of MTDs requiring access without coordina-

tion, even the use of non-orthogonal preambles a time-slotted transmission

would cause significant overhead. In a scenario where devices can transmit

their packets only at the beginning of each time-slot, any device that fails to

align its time slots properly may degrade its detection and estimation perfor-
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mance. Hence, a non-time-slotted (or asynchronous) transmission would fur-

ther simplify the scheduling procedure, resulting in a smaller signalling over-

head, reduced transmission latency and improved energy efficiency [129]. De-

spite the fact that in asynchronous scenarios the preamble and data signals

are superposed in a non-orthogonal manner and interfere with each other, due

to the asymptotic favourable propagation in massive multiple-input multiple-

output (mMIMO), their spatial subspaces are approximately mutually orthog-

onal [122,133]. Thus, the BS can decode the data of MTCDs that transmitted

first and then employ successive interference cancellation (SIC) to estimate

channels and decode data for the following received packets [134].

Additionally, in the current LTE system, both orthogonal frequency

division multiplexing (OFDM) waveforms, the cyclic prefix OFDM (CP-

OFDM) and the direct fourier transform spread OFDM (DFTs-OFDM) impose

strict synchronization requirements to the system. To guarantee reliable link

performance, the timing inaccuracy of the receiving window needs to be kept

within the range of the CP. However, in the cellular uplink, the mobility

of the users yields a continuous change in the propagation delay of the

users’ transmission signals, and thus introduces time-variant timing offsets.

In order to address such random and variable timing misalignment, a closed-

loop timing advance (TA) procedure is designed in the LTE systems for the

BS to keep control of each individual user device during an active RRC

connection [129,130].

In summary, there are significant reasons to study, not only the syn-

chronous but the asynchronous uplink mMTC scenario. Thus, this chapter con-

siders two system models, the synchronous, used in previous chapters and the

asynchronous, where symbol-level synchronization is assumed but not frame-

level synchronization. Since there are just a few recent works that study the

asynchronous scenario for mMTC [70,135–138], this chapter, an extended ver-

sion of our recently published work [63], faces a completely open-problem.



Chapter 5. Dynamic Message-Scheduling Based on Activity-Aware Residual
Belief Propagation for Channel Estimation 129

(a) Frame-level synchronization assumption.

(b) Symbol-level synchronization assumption.

Figure 5.1: (a) Synchronous and (b) asynchronous frames of the uplink grant-
free mMTC scenario. Type-1 frames should be detected by the BS, while the
others must be re-transmitted.

5.2.1
Asynchronous Scenario

Differently from the synchronous scenario considered in the previous

chapters, in the asynchronous scenario, a symbol-level synchronization is

assumed but not frame-level synchronization. This contrast is depicted in

Fig. 5.1, where at the beginning of any symbol interval, each device is allowed

to transmit L pilot symbols, which form a frame. As depicted in Fig. 5.1b,

in the asynchronous scenario, it is possible that just part of the transmitted

frame falls within the observation window. Since the problem of interest here

is to jointly estimate the channels and the activity of devices, the BS is only

able to deal with the type-1 frames. Thus, type-2 and type-3 frames should

have their channels estimated and activity detected in another observation

window. Accordingly, the BS generates a sequence of observation windows

{tx, tx + T}x∈Z+
where tx = 0, if x = 1 and tx = tx−1 + ∆t, otherwise. This
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sequence can be seen as a sliding window with window size T and step size

∆t. Since T > L, any consecutive observation windows have an intersection of

T −∆t symbol intervals, enabling BS to estimate the channels of all frames.

Since mMTC results in sparse systems, we designate the Boolean variable

ξn,t = 1 that indicates the activity of the n-th device in the t-th symbol interval

and ξn,t = 0, otherwise. Thus, considering ρn the probability of being active

of the n-th device, P (ξn,t = 1) = 1 − P (ξn,t = 0) = ρn, where all ξn,t are

considered i.i.d. in relation to n and each device has its own activity probability.

When an MTD is active, it transmits one of the independent pilot sequences

previously provided by the BS. The frame of the n-th device is composed by

φn = exp (jπα), where each element of vector α ∈ RL is drawn uniformly

at random in [−1, 1]. Despite the intermittent pattern of transmissions, each

device should wait, at least, to the guard period interval to transmit again.

Let ht ∈ CN×1 be the vector that models the channels between the BS

and N devices in the t-th symbol interval. Considering tn as the symbol interval

in which the n-th device initiates its transmission, each component is modeled

as

hn,t =


√
βn an,t (t− tn + 1) , ∀ (tn ≤ t < tn + L) ,

0, otherwise.
(5-1)

where ht gathers independent fast fading, geometric attenuation and log-

normal shadow fading. The vector at contains the fading coefficients modeled

as circularly symmetric complex Gaussian random variables with zero mean

and unit variance, while βn represents the path-loss and shadowing component

of each device, which depends on the location of the devices and remains the

same for all frames of the n-th device.

Considering the M BS antennas, for an arbitrary observation window

[tx, tx + T ) and omitting the subscript tx to simplify the notation, the received

signals are described by the model

Ym =
N∑
n=1

φn
‖φn‖

hTnm + Wm = Φ Hm + Wm, ∀ (m = 1, · · · ,M) (5-2)
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where Wm ∈ CL×T is the independent complex-Gaussian noise matrix with

Nc (0, σ2
w), Ym ∈ CL×T is the matrix that gathers the received signals and

Hm ∈ CN×T the channels. The subscript m indicates which BS antenna

received the signals. For each new window, the values of Wm, Ym and Hm

change, while Φ ∈ CL×N keeps the pilot sequence of each device. As in this

scenario we have a massive number of devices, the size of the window T is

smaller than N thus, the system is overloaded. However, as seen in (5-1), H

is sparse, which makes its recovery possible through the theory of compressed

sensing (CS) [20].

In order to present the message updating rules of the MSGAMP algo-

rithm, we introduce some statistical properties of the system model. Assuming

a BS with one antenna (M = 1), the subscript m is omitted in the following

formulation.

5.3
Factor Graph Approach

As reported in the literature [62,139], it is possible to estimate the chan-

nels exploiting the statistical properties of the system model approximating

the marginal posterior density by a product of the prior distribution of ht,

p (ht|ξt), and the likelihood, p (Y|H, ξ). Thus, the minimum MSE (MMSE)

estimate of hnt, ĥnt = Ehnt|y [hnt] ∀n, t is

p (hnt|Y) =
∫
p (H, ξ|Y) dξ dH\nt (5-3)

where H\nt denotes all elements except hnt and the posterior distribution,

denoted by p (H, ξ|Y) = 1
p(Y)p (Y|H, ξ) p (H|ξ) p (ξ) given by the Bayes’ rules

p (H, ξ|Y) =

1
p (Y)

[
L∏
l=1

T∏
t=1

p

(
ylt
∣∣∣ N∑
n=1

φln hnt

)] [
N∏
n=1

T∏
t=1

p (hnt|ξnt)
] [

N∏
n=1

T∏
t=1

P (ξnt)
]
, (5-4)

where P (hnt|ξnt) is the conditional density for the random variable in (5-1).
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schedulingmessage m-th layer

Figure 5.2: The factor graph of joint distribution p(H,Y, ξ) where cubes denote
factor nodes and spheres variable nodes.

In order to apply the proposed message scheduling techniques, the first

step is to marginalize the problem. As seen in GAMP [140] and HyGAMP [139],

one approach is to employ an approximation of the sum-product loopy belief

propagation (BP). For each t-th symbol interval, the factor graph (FG) in

Fig. 5.2 represents the problem, wherein factor nodes that represents the

density functions, prior and likelihood, are depicted as cubes and the variable

nodes ξnt and hnt are seen as spheres. As Φ is a dense matrix, the FG in

Fig. 5.2 is fully connected. Computing the messages in fully connected graphs

is tricky as the messages themselves are functions. Thus, a common method is

to approximate the messages by prototype functions that resemble Gaussian

density functions which can be described by two parameters only. So, message

passing reduces to the exchange of the parameters of a function instead of the

function itself. Therefore, it is possible to iteratively approximate, for a FG

with cycles as in Fig. 5.2, the marginal posteriors passing messages between

different nodes. Thus, we can define the messages, for all ls, from p
(
ylt
∣∣∣·) to

hnt and to the opposite direction as

∆(i)
n←lt (hnt) ∝

∫
p

(
ylt
∣∣∣ N∑
k=1

φlk hkt

)
N∏
j 6=n

∆(i)
j→lt (hjt ) dhjt (5-5)

∆(i+1)
n→lt (hnt) ∝ ∆(i)

n→nt (hnt)
T∏
k 6=t

∆(i)
n←lk (hnk) (5-6)

and, considering ∝ as proportional, the messages from P (hnt|ξnt) to hnt and
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to the opposite direction are

∆(i)
n←nt (hnt) ∝

T∏
k=1

∆(i)
n→lk (hnt) , (5-7)

∆(i+1)
n→nt (hnt) ∝

∫
p (hnt|ξnt) ∆(i)

n→nt (ξnt) dξnt. (5-8)

Thus, the belief distribution that provides an approximation to marginal

posterior distribution p (hnt|Y, ξ) is given by

∆(i+1)
nt (hnt) = ∆(i)

n→nt
∏T
s=1 ∆(i)

n←ls (hns)∫
∆(i)
n→nt

∏T
s=1 ∆(i)

n←ls (hns) dhnt
, (5-9)

where, defining Z = ΦH and

p
(
h
∣∣∣r̂(i)
nt , ν

r(i)
nt ; ρ̂(i)

nt

)
,

p
(
h; ρ̂(i)

nt

)
Nc

(
h|r̂(i)

nt , ν
r(i)
nt

)
∫
p
(
h; ρ̂(i)

nt

)
Nc

(
h|r̂(i)

nt , ν
r(i)
nt

)
dh

(5-10)

p
(
z
∣∣∣p(i)
lt , ν

p(i)
lt

)
,

p
(
ylt|z(i)

lt

)
Nc

(
z|p(i)

lt , ν
p(i)
lt

)
∫
p
(
ylt|z(i)

lt

)
Nc

(
z|p(i)

lt , ν
p(i)
lt

)
dz,

(5-11)

we can compute E
[
∆(i+1)
nt (hnt)

]
= ĥ

(i+1)
nt and Var

[
∆(i+1)
nt (hnt)

]
= ν

h(i+1)
nt .

Specifically, each iteration of Algorithm 3 has three stages. The first one,

labelled as “GAMP approximation” contains the updates of the GAMP based

on expectation propagation (EP) algorithm, which treats the components hnt

as independent with the estimated probability of being active ρ̂nt. As well

as [59, 62], the EP is incorporated in the process of LBP to the relaxed belief

propagation and then to GAMP. At iteration i, MSGAMP produces estimates

ĥ(i) and ẑ(i) of the vectors h and z. Several other intermediate vectors, p̂(i), r̂(i)

and ŝ(i), are also produced. Associated with each of these vectors are matrices

like Qh(i) and Qz(i) that represent covariances. Thus, in order to reduce the

complexity of O (LNT ) to O (NT ), the message in (5-5) is firstly mapped

to a Gaussian distribution based on the central limit theorem and Taylor

expansions. So, ∆(i)
n←lt (hnt) is updated by the Gaussian reproduction property

(GRP)1 [62]. Following the same procedure in the messages of (5-6), (5-7) and
1Nc(x|a,A)Nc(x|b, B) = Nc(0|a − b, A + B)Nc(x|c, C) with C = (A−1 + B−1)−1 and

c = C(a/A+ b/B).
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(5-8), relaxed BP is obtained by combination of the approximated messages.

Since many of these messages slightly differ from each other, in order to fill out

those differences, new variables are produced and, ignoring the infinitesimals,

GAMP based on EP is obtained.

The second stage of Algorithm 3, labelled as “sparsity-rate update”, refers

to the “box” part of the FG in Fig. 5.2 and updates the estimates of each

probability of being active ρ̂ntm. In order to use the diversity of the antennas

in the BS to refine the activity detection, from this point we include the

subscript m into the formulation. Computed using Gaussian approximations

of likelihood functions, these estimates are then used to define the message

scheduling proposed in this work. The messages in the “sparsity-rate update”

stage are given by

∆(i+1)
n←ntm (ξnt) ∝

∫
p (h|ξnt) ∆(i)

n←ntm (h) dh, (5-12)

∆(i)
n→ntm (ξnt) ∝P (ξnt)

T∏
k 6=t

∆(i)
n←nkm (ξnt) , (5-13)

where (5-12) refers to the message from P (hntm|ξnt) to ξnt while (5-13)

denotes the message in opposite direction and each belief at ξnt is given by

∆(i)
n (ξnt) ∝ P (ξnt)

∏T
t=1 ∆(i)

n←ntm(ξnt).

Defining X = R+W as a scalar random variable with the same density as

H, the message in (5-12) can be approximated as a likelihood function given by

∆(i)
n←ntm (ξnt) = Nc

(
hntm|r̂(i)

ntm, ν
r(i)
ntm

)
, where r̂ntm is a component of the AWGN

corrupted version of X , R, and νr is the variance of X . Applying the GRP

enables us to define

LLR(i)
n←ntm = log

Nc
(
0
∣∣∣r̂(i)
ntm, ν

r(i)
ntm + βn

)
Nc

(
0
∣∣∣r̂(i)
ntm, ν

r(i)
ntm

) . (5-14)

Similarly to (5-14), we have

LLRntm , log ∆(i)
n (ξnt = 1)

∆(i)
n (ξnt = 0)

and LLR(i)
n→ntm , log ∆(i)

n→ntm (ξnt = 1)
∆(i)
n→ntm (ξnt = 0)

.
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Algorithm 3: MSGAMP for Joint Activity User Detection and
Channel Estimation

input : i = 1, ŝ(0)
ltm = r̂

(0)
ntm = 0, νr(0)

ntm = 1, ρ̂(0)
ntm = ρn,

S(0) = [1, . . . , N ]
output: ρ̂end and ĥend

1 begin
GAMP approximation

2 while (i < I or tol < 10−4) do
3 for

(
n = 1, . . . , |S(i−1)|

)
∀n ∈ S(i−1) do

4 for (t = 1, . . . , T ) do
5 for (m = 1, . . . ,M) do
6 ĥ

(i)
ntm = E

[
Xntm

∣∣∣r̂(i−1)
ntm , ν

r(i−1)
ntm ; ρ̂(i−1)

ntm

]
7 ν

h(i)
ntm = Var

[
Xntm

∣∣∣r̂(i−1)
ntm , ν

r(i−1)
ntm ; ρ̂(i−1)

ntm

]
8 for (l = 1, . . . L) do
9 ν

p(i)
ltm = ∑N

n=1 |Φln|2νh(i)
ntm

10 p
(i)
ltm = ∑N

n=1 Φln ĥ
(i)
ntm − ν

p(i)
ltm ŝ

(i−1)
ltm

11 z̃
(i)
ltm =

(
yltm ν

p(i)
ltm + σ2

w p
(i)
ltm

)/ (
ν
p(i)
ltm + σ2

w

)
12 ν

z(i)
ltm =

(
σ2
w ν

p(i)
ltm

)/ (
ν
p(i)
ltm + σ2

w

)
13 ŝ

(i)
ltm =

(
z̃

(i)
ltm − p

(i)
ltm

)/
ν
p(i)
ltm

14 ν
s(i)
ltm = ν

−p(i)
ltm

(
1− ν

z(i)
ltm

ν
p(i)
ltm

)
end

16 ν
−r(i)
ntm = ∑L

l=1 |Φln|2νs(i)ltm

17 r
(i)
ntm = ĥ

(i)
ntm + ν

r(i)
ntm

∑L
l=1 Φ∗lnŝ

(i)
ltm

Sparsity-rate update

19 LLR(i)
n←ntm = log

Nc

(
0
∣∣∣r̂(i)
ntm,ν

r(i)
ntm+βn

)
Nc

(
0
∣∣∣r̂(i)
ntm,ν

r(i)
ntm

)
20 LLR(i)

n→ntm = log (ρn/1−ρn) +∑T
k 6=t LLR

(i)
n←nkm

21 ρ̂
(i)
ntm , ν

(i+1)
n→ltm (ξnt = 1) = 1− 1/1+exp

(
LLR(i)

n→ntm

)
end

end

MSGAMP-type technique

25 ρ̂
(i)
nt = ∑M

m=1 ρ̂
(i)
ntm

/
M

26 S(i) = update
[
S(i−1)

]
end

28 tol = ∑M
m=1

‖ĥ(i)
tm−ĥ(i−1)

tm ‖
‖ĥ(i)
tm‖

and i = i+ 1
end

end
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Substituting (5-14) in (5-13) and in each belief, LLR(i)
n→ntm is given by

LLR(i)
n→ntm = log

(
ρn

1− ρn

)
+

T∑
k 6=t

LLR(i)
n←nkm. (5-15)

Thereby, the message in (5-6) is described by

∆(i+1)
n→lt (hntm) = ρ̂

(i)
ntmNc (hntm|0, βn) +

(
1− ρ̂(i)

ntm

)
δ (hntm) , (5-16)

where
ρ̂

(i)
ntm , ∆(i+1)

n→ltm (ξnt = 1) = 1− 1
1 + exp

(
LLR(i)

n→ntm

) . (5-17)

With the message passing established, the next step is to use the

estimates obtained in (5-17) in message scheduling.

5.4
Dynamic Message-Scheduling Strategies

Since it is expected up to 300, 000 devices per cell [4] in future mobile

communication systems a technique with low computational cost is funda-

mental. We develop three different message scheduling criteria that reduce the

computational complexity and the number of iterations to reach convergence

as compared to HYGAMP.

MSGAMP determines a group of nodes S(i) to update based on two

different criterion, the AUD and the RBP. The goal is to update, at every

iteration i, only the nodes of the group and not all of them, as in HyGAMP.

MSGAMP proceeds until i reaches the maximum number of iterations I or

(tol/M < 10−4), where tol is given by

tol =
M∑
m=1

‖ĥ(i)
tm − ĥ(i−1)

tm ‖
‖ĥ(i)

tm‖
, (5-18)

where ĥ(i)
tm is a |S(i)| × 1 vector that corresponds to the estimated channel

gains between the |S(i)| devices and the m-th BS antenna. As this stopping

criterion takes into account only the devices in the group, unlike the parallel

message update of HyGAMP that, in each iteration, O(NTM) messages must

be computed, MSGAMP needs only O(|S(i)|TM) . Considering that we have
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a crowded scenario of MTCDs in future mobile communication systems and

the sporadic transmission pattern of each device, the computational cost gain

using scheduling schemes is evident, since |S(i)| << N . With the stopping

criterion defined, we present the first message scheduling scheme.

5.4.1
MSGAMP Based on Activity User Detection

The message scheduling based on activity user detection (MSGAMP-

AUD) sequentially updates the messages of devices detected as active and

repeats the previous values of other devices. The criterion based on AUD uses

the estimates of each BS antenna, as ρ̂(i)
nt = ∑M

m=1 ρ̂
(i)
ntm/M . If ρ̂(i)

nt is higher than

a threshold, the device is considered as active and is included in the set S(i).

In the first iteration, all messages of all nodes are updated. When i = 2,

we have the first values of ρ̂tm, thus enabling the set S(i). In this iteration, all

messages that belong to S(i), except for s(i)
1 will be updated. Then, the index

that refers to the messages that had been updated is removed of S(i) as in

S(i) =
[
s

(i−1)
2 , . . . , s

(i−1)
|S(i−1)|

]
. (5-19)

Therefore, we exclude a group of messages that belong to a specific device

to be updated, one at a time. In summary, we reduce the set S(i) that is updated

in parallel until there is no message to update. When S(i) is empty, MSGAMP

updates all messages, including the ones that do not belong to the older set,

i.e., the new set is S(i) = [1, . . . , N ]. In the next iteration, a new update of the

set S(i), using the new ρ̂ntm is performed.

5.4.2
MSGAMP Based on Residual Belief Propagation

In this variation, MSGAMP updates the messages according to an

ordering metric called residual belief propagation (RBP). A residual is the

norm (defined over the message space) of the difference between the values of

a message before and after an update. In our scheme, we define the residual
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with the beliefs described in (5-9). Thus, the residual for the belief distribution

at hnt, is given by

Res (νntm (hntm)) =
∣∣∣∣∣∣∆(i+1)

ntm (hntm)−∆(i)
ntm (hntm)

∣∣∣∣∣∣. (5-20)

The intuitive justification of this method is that as the factor graph

approach converges, the differences between the messages before and after an

update diminish. Therefore, if a message has a large residual, it means that it

is located in a part of the graph that has not converged yet. Thus, propagating

that message first should speed up the convergence. Using the residual values

computed in (5-20), we compute the set S(i) of messages to be updated in the

next iteration. Since the probability of being active of each MTD is typically

around 5% [8], S(i) has the 0.05N nodes with highest residual. The update

sequence of MSGAMP-RBP is the same of MSGAMP-AUD, the difference is

how both groups are formed.

Algorithm 4:Message-scheduling based on Group Residual Belief
Propagation

input : l = 1, N , S i, ĥi, r̂i, νr(i), νh(i)

output: S i+1, ĥi+1, r̂i+1, νr(i+1), νh(i+1)

1 begin
2 if

(
|S(i)| = 0

)
then

3 for (n = 1, . . . , N) do
4 if

(
Res (νnm (hnm)) > the first other |ρ̂(i)|residuals

)
then

5 S(i+1)
l = n

6 l = l + 1
end

end
9 else

10 % Remove the first element of S(i), that is,
11 S(i+1) =

[
S(i)

2 , . . . ,S(i)
|S(i)|

]
end

13 ∀
(
n /∈ S(i+1)

)
,

14 for (m = 1, . . . ,M) do
15 ĥ(i+1)

nm = ĥ(i)
nm; νh(i+1)

nm = νh(i)
nm

16 r̂(i+1)
nm = r̂(i)

nm; νr(i+1)
nm = νr(i)nm

end
end
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5.4.3
MSGAMP Based on AUD and RBP

This dynamic scheduling strategy combines the AUD and RBP criterion.

The main idea is use AUD criterion to create S(i) and the RBP criterion to

compute the updating sequence of it. MSGAMP-ARBP updates the messages

of one node per iteration, starting with the one with highest residual. After

the group being fully updated, MSGAMP-ARBP proceeds as in previous

strategies, updating the messages of the nodes that does not belong to S(i)

and compute a new set. When a stop criterion is met, the activity detection

and the channel estimation are given by lines 26 and 6 in Algorithm 3.

5.5
Numerical Results

In order to verify the performance of the proposed MSGAMP schemes,

we simulate an mMTC system with N = 128 devices, M = 2 BS antennas,

L = 32 symbols per frame and T = 3L as the size of the observation

window. The threshold to detect the activity of devices considered is 0.9,

the average SNR is set to 1/σ2
w, while the activity probabilities pn are drawn

uniformly at random in [0.01, 0.05]. The variations of MSGAMP are compared

to the well-known generalized approximate message passing (GAMP) [140]

and the state-of-the-art HyGAMP [139] algorithm. Versions of MSGAMP-

ARBP and of HyGAMP with perfect activity knowledge (OMSGAMP-ARBP

and OHyGAMP) are used as lower bounds. Figs. 5.3 and 5.4 show results of

NMSE and AER per frame, respectively. In terms of NMSE, Fig. 5.3 shows

that the message scheduling schemes have a competitive performance, where

MSGAMP-AUD and MSGAMP-RBP slightly outperform HyGAMP, requiring

less computational cost. MSGAMP-ARBP surpasses not only HyGAMP and

the other MSGAMP algorithms but also OHyGAMP.

One can see in Fig. 5.4 that the use of the BS antennas in order to refine

the activity detection improved the AER performance of MSGAMP-ARBP
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Figure 5.3: Normalized mean squared error per frame vs. Average SNR.
We considered only the active devices, in the asynchronous scenario with
N = 128,M = 2 and L = 32, after 10 iterations by 104 Monte Carlo trials.

since the AER curves have lower values as M increases. Fig. 5.5 depicts the

convergence of MSGAMP-type techniques and HyGAMP. One can notice that

for different values of SNR, our solutions converge faster and to lower values

of NMSE than HyGAMP.
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Figure 5.4: Activity error rate per symbol of MSGAMP-ARBP vs. Average
SNR in the asynchronous scenario with N = 128,M = 2 and L = 32, after 10
iterations. AER is the sum of the missed detections and false alarm rates.
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Figure 5.5: Convergence rate in terms of NMSE per symbol versus iterations.
The NMSE considered only the active devices in the asynchronous scenario
with N = 128,M = 2 and L = 32, by 104 Monte Carlo trials.
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Figure 5.6: Comparison of synchronous and asynchronous scenario in terms of
normalized mean squared error vs. Average SNR. The NMSE considered only
the active devices with N = 128, M = 2 and L = 32, after 10 iterations. The
activity probabilities ρn are drawn uniformly at random in [0.01, 0.05] and each
SNR value was averaged over 104 Monte Carlo runs.

Lastly, we compare in Fig. 5.6, GAMP, HyGAMP and our best proposed

solution, MSGAMP-ARBP, for the synchronous (slotted) and asynchronous

(non-slotted) scenarios, in terms of NMSE. Similarly of the previous simula-

tions, the NMSE considered only the active devices with N = 128, M = 2 and

L = 32, after 10 iterations. The activity probabilities ρn are drawn uniformly

at random in [0.01, 0.05] and each SNR value was averaged in 104 Monte Carlo

runs. One can see that the performance of the asynchronous scenario is bet-

ter as the channel matrix is more sparse. Since all evaluated algorithms are

compressed sensing solutions, it is expected that we have better results. It is

important to highlight, that, independently of the scenario, our main proposed

algorithm outperforms HyGAMP in terms of NMSE.

5.6
Chapter Summary

In this chapter, we have addressed the joint activity detection and

channel estimation problem and considered an asynchronous uplink scenario.

After introducing the motivation of the study, a new signal model has been
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presented, making considerations regarding the synchronous version. In order

to propose a more computationally efficient solution than in previous chapters,

the problem has been formulated in a factor graph fashion, which allows that

we devise a message-passing solution. Splitting the factor graph in loopy belief

propagation (LBP) and generalized approximate message-passing (GAMP)

parts, this chapter presented a novel approach, named MSGAMP, that uses

the LBP part of the factor graph to detect the activity of devices and GAMP

to estimate the channels. The concept of dynamic message-scheduling has

been also introduced, where three different techniques based on RBP and

instantaneous AUD are applied to MSGAMP. Considering distinct criteria,

each technique favors the update of specific nodes of the factor graph, thus

reducing the computational complexity and the number of iterations to reach

convergence, comparing to a completely-parallel update.

In order to evaluate the proposed schemes, this chapter has also pre-

sented performance comparisons in terms of NMSE and AER. Comparing the

MSGAMP-type solutions to GAMP and HyGAMP, one can see that the pro-

posed algorithms exhibit a competitive performance, where the efficiency of

MSGAMP-AUD and MSGAMP-RBP is comparable to HyGAMP but requires

less computational cost. On the other hand, MSGAMP-ARBP outperforms

not only HyGAMP and the other MSGAMP algorithms but also a version

of HyGAMP with perfect activity detection. The chapter has also provided a

convergence analysis where the intuitive idea that the RBP criterion speeds

the convergence is confirmed. In addition, an NMSE comparison that contrasts

the performance of all considered solutions in a synchronous and asynchronous

scenario has been provided. Besides the fact that the performance hierarchy of

algorithms remain, the synchronous scenario reduces the sparsity-level of each

symbol interval. Thus, under our assumptions, we can conclude that the use

of the asynchronous scenario should be an interesting way to increase the joint

activity detection and channel estimation performance.



6
Joint Channel Estimation, Activity Detection and Data De-
coding Based on Dynamic Message-Scheduling Strategies

6.1
Chapter Overview

With the knowledge acquired in the previous chapter, this chapter devises

a joint channel estimation, activity detection and data decoding scheme. By

including the channel and the a priori activity factor in the factor graph,

this chapter presents the bilinear message-scheduling GAMP (BiMSGAMP),

a message-passing solution that uses the channel decoder beliefs to refine

the activity detection and data decoding. Considered one of the promising

features of 5G/B5G channel coding techniques, the fact that the decoding of

the Low-Density Parity-Check (LDPC) codes is also based on message-passing

is exploited. Since the dynamic message-scheduling techniques described in

the last chapter exhibit excellent performance, they have been incorporated in

BiMSGAMP as part of the proposed solution.

After presenting the main steps of the proposed BiMSGAMP algorithm,

an analysis of the convergence of BiMSGAMP along with a study of its com-

putational complexity based on required floating-point operations (FLOPs)

is carried out. In order to assess the BiMSGAMP performance, the chapter

ends with numerical results that highlight the performance of the proposed

BiMSGAMP and other algorithms, the gains achieved by using the dynamic

scheduling strategies over the state-of-the-art in the literature and the effects

of the channel decoding part in the system.
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6.2
System Model and Problem Formulation

Although the formulation of the asynchronous case is straightforward, in

order to facilitate the reading and understanding of the proposed technique,

in this chapter it is considered a synchronous uplink single-cell GFRA system

model. Therefore, the system model of this chapter is briefly explained, since

most of it was already described in other chapters.

In order to represent the sparse mMTC scenario as in Fig. 5.1a, for the

synchronous scenario, at the beginning of of any observation window, each

device is allowed to transmit L symbols, which we denote here as a frame. We

then designate the Boolean variable γn = 1 that indicates that the n-th device

is active in the observation window and γn = 0, otherwise. Thus, considering ρn

the probability of being active of the n-th device, P (γn = 1) = 1−P (γn = 0) =

ρn, where all activity indicators γn are considered i.i.d. and each device has

its own activity probability. For an arbitrary observation window, the received

signals are given by

Y = H X + W, (6-1)

where W ∈ CM×L is the independent complex Gaussian noise matrix with

Nc (0, σ2
w), H ∈ CM×N represents the channels and Y ∈ CM×L is the matrix

that gathers the received signals. To estimate the channels and the user

data, the transmitting matrix is divided into LP pilots and LD data, i.e.,

X =
[
XP ,XD

]
such that L = LP + LD. Therefore, after the encoding of

the information bits, the data symbol matrix XD ∈ CN×LD is composed by

symbols of a modulation alphabet A, such as quadrature phase shift keying

(QPSK).

As discussed in the previous chapter, in order to eliminate the need

for round-trip signaling, firstly the BS broadcasts a set of non-orthogonal

pilot sequences and each activated device directly transmits frames without
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previous scheduling [15]. Although 3GPP’s technical specification for 5G

TS38.211 [141,142] consider Zadoff-Chu, m and Gold sequences for the pilots,

as discussed in the previous chapter, assigning orthogonal sequences to the

MTDs would be impractical. On the other hand, recent works consider pilot

sequences generated by ideal i.i.d. Gaussian matrices. Since it is still in

discussion, in order to satisfy the GFRA system model and consider non-

orthogonal sequences, the pilot part of the frame of the n-th device assumed

is the same as in Chapter 5, composed by

xPn = exp (jπα)
‖ exp (jπα)‖ (6-2)

where each element of vector α ∈ R1×L is drawn according to a uniform

distribution in the interval [−1, 1].

Regarding the realizations of the channel matrix H ∈ CM×N , here it

is assumed that the channel matrix is constant over a transmission frame

duration and changes independently from frame to frame. As before, the

channel matrix gathers independent fast fading, geometric attenuation and

log-normal shadow fading within the observation window. Thus, given the

vector γ, the components of the channel matrix are given by

hmn =


√
βn amn, if γn = 1,

0, otherwise.
(6-3)

6.3
Problem formulation

In order to facilitate the exposition, we formulate the problem for the

synchronous scenario, but the use in the asynchronous form is straightforward.

To address the goal of the joint activity, data and channel estimation, we

treat the problem under the framework of Bayesian inferences, which provides

optimal estimation in the MSE sense, named minimum mean square error

(MMSE) estimator. The MMSE estimates of XD and H are respectively given

by
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∀n, l ∈ LD : x̂nl = E [xnl|y]

∀m,n : ĥmn = E [hmn|y]
(6-4)

where the expectations are taken over pxnl|y(xnl|y) and phmn|y(hmn|y) both of

which are marginalization of pH,X,Γ|Y(H,X,γ|Y) from the joint distribution

pH,X,Γ,Y(H,X,γ,Y) given by

pH,X,Γ|Y(H,X,γ|Y)

= pY|H,X,Γ(Y|H,X,γ) pX(X) pH(H) pΓ(γ) /pY(Y)

∝ pY|Z(Y|HX) pX(X) pH(H) pΓ(γ)

=
M∏
m=1

L∏
l=1

pyml|zml

(
yml

∣∣∣∣ N∑
n=1

hmnxnl

)
N∏
n=1

L∏
l=1

pxnl(xnl)

×
M∏
m=1

N∏
n=1

phmn|γn(hmn|γn)
N∏
n=1

pγn(γn) , (6-5)

where the normalization to a unit area is omitted. Moreover, the transition

distribution are separable as zml = ∑N
n=1 hmnxnl with Z = HX. Since one of

the goals is to decode the data signals, the transmitted part also depends on

the encoded symbols c and on the s activity variables, as given by

pX (X) =
N∏
n=1

∏
l∈LP

pxP (xnl)
∑
snl

∑
cnl

N∏
n=1

∏
l∈LD

pxD (xnl, cnl, snl) , (6-6)

where cnl and snl ∈ {0, 1}. Accordingly, the MSE of those MMSE estima-

tors are presented by mse (XD) = (1/NLD)E
[
‖X̂D −XD‖2

F

]
and mse (H) =

(1/MN)E
[
‖Ĥ−H‖2

F

]
. Besides, the activity of the n-th device is decided by the

log-likelihood ratio (LLR) as given by

LLR(sn) = ln pγn|Y (γn = 1|Y)
pγn|Y (γn = 0|Y)

H0
≶
H1

0, (6-7)

where pγn|Y (γn|Y) is marginalization of pH,X,Γ|Y(H,X,γ|Y) and the hypothe-

sis H0 and H1 are about the n-th device activity.

Since the MMSE estimators in (6-4) and the hypothesis test in (6-7)

involve multi-dimensional integrals due to the marginalization of posterior dis-

tribution. Exact message passing based on the sum-product rule is too com-
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plicated to implement, while the computational cost is impractical for the

massive scenario. To this end, we propose an efficient algorithm that incorpo-

rates the channel coding into the message-passing approach and uses specific

message-scheduling schemes that dramatically reduce the computational cost.

6.4
Proposed BiMSGAMP Structure

To compute the a posteriori densities within such a graph messages

between function and variable nodes have to be exchanged. Drawing inspiration

from [140] and [143], the problem is divided in three parts, the activity prior,

where the LBP described in the previous chapter is considered, the channel

estimation and symbol detector block, where the message scheduling is applied,

and the decoder and activity detector block, as depicted in Fig. 6.1.

In the factor graph (FG), rectangles denote factor nodes while spheres

are the variable nodes. The belief propagation (BP) framework consists of

L multiuser detectors granting probabilistic information about the symbols

xn in the vectors xl. This information is exchanged between the L multiuser

detectors and processed within the detector and decoder blocks. Naturally, the

function nodes fnl with the variables cnl and snl1 are the connecting points for

the channel decoder and the symbol detector block.

6.4.1
Channel estimation, activity and data detection

The channel estimation and symbol detector block is based on the well-

known GAMP [140] algorithm so that, without considering the message-

scheduling, both are performed as in GAMP. The main advantages of this

procedure is that the messages are approximated by Gaussian distributions,

which allows us to update only mean and variances. Another point is that

since GAMP computes the messages on each node (instead of on each edge),
1Despite the fact that the joint distribution in (6-5) explicit the activity indicators γn,

since the algorithm have any previous knowledge of it, this quantity is estimated by the
variable snl.
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Figure 6.1: Factor graph of the problem. Rectangles represents factor nodes
while spheres are the variable nodes.

the number of messages computed in the algorithm is significantly reduced.

Thus, in order to introduce the activity detection and data decoding part, we

outline the first steps, omitting detailed derivations for brevity. The complete

derivations are in Appendices B.1 and B.2.

In order to compute the a posteriori densities within such a graph,

messages between function and variable nodes have to be exchanged. By

applying the sum-product algorithm [58] to the FG, the underlying iterative

update equations at the i−th iteration summarize the messages from functions

to variable nodes as given by

∆i+1
gml→hmn (hmn)

=
∫
{hmr}r 6=n,{xkl}

N
k=1

gml (yml|zml)
N∏
k=1

∆i
xkl→gml (xkl)

∏
r 6=n

∆i
hmr→gml (hmr) (6-8)

and

∆i+1
gml→xnl (xnl)

=
∫
{hmk}Nk=1,{xrl}r 6=n

gml (yml|zml)
∏
r 6=n

∆i
xrl→gml (xrl)

N∏
k=1

∆i
hmk→gml (hmk) , (6-9)
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Table 6.1: Message definitions at i-th iteration.

∆i
knm→hmn(hnm) Message from node P (hmn|γn) to node hnm

∆i
hnm→gml(hnm) Message from node hnm to node P (yml|zml)

∆i
gml→xnl(xnl) Message from node P (yml|zml) to node xnl

∆i
xnl→fnl(xnl) Message from node xnl to node fnl

∆i
fnl→dnl(cnl) Message from node fnl to node dnl

∆i
fnl→ξnl(snl) Message from node fnl to node ξnl

where gml (yml|zml) = pyml|zml

(
yml

∣∣∣∑N
k=1 hmkxkl

)
and the messages from vari-

able to factor nodes are given by

∆i+1
hmn→gml (hmn) = kmn (hmn, en)︸ ︷︷ ︸

∆kmn→hmn(hmn)

∏
p6=l

∆i
gmp→hmn (hmn) (6-10)

∆i+1
xnl→gml (xnl) = fnl (xnl, cnl, snl)︸ ︷︷ ︸

∆fnl→xnl(xnl)

∏
p6=m

∆i
gpl→xnl (xnl) . (6-11)

Regarding the linear model, zml = ∑N
n=1 hmnxnl, the messages of yml

are accumulated to obtain an estimate of zml. With the “Onsager” correction

applied, the messages in (6-9), in the form of means p̂iml and variances νpiml, for

all l, are computed as in [140],

νpiml ,
N∑
k=1
|ĥimn|2 νxinl + νhinl |x̂inl|2 + νhinl ν

xi
nl , (6-12)

p̂iml ,
N∑
k=1

ĥimn x̂
i
nl − ŝi−1

ml

(
|ĥimn|2 νxinl + νhinl |x̂inl|2

)
, (6-13)

where initially, ŝ0
ml = 0, ∀l. Then, the means ẑiml and variances νziml are

computed as given by

νziml = var
{

zml|pml = p̂iml, ν
pi
ml

}
, (6-14)

ẑiml =E
{

zml|pml = p̂iml, ν
pi
ml

}
, (6-15)

where the mean and variance operations are taken with respect to the a pos-

teriori distribution of zml given the a priori distribution zml ∼ Nc
(
p̂iml, ν

pi
ml

)
.

Lastly, the residual ŝiml and the inverse-residual-variances νsiml are computed by
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νsiml =
(

1− νziml
νpiml

)
1
νpiml

, (6-16) ŝiml = (ẑiml − p̂iml)
νpiml

. (6-17)

With the quantities ŝiml and νsiml computed, the means and variances

derived from the messages ∆i+1
hmn→gml (hmn) used to estimate the channels are

given by

νh i+1
mn = var

{
hmn|qmn = q̂imn, ν

qi
mn

}
(6-18)

ĥi+1
mn =E

{
hmn|qmn = q̂imn, ν

qi
mn; γn

}
(6-19)

where the variance νqimn is given by

νqimn =
νsiml

∑
l∈LP
|xnl|2 +

∑
l∈LD
|x̂inl|2

−1

, (6-20)

and the mean q̂imn is

q̂imn = ĥimn

1− νqimn
∑
l∈LD

νxinl ν
si
ml

+ νqimn

∑
l∈LP

xi∗nl ŝ
i
ml +

∑
l∈LD

x̂i∗nl ŝ
i
ml

 . (6-21)

Similarly, for the data we have

νx i+1
nl = var

{
xnl|rnl = r̂inl, ν

ri
nl

}
(6-22)

x̂i+1
nl =E

{
xnl|rnl = r̂inl, ν

ri
nl

}
(6-23)

where νrinl is given by
νrinl =

(
M∑
m=1

ĥi
2

mnν
si
ml

)−1

, (6-24)

and the mean r̂inl is

r̂inl = x̂inl

(
1− νrinl

M∑
m=1

νhimn ν
si
ml

)
+ νrinl

M∑
m=1

ĥi∗mn ŝ
i
ml. (6-25)

Naturally, these means and variances are approximated values, derived

in Appendices B.1 and B.2. With the messages based on the GAMP algorithm

defined, we describe the messages from the factor node fn,l to the decoder and

activity estimator part. For a BPSK scenario, we have from (6-11) [143],
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fnl (xnl, cnl, snl)

= snl [ cnl δ (xnl − 1) + (1− cnl) δ (xnl + 1)] + (1− snl) δ (xnl) . (6-26)

The function fnl (xnl, cnl, snl) in (6-26) summarizes the connection be-

tween variables {xnl, cnl, snl}, explicit their probabilistic dependencies and can

be seen as a check node that is zero for any invalid combination of the variables

involved. For the BPSK example and considering ρn as the probability of being

active of the n-th device, for the prior probability of xn we have sn = ρn and

cn = 0.5, then the function node is given by

fn (xn) = (ρn/2) [δ (xn − 1) + δ (xn+1)] + (1−ρn) δ(xn).

To process the encoded bits cnl and the activity variable snl, we define two

new function nodes that correspond to the decoder (dnl) and activity detector

(ξnl). Since that channel code and activity states are node specific, the branch

corresponding to one node connects to one function dnl and ξnl only.

6.4.2
Decoder and activity estimator

Following the sum-update rules, the corresponding beliefs have to be

multiplied point-wise and marginalized. However, seeing that the variables

cnl and snl have only two connections, the output message equals the input

message. Thus, we can directly give the message from the multiuser detector

to the decoder as given by

∆i+1
fnl→dnl (cnl)

∝
∑

xnl,snl

fnl (xnl, cnl, snl) ∆i
ξnl→fnl (snl)

M∏
m=1

∆i
gm,l→xnl (xnl) (6-27)

where one can see that the message to the decoder already contains information

from the activity detector and from the likelihood function. Similarly, the
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message from the multiuser detector to the activity detector can be directly

devised as

∆i+1
fnl→ξnl (snl)

∝
∑

xnl,cnl

fnl (xnl, cnl, snl) ∆i
dnl→fnl (cnl)

M∏
m=1

∆i
gm,l→xnl (xnl) . (6-28)

Accordingly, we can formulate the message from the function node

fnl to the likelihood factor gml. Using the sum-product update rules where

the messages from the activity detector ∆ξnl→fnl (xnl) and the message from

the channel decoder ∆dnl→fnl (xnl) are point-wise multiplied, the extrinsic

information from the channel decoder and the activity detector is incorporate

as given by

∆i+1
fnl→gml (xnl) (6-29)

∝
∑
cnl,snl

fnl (xnl, cnl, snl) ∆i
dnl→fnl (cnl) ∆i

ξnl→fnl (snl)
∏
p6=m

∆i
gp,l→xnl (xnl) .

6.4.3
LLR conversion

In order to detect the activity of devices and decode the transmitted data,

the idea is to convert the messages from fnl to dnl and to ξnl into LLRs. The

idea is to study how the beliefs exchanged between the multiuser detector,

decoder and activity detector influence each other. It is expected that the

beliefs from the multiuser detector to the decoder exhibit low magnitude if the

activity detector has a high belief toward inactivity. Additionally, the beliefs

from the multiuser detector to the activity detector are also influenced by the

beliefs from the decoder about the encoded symbols.

Starting with the message from the multiuser detector to the decoder in

combination with the definition of the function node fnl, we have
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∆i+1
fnl→dnl (cnl) ∝

∑
xnl,snl

fnl (xnl, cnl, snl) ∆i
ξnl→fnl (snl) ∆i

xnl→fnl (xnl)

∝ ∆i
ξnl→fnl (snl = 0) ∆i

xnl→fnl (xnl = 0)

+ (1− cnl) ∆i
ξnl→fnl (snl = 1) ∆i

xnl→fnl (xnl = −1)

+ cnl ∆i
ξnl→fnl (snl = 1) ∆i

xnl→fnl (xnl = 1) (6-30)

where ∆i
xnl→fnl (xnl) = ∏M

m=1 ∆i
gml→xnl (xnl) and messages are functions re-

flecting probabilities. In this case, we can summarize the message as encoded

symbol LLR by computing

Li+1
fnl→dnl (cnl) (6-31)

:= log
∆i
fnl→dnl (cnl = 1)

∆i
fnl→dnl (cnl = 0)

:= log
∆i
ξnl→fnl

(snl=0) ∆i
xnl→fnl

(xnl=0)+ ∆i
ξnl→fnl

(snl=1) ∆i
xnl→fnl

(xnl=1)
∆i
ξnl→fnl

(snl=0) ∆xnl→fnl (xnl=0) + ∆i
ξnl→fnl

(snl=1) ∆i
xnl→fnl

(xnl=−1) ,

what expresses the belief of the multiuser detector about the n, l-th code

symbol as a code symbol LLR.

Regarding the activity detection, we study the influence of the decoder

beliefs into the activity LLRs from the multiuser detector to the activity

detector. This message is composed of the beliefs given by the likelihood factors

and the beliefs from the decoder. This message reads as

∆i+1
fnl→ξnl (snl) ∝

∑
xnl,cnl

fnl (xnl, cnl, snl) ∆i
dnl→fnl (cnl) ∆i

xnl→fnl (xnl) , (6-32)

which can be also written as an LLR using the definition of the function node

fnl, as given by

Li+1
fnl→ξnl (snl) (6-33)

:= log
∆i
fnl→ξnl (snl = 0)

∆i
fnl→ξnl (snl = 1)

:= log
∆i
xnl→fnl

(xnl=0)
∆i
dnl→fnl

(cnl=0) ∆i
xnl→fnl

(xnl=−1) + ∆i
dnl→fnl

(cnl=1) ∆i
xnl→fnl

(xnl=1) .



Chapter 6. Joint Channel Estimation, Activity Detection and Data Decoding
Based on Dynamic Message-Scheduling Strategies 155

Algorithm 5: Bilinear Message-Scheduling GAMP - BiMSGAMP

input : i = 1, S(1) = [1, . . . , N ],
∀m,n, l : ρ̂(0)

nml = ρn, û
(0)
lm = r̂(0)

nm = Ldec = 0, νr(0)
nm = 1

output: ρ̂end, Ldec

1 begin
Adapted BiG-AMP approximation

2 while (i < I or tol < 10−4) do
3 νpiml = ∑|S(i)|

n |ĥimn|2 νxnl + νhinl |xnl|2 + νhinl ν
x
nl ∀m and l ∈ LP

4 p̂iml = ∑|S(i)|
n ĥimn xnl − ŝi−1

ml ν
pi
ml ∀m and l ∈ LP

5 νpiml = ∑|S(i)|
n |ĥimn|2 νxinl + νhinl |x̂inl|2 + νhinl ν

xi
nl ∀m and l ∈ LD

6 p̂iml = ∑|S(i)|
n ĥimn x̂

i
nl − ŝi−1

ml ν
pi
ml ∀m and l ∈ LD

7 νziml = var
{

zml|pml = p̂iml; ν
pi
ml

}
∀m and l

8 ẑiml = E
{

zml|pml = p̂iml; ν
pi
ml

}
∀m and l

9 νsiml =
(
(1− νziml) /ν

pi
ml

)
/νpiml ∀m and l

10 ŝiml = (ẑiml − p̂iml) /ν
pi
ml ∀m and l

11 νqimn =
[
νsiml

(∑
l∈LP |xnl|

2 +∑
l∈LD |x̂

i
nl|2

)]−1
∀m and n ∈ |S(i)|

12 q̂imn = ĥimn
(
1− νqimn

∑
l∈LD ν

xi
nl ν

si
ml

)
∀m and n ∈ |S(i)|

+νqimn
(∑

l∈LP x
∗
nl ŝ

i
ml +∑

l∈LD x̂
i∗
nl ŝ

i
ml

)
14 νh i+1

mn = var {hmn|qmn = q̂imn, ν
qi
mn} ∀m and n ∈ |S(i)|

15 ĥi+1
mn = E {hmn|qmn = q̂imn, ν

qi
mn; γn} ∀m and n ∈ |S(i)|

16 νrinl =
(∑M

m=1 ĥ
i2
mnν

si
ml

)−1
∀ l ∈ LD and n ∈ |S(i)|

17 r̂inl = x̂inl
(
1− νrinl

∑M
m=1 ν

hi
mn ν

si
ml

)
∀ l ∈ LD and n ∈ |S(i)|

+νrinl
∑M
m=1 ĥ

i∗
mn ŝ

i
ml

19 νx i+1
nl = var {xnl|rnl = r̂inl, ν

ri
nl} ∀ l ∈ LD and n ∈ |S(i)|

20 x̂i+1
nl = E {xnl|rnl = r̂inl, ν

ri
nl} ∀ l ∈ LD and n ∈ |S(i)|

Joint activity detection and LDPC decoding

22 Compute Limn with (5-15) and
(5-16), and ρ̂i+1

mn with (5-17) ∀ l ∈ LP and n ∈ |S(i)|
24 Compute Lifnl→dnl (cnl) with (6-16),

(6-17), (6-19), (6-23) and (6-31) ∀ l ∈ LD and n ∈ |S(i)|
26 ρ̂inl = 1

/(
1 + exp {Li+1

fnl→ξnl (snl)}
)

∀ l ∈ LD and n ∈ |S(i)|

27 Ldec
nl = Decode

[
Lifnl→dnl (cnl)− Li−1

fnl→dnl (cnl)
]

28 Li+1
fnl→dnl (cnl) = Ldec

nl − Lifnl→dnl (cnl) ∀ l ∈ LD and n ∈ |S(i)|
29 ρ̂i+1

nl = E
[
Ldec
nl , ρ̂

i
nl

]
∀ l ∈ LD and n ∈ |S(i)|

Message-scheduling update

31 S(i) = Update
[
S(i−1)

]
with chosen MSGAMP-type technique

32 Update tol with (6-40) and i = i+ 1
end

end
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One can see that the information provided by the decoder does not make

difference, at this point, into the activity detection. Thus, since at this moment

we already have the means and variances of x̂, that is, r̂ and νr, we can

approximate Li+1
fnl→ξnl (snl) as given by

Li+1
fnl→ξnl (snl) := log Nc (0|r̂nl, νrnl)

Nc (0|r̂nl, νrnl + σ2
x)
. (6-34)

With the LLRs computed, we use (6-31) for decoding and (6-34) as a

priori activity probability LLRs into a logarithmic LDPC decoder, as described

in [144]. Regarding the activity detection, when the evaluated symbol is a pilot,

that is, l ∈ [1, . . . , LP ], BiMSGAMP uses the activity prior described in the

last Chapter, with (5-15), (5-16) and (5-17). For data, BiMSGAMP uses the

extrinsic LLRs provided by the LDPC decoder to refine the probability of

being active of each device, as given by

ρ̂inl = 1
/(

1 + exp {Li+1
fnl→ξnl (snl)}

)
. (6-35)

Using the previous LLR values, we have, similarly to the idea in Chapters

3 and 4,

Ldec
nl = Decode

[
Lifnl→dnl (cnl)− Li−1

fnl→dnl (cnl)
]
, (6-36)

Li+1
fnl→dnl (cnl) =Ldec

nl − Lifnl→dnl (cnl) , (6-37)

ρ̂i+1
nl =E

[
Ldec
nl , ρ̂

i
nl

]
, (6-38)

where Ldec
nl is the LLR output of the LDPC decoder and ρ̂i+1

nl =

∆i
ξnl→fnl (snl = 1) which closes the loop.

Since the LDPC decoder decides for bit zero or one, an all-zero frame

corresponds to an inactive device. Thus, for a bit matrix B, the final activity

detection after the hard decision procedure in Ldec, for the n-th device,
γ̂n = 0, if bn = 0 and

γ̂n = 1, otherwise.
(6-39)
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The whole procedure, summarized in Algorithm 5, iterates until a predefined

threshold condition is satisfied or the iteration marker i reaches the maximum

number of iterations I. In this work, we consider the threshold given by

tol =
‖x̂(i)

l − x̂(i−1)
l ‖

‖x̂(i)
l ‖

 < 10−4, (6-40)

that is, if tol reaches a value equal or larger than 10−4 and/or i < I,

BiMSGAMP stops.

6.5
Analysis

This section analyses the BiMSGAMP-type schemes in terms of the

computational complexity and the convergence in terms of NMSE regarding

the activity and data detection, and the channel estimation. All results are

discussed and compared with state-of-the-art solutions.

6.5.1
Complexity

The computational cost of BiMSGAMP-type schemes is analyzed below

by counting each required numerical operation in terms of complex FLOPs.

In particular, to provide a more precise comparison, Table 6.2 separates the

number of operations in three groups, since the number of required FLOPs

is different, depending of the operation type. Thus, for a different number

of devices N , receive antennas M and the number of pilots LP and data

symbols LD per frame, the previous algorithms are compared. In the case

of joint activity and data detection algorithms, in order to try to provide a fair

comparison, a separate channel estimation part has been considered, where

an adapted version of the same solution is considered. This approach has also

been used in order to verify the performance of each solution.

As it is clearly shown in Fig. 6.2, a key benefit of using message-

scheduling approaches is the computational cost saving. As explained before,

while the state-of-the-art algorithms as BiGAMP [112] and HyGAMP [139]
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Table 6.2: Operations counting of considering techniques per iteration. Ap-
proaches that originally considered just the joint activity and signal detection
have a separate channel estimation part, adapted using the same solution con-
sidered.

Algorithm
Additions,
Subtractions and
Multiplications

Divisions and
Square roots

Sine, exp,
and log

AMP [34] L (6M − 2N + 12MN) L (2 +M) N/A

Joint-EM-
AMP [37]

M (8LD + 3LP )
+N [(27 + 3|A|)LD − LP ]

M (2LD + LP )
+4NLP + 2LP

N/A

BiGAMP [112] L (12M + 11N) 3L (M +N) N/A
HyGAMP [139] L (12M + 17N + 4) 3L (M +N) L (5N)
BiMSGAMP L (12M + 17|S|+ 4) 3L (M + |S|) L (5|S|)

0 50 100 150 200 250

102

103

104

105

N

FL
O
P

AMP [34]
BiGAMP [112]
Joint-EM-AMP [37]
HyGAMP [139]
BiMSGAMP

Figure 6.2: Floating-point operation (FLOP) counting per iteration. Each
operation has an weight as defined in the Lightspeed MATLAB toolbox [3].

have O(MN) messages to be computed, BiMSGAMP-type schemes demands

only O(M |S(i)|). With the prediction that the mMTC scenario need to handle

up to 300, 000 devices per cell [7], the gain of BiMSGAMP is evident since

|S(i)| << N . In order to highlight this benefit, Table 6.2 provides the number

of operations needed for each state-of-the-art algorithm in terms of N devices,

M BS antennas and L = LP + LD frame size. Considering N = [10, 250],

M = N/4 and LP = LD = 128, Fig. 6.2 depicts that BiMSGAMP-type

schemes require less computational cost than other approaches.
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6.5.2
Convergence

In order to analyze the convergence behaviour of BiMSGAMP-type

schemes, the NMSE of the channel estimation, activity and data detection

is depicted in Figs. 6.3, 6.4 and 6.5. Since the BiGAMP algorithm does not

exhibit a competitive performance in terms of NMSE, as shown in Fig. 6.6a,

and FER, as shown in Fig. 6.6b, HyGAMP is chosen for comparison. Another

important point is that these results considered the components of all devices,

including active and inactive ones.

Starting with the channel estimation, it is interesting to see in

Figs. 6.3a, 6.3b and 6.3c that the residual-based metric displays jumps on the

convergence, due to the group update. Apparently, the neglected nodes had

a considerable influence in low-SNRs scenarios, as when the set S is empty,

all nodes are updated, which fits with the “jumps” on iterations. We remark

that for the convergence analysis all the channels are considered and notice

that HyGAMP’s and BiMSGAMP-AUD’s performances are almost the same.

Regarding the activity detection, the jumping behaviour of BiMSGAMP disap-

pears since it is computed only after the procedure. Furthermore, although for

SNR values < 5 dB, the convergence behaviour of HyGAMP and BiMSGAMP-

AUD is quite similar, from SNR = 10 dB, BiMSGAMP-AUD exhibits better

values up to SNR = 20 dB, where all schemes perform equally. With respect

to the convergence, the performance of the channel NMSE repeats, but the

“jumpings” of BiMSGAMP-RBP vanishes from SNR = 10 dB.

In spite of most of the scenarios the BiMSGAMP-type solutions converge

equally/later than HyGAMP, it is important to say that the performance

is achieved with a considerable computational cost saving. Even if it is

needed more iterations to reach convergence, using BiMSGAMP-RBP with

the expected massive number of devices requiring connection, the advantage

of using dynamic scheduling approaches outperforms algorithms with message

passing in parallel.
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Figure 6.3: Convergence of channel estimation in terms of NMSE for different
SNR values.



Chapter 6. Joint Channel Estimation, Activity Detection and Data Decoding
Based on Dynamic Message-Scheduling Strategies 161

10 20 30 40 500.46

0.48

0.5

0.52

Iterations

A
U
D

N
M
SE

(a) SNR = 0 dB.

10 20 30 40 50

0.4

0.45

0.5

Iterations

A
U
D

N
M
SE

(b) SNR = 5 dB.

10 20 30 40 50

2.5

3

3.5

4

4.5

·10−2

Iterations

A
U
D

N
M
SE

(c) SNR = 10 dB.

10 20 30 40 5010−4

10−3

10−2

Iterations

A
U
D

N
M
SE

HyGAMP [139]
BiMSGAMP-RBP
BiMSGAMP-AUD

(d) SNR = 20 dB.

Figure 6.4: Convergence of activity detection in terms of NMSE for different
SNR values.
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Figure 6.5: Convergence of data detection in terms of NMSE for different SNR
values.
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6.6
Numerical Results

In order to assess the proposed schemes, the well-known approximate

message passing (AMP) [34], and state-of-the-art solutions as the joint

expectation-maximization AMP (Joint-EM-AMP) [37], a bilinear version of

AMP [112] and the HyGAMP [139] are used for comparison. HyGAMP in-

cludes a loopy belief propagation (LBP) part for user activity detection before

the GAMPs factor graph, refining the AUD. The Joint-EM-AMP uses expec-

tation maximization (EM) algorithm to perform the activity detection, while

the means and variances for signal detection are provided by AMP. As a lower

bound, we consider the oracle HyGAMP (OHyGAMP), a version of HyGAMP

with perfect activity detection.

Averaging the results over 104 runs, it is considered an uplink under-

determined mMTC system with N = 100 devices with a single antenna each

transmitting to a BS equipped with M = 32 antennas. All the simulated

schemes experience a block-fading channel model as described in (6-3). In

each observation window, the number of active devices vary, but this number

is limited by 10% of N . The channel coding considered is LDPC with rate

1/2 and the modulation scheme is QPSK. Following Chapter 4, the balance

between pilots and data is LP = LD = 128, where the pilots are given by (6-2)

and the symbols are modulated after channel coding with block length of 256

bits. The average SNR is given by 10 log (NRσ2
x/σ

2
v).

Since there are not many works in the literature that perform joint

channel estimation, activity detection and signal decoding in the mMTC

scenario, the algorithms that do not consider the channel estimation part

(AMP, Joint-EM-AMP and HyGAMP), have a separate channel estimation

stage, which is adapted using the same solution considered. Additionally,

in order to give a fair comparison, all evaluated algorithms used the LLR

conversion presented in Section 6.4.3. The maximum number of iterations

considered for AMP and Joint-EM-AMP is N/2 while 30 for BiGAMP,



Chapter 6. Joint Channel Estimation, Activity Detection and Data Decoding
Based on Dynamic Message-Scheduling Strategies 164

0 2 4 6 8 10 12 14 16 18 2010−3

10−2

10−1

100

Average SNR (dB)

N
M
SE

AMP [34]
BiGAMP [112]
HyGAMP [139]
MSGAMP-RBP
MSGAMP-AUD
OHyGAMP

(a) Normalized mean squared error rate vs. Average SNR (dB).

0 2 4 6 8 10 12 14 16 18 2010−2

10−1

100

Average SNR (dB)

FE
R AMP [34]

BiGAMP [112]
Joint-EM-AMP [37]
HyGAMP [139]
MSGAMP-RBP
MSGAMP-AUD
OHyGAMP

(b) Frame error rate vs. Average SNR (dB).

Figure 6.6: NMSE and FER in an mMTC scenario with N = 100,M = 32 and
L = 256, by 104 Monte Carlo trials.

HyGAMP and BiMSGAMP-type schemes.

Fig. 6.6a depicts the NMSE versus different signal-to-noise ratio values.

It is noticed that in this new scenario the metric that considers the activ-

ity detection as message-scheduling, BiMSGAMP-AUD, reached the oracle
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HyGAMP performance, outperforming all other approaches. It is a good indi-

cation that the use of the channel decoding LLRs to refine the AUD improves

not only the data detection, but also the channel estimation. Nevertheless, the

HyGAMP outperforms the residual-based solution, for SNR values > 7.5 dB.

Since BiMSGAMP-RBP updates all nodes in the end of the set procedure,

is possible that the neglected nodes had a considerable influence in this sce-

nario. This point is further discussed in the analysis section. Besides that, the

well-known AMP exhibits an poor performance, even though requiring more

iterations. This channel estimation is used for the AMP and the Joint-EM-

AMP schemes in the data decoding part. Since BiGAMP has any previous

knowledge of the sparsity of the scenario as HyGAMP and it jointly performs

the AUD, CE and data decoding (using the proposed scheme), it clearly losses

performance. Probably an adaptive dumping and/or a channel estimation ini-

tialization should be considered to improve its efficiency specifically for the

mMTC scenario. Another hypothesis is that the mMTC system is not sparse

enough for it, since the number of active devices vary from 1 to 10% of N .

Using the channel estimation depicted in Fig. 6.6a, the frame error

rate (FER) performance of the schemes is shown in Fig. 6.6b. Firstly, it is

interesting to observe that for low SNR values (< 10 dB), we can notice

that the BiMSGAMP-type solutions outperforms other approaches, getting

even closer to the lower bound. For larger SNR values, BiMSGAMP-RBP and

HyGAMP exhibits almost the same performance. The loss of performance of

BiMSGAMP-RBP in SNRs between 10 and 18 dB, is due to the fact that the

channel estimation was not as efficient. On the other hand, as cited before, the

approach of the LLRs used in BiMSGAMP-AUD proved to be efficient for data

decoding. Despite the fact that, as seen in Figs. 6.7a and 6.7b, BiGAMP and

Joint-EM-AMP provide a satisfactory MDR and FAR values, their means and

variances estimates that are the base of the LLRs for signal detection seems

not to be as accurate as HyGAMP and BiMSGAMP.
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Figure 6.7: Activity error rates per symbol in an mMTC scenario with
N = 100,M = 32 and L = 256, by 104 Monte Carlo trials.

As a crucial part of the analysis, the activity error rates are shown in

Figs 6.7a and 6.7b. Evidently, there is a trade-off regarding the false alarm

and missed detection rates. Since most of the approaches in the literature use

the means to detect the activity, the threshold considered by all of them is 0.5,



Chapter 6. Joint Channel Estimation, Activity Detection and Data Decoding
Based on Dynamic Message-Scheduling Strategies 167

while for BiMSGAMP-type schemes, that considers LLRs (for each symbol), is

0.95. Thus, it is possible to see that for lower MDR values, the detector benefits

in terms of FER since we have interest in the active devices. Naturally, the

activity threshold is a parameter that depends on the system designer.

6.7
Chapter Summary

In this chapter, a joint channel estimation, activity detection and data

decoding solution is presented. Under the synchronous signal model the

complete computationally efficient message-passing solution BiMSGAMP has

been developed. Formulating a new factor graph, divided in three blocks:

activity prior, channel estimation and symbol detector, and decoder and

activity estimation. After formulating the problem, the chapter introduces

the proposed BiMSGAMP algorithm, where the message-passing approach is

detailed along with the LLR conversion for use with the LDPC decoder.

After presenting the BiMSGAMP algorithm procedure, numerical results

in terms of NMSE, AER and FER that highlights the performance gains of

BiMSGAMP over other state-of-the-art algorithms are provided. The usage of

message-scheduling techniques is discussed as well as the effects of the joint

solution. An analysis of the convergence of BiMSGAMP that studies its be-

haviour along a computational complexity based on required floating-point

operations (FLOP) is carried out, that demonstrates the huge computational

cost saving by using message-scheduling approaches without loss of perfor-

mance.



7
Conclusions and Future Work

7.1
Conclusions

Covering numerous new applications, massive machine-type communica-

tions will increasingly become part of future networks. Designed for specific

applications, mMTC devices (MTCDs) exhibit a sporadic data traffic, where

small packets are transmitted at low rates. Since most MTCDs are battery op-

erated, they are drastically energy-constrained. These unique aspects of mMTC

impose new demands and challenges to the random access (RA) design. De-

spite the fact that detection techniques have been investigated for more than 50

years, at each new emerging application, novel schemes are required. Thus, this

thesis aims to present and discuss novel channel estimation, activity detection

and signal decoding techniques for mMTC.

In Chapter 2, a technical background on this thesis is provided. Firstly,

basic concepts of multiuser MIMO are presented, which includes channel esti-

mation, multiuser detection and channel capacity. After this part, the mMTC

scenario is introduced, where its as traffic, medium access and challenges are

presented and discussed. In order to provide a comprehensive overview of the

main detection techniques designed specifically for mMTC, Chapter 2 also

presents not only a list of the main state-of-the-art approaches, but a perfor-

mance evaluation of them in the same evaluation framework.

Motivated by the need to develop novel detection schemes for mMTC,

Chapter 3 presents the AA-RLS-DF scheme that jointly detects the activity

and signal of devices without the need to perform explicit channel estima-

tion using a regularized version of the adaptive RLS algorithm. An iterative
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soft information processing and decoding scheme has been devised specifically

for mMTC, which is incorporated along with the AA-RLS-DF scheme. As

demonstrated by simulation results, AA-RLS-DF outperforms other regular-

ized approaches, in terms of SER, FAR, MDR and BER.

Since there still a gap between the AA-RLS-DF and the lower bound,

Chapter 4 presents two candidate-list detection schemes for mMTC that

employ the regularized version of the adaptive RLS algorithm to adjust the

receive filter parameters. Numerical results show the excellent performance

of the proposed AA-VGL-DF scheme as compared to existing approaches. In

order to understand the scenario and provide a deeper explanation of the

proposed solution,Chapter 4 also presents a complexity and diversity analysis

and devises uplink sum-rate expressions.

As the solutions on previous chapters do not require explicit channel

estimation, Chapter 5 studies the joint active device detection and channel

estimation problem. In order to devise a low complexity solution, this chapter

formulates the problem as a framework based on factor graphs. Given the

aforementioned mMTC characteristics, two different scenarios are studied,

synchronous and asynchronous uplink transmissions. After a discussion, a

message-scheduling GAMP (MSGAMP) algorithm that uses a factor graph

approach has been devised with three different message-scheduling techniques.

Based on the RBP and instantaneous AUD, simulation results of NMSE, AER

and a convergence analysis shows that dynamic message-scheduling techniques

dramatically reduce the complexity cost with no loss of performance.

Lastly, in order to provide a complete solution, Chapter 6 presents the

bilinear message-scheduling GAMP (BiMSGAMP) scheme, that jointly per-

forms active device detection, channel estimation and data decoding. Consid-

ered one of the promising 5G/B5G channel coding techniques, the fact that the

decoding of LDPC codes is also based on message-passing has been exploited.

Using part of the dynamic message-scheduling techniques described in Chapter
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5, numerical results highlight the performance of the proposed BiMSGAMP al-

gorithm against existing algorithms, where the gains achieved by the dynamic

scheduling strategies over the state-of-the-art in the literature are significant.

Due to a convergence and complexity analysis, it is possible to observe that

the performance of MSGAMP-type schemes is excellent while it considerably

saves computational cost. Even though message-scheduling approaches need

more iterations to reach convergence they still outperform parallel message-

passing solutions.

7.2
Future Works

• As discussed in Chapters 2 and 5, a time synchronous transmission

as required by conventional OFDM systems is not the most suitable

choice to facilitate an efficient transmission, as the synchronization

signalling would generate a substantial overhead and increase the overall

transmission latency. Thus, with the gap in the literature and the initial

study realized in Chapter 5, a framework that considers frame collisions

in the asynchronous scenario would be interesting.

• Besides the three message-scheduling strategies proposed, there is room

for improvement. A study of different criteria and a development of

a steady-state analysis can indicate even better solutions. The use

of message-scheduling strategies in the LDPC decoder [145], can also

improve the data decoding and, consequently, the activity detection in

the proposed solutions could also be considered.

• As seen in Chapter 2, an almost unexplored approach in the literature is

the non-coherent transmission scenario. Despite the problems previously

described, the fact that the transmitted data bits can be embedded in the

index of the transmitted pilot sequence of each active device is promising.

A solution that could successfully deal with the disadvantage of non-
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orthogonal pilot sequences would fit appropriately to the small frame

mMTC scenario.

• Although it seems clear that it is impractical the use of orthogonal

pilots, this point deserves further study. The latest 3GPP technical

report [142] recommends the use of Zadoff-Chu and Gold sequences and

there are a few recent works that study if the increase of the number

of non-orthogonal preambles could result in worse performance under

certain conditions although it can reduce the probability of preamble

collision [146]. Additionally, there are a few other works that study the

effects of high correlated preambles in channel estimation [147]. Thus,

this topic can be considered for further investigation.
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A.2
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A.3
Factor graph approach of the mMTC problem
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B
Derivation of messages from factor graph approach

B.1
Derivation of messages from factor to variable nodes

In order to achieve the approximations as in the GAMP [140] algorithm,

we convert the messages to the form of ln-pdfs with arbitrary constant offsets,

that we omit for brevity.

Recalling that zml = ∑N
k=1 hmkxkl, we approximate the message in (6-9)

as given by

∆i+1
gml→xnl (xnl)

= ln

∫
{hmk}Nk=1,{xrl}r 6=n

pyml|zml

(
yml

∣∣∣∣∣
N∑
k=1

hmkxkl

)

×
∏
r 6=n

exp
(
∆i
xrl→gml (xrl)

) N∏
k=1

exp
(
∆i
hmk→gml (hmk)

)

= ln
∫
{hmk}Nk=1,{xrl}r 6=n

pyml|zml

(
yml

∣∣∣∣∣hmnxnl +
N∑
k 6=n

hmkxkl︸ ︷︷ ︸
zml

)

×
∏
r 6=n

exp
(
∆i
xrl→gml (xrl)

) N∏
k=1

exp
(
∆i
hmk→gml (hmk)

)
(B-1)

For a large N , the central-limit-theorem (CLT) motivates the treatment

of zml, the random variable associated with the zml identified in (B-1),

conditioned on xnl = xnl, as Gaussian, which is completely characterized

by a (conditional) mean and variance. Defining the zero-mean r.v.s. h̃l,mn ,

hmn−ĥil,mn, where hmn ∼ (1/C) ∆i+1
gml→hmn(hmn) and xnl ∼ (1/C) ∆i+1

gml→xnl(xnl),

we can write
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zml =
(
ĥil,mn + h̃l,mn

)
xnl +

∑
k 6=n

(
ĥil,mn + h̃l,mn

)
xnl (B-2)

=
(
ĥil,mn + h̃l,mn

)
xnl +

∑
k 6=n

(
ĥil,mn + h̃l,mn

) (
ĥim,nl + x̃m,nl

)

=
(
ĥil,mn + h̃l,mn

)
xnl +

∑
k 6=n

ĥil,mnx̂
i
m,kl + ĥil,mnx̃m,kl + h̃l,mnx̂im,kl + h̃l,mnx̃m,kl

and after which it is straightforward to see that

E {zml|xnl = xnl} = ĥil,mnxnl + p̂in,ml (B-3)

var {zml|xnl = xnl} = νhil,mnx
2
nl + νpin,ml (B-4)

for p̂in,ml ,
∑
k 6=n ĥ

i
l,mk x̂

i
m,kl and νpin,ml ,

∑
k 6=n ĥ

i2
l,mk ν

xi
m,kl + νhil,mk x̂

i2
m,kl +

νhil,mk ν
xi
m,kl. With this conditional-Gaussian approximation, (6-9) becomes

∆i+1
gml→xnl (xnl)

≈ ln
∫
zml

pyml|zml

(
yml

∣∣∣zml)Nc (zml; ĥil,mn xml + p̂in,ml, ν
hi
l,mn x

2
nl + νpin,ml

)
= Hml

(
ĥil,mn xnl + p̂in,ml, ν

hi
l,mnx

2
nl + νpin,ml; yml

)
(B-5)

in terms of the function

Hml (q̂, νq; y) , ln
∫
z
pyml|zml (y|z)Nc (z; q̂, νq) . (B-6)

Unlike the original message in (6-9), the approximation (B-5) requires

only a single integration. Still, additional simplifications are possible. First,

notice that p̂in,ml and ν
pi
n,ml differ from the corresponding n-invariant quantities

p̂iml ,
N∑
k=1

ĥil,mk x̂
i
m,kl (B-7)

νpiml ,
N∑
k=1

ĥil,mk ν
xi
m,kl + νhil,mk x̂

i2

m,kl + νhil,mk ν
xi
m,kl (B-8)

by one term. In this sequel, we will assume that p̂iml and νpiml are O(1) since

these quantities can be recognized as the mean and variance, respectively, of

an estimate of zml, which is O(1). Writing the Hml term in (B-5) using (B-7)
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and (B-8),

Hml

(
ĥil,mn xnl + p̂in,ml, ν

hi
l,mn x

2
nl + νpin,ml; yml

)
= Hml

(
ĥil,mn

(
xnl − x̂im,nl

)
+ p̂in,ml, ν

hi
l,mn

(
x2
nl − x̂i

2

nl

)
−ĥi2l,mn νxim,nl − νhil,mn νxim,nl + νpiml; yml

)
= Hml

(
ĥil,mn

(
xnl − x̂im,nl

)
+ p̂in,ml +O (1/N) ,

νhil,mn
(
x2
nl − x̂i

2

nl

)
+ νpin,ml +O (1/N) ; yml

)
(B-9)

where in (B-9) we used the facts that ĥil,mn
(
xnl − x̂im,nl

)
and νhil,mn

(
x2
nl − x̂i

2
nl

)
−

x̂i
2
l,mnν

xi
m,nl − νhil,mnνxim,nl are both O(1/N).

Rewriting (B-5) using a Taylor series expansion in xnl about the point

x̂inl, we get

∆i+1
gml→xnl (xnl) (B-10)

≈ Hml

(
p̂iml +O (1/N) , νpiml +O (1/N) ; yml

)
+ ĥil,mn

(
xnl − x̂inl

)
×H ′ml

(
p̂iml +O (1/N) , νpiml +O (1/N) ; yml

)
+ 2 νhil,mn x̂inl

(
xnl − x̂inl

)
×

◦
Hml

(
p̂iml +O (1/N) , νpiml +O (1/N) ; yml

)
+ νhil,mn

(
xnl − x̂inl

)2

×
◦
Hml

(
p̂iml +O (1/N) , νpiml +O (1/N) ; yml

)
+ (1/2) ĥi2l,mn

(
xnl − x̂inl

)2

×H ′′ml
(
p̂iml +O (1/N) , νpiml +O (1/N) ; yml

)
+O (1/N3/2) ,

where H ′ml and H ′′ml are the first two derivatives of Hml w.r.t. its first argument

and
◦
Hml is the first derivative w.r.t. its second argument. Considering the large-

system unit, we can neglect the terms of their scaling dependence on N . In

this way, we can approximate (B-10) by dropping terms that vanish, relative

to the second-to-last in (B-10), as N → ∞. Since this second-to-last term is

O(1/N) due to the scaling of ĥi2l,mn, p̂iml and νpiml, we drop terms that are of

order O(1/N3/2), such as the last term. We also replace νhil,mn with νhiml, and

ĥi
2
l,mn with ĥi

2
mn, since in both cases the difference is O(1/N3/2). Finally, we drop

the O(1/N) terms inside the Hml derivatives, which can be justified by taking a

Taylor series expansion of these with respect to the O(1/N) perturbations and
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verifying that the higher-order terms in this latter expansion are O(1/N3/2).

All of these approximations are analogous to those made in previous AMP

observations [34,148]. Applying these approximations to (B-10) and dropping

xnl invariant terms, we obtain

∆i+1
gml→xnl (xnl)

≈ Hml

(
p̂iml, ν

pi
ml; yml

)
+ ĥil,mn

(
xnl − x̂inl

)
H ′ml

(
p̂iml, ν

pi
ml; yml

)
+ 2 νhil,mn x̂inl

(
xnl − x̂inl

) ◦
Hml

(
p̂iml, ν

pi
ml; yml

)
+ νhil,mn

(
xnl − x̂inl

)2 ◦
Hml

(
p̂iml, ν

pi
ml; yml

)
(B-11)

+ (1/2) x̂i2l,mn
(
xnl − x̂inl

)2
H ′′ml

(
p̂iml, ν

pi
ml; yml

)
.

Knowing that

◦
Hml(p̂iml, ν

pi
ml; yml) = (1/2)

[(
H ′ml

(
p̂iml, ν

pi
ml; yml

))2
+H ′′ml

(
p̂iml, ν

pi
ml; yml

)]
,

(B-12)

we have

∆i+1
gml→xnl (xnl)

≈ ĥil,mn
(
xnl − x̂inl

)
H ′
(
p̂iml, ν

pi
ml; yml

)
+ νhil,mn

(
xnl − x̂inl

)2

× (1/2)
[
H ′

2
ml

(
p̂iml, ν

pi
ml; yml

)
+H ′′ml

(
p̂iml, ν

pi
ml; yml

)]
+ 2 νhil,mn x̂inl

(
xnl − x̂inl

)
× (1/2)

[
H ′

2
ml

(
p̂iml, ν

pi
ml; yml

)
+H ′′ml

(
p̂iml, ν

pi
ml; yml

)]
+ (1/2) ĥi2l,mn

(
xnl − x̂inl

)2
H ′′ml

(
p̂iml, ν

pi
ml; yml

)
(B-13)

Computing the functions H ′ml(p̂iml, ν
pi
ml; yml) and H ′′ml(p̂iml, ν

pi
ml; yml), we



Appendix B. Derivation of messages from factor graph approach 200

have

H ′(p̂iml, ν
pi
ml; yml)

= ∂

∂p̂iml
ln

∫
pyml|zml (yml|zml)

 1√
2πνpiml

 exp
(
− 1

2νpiml

(
zml − p̂iml

)2
)
dzml

= ∂

∂p̂iml
ln

∫
pyml|zml (yml|zml)

 1√
2πνpiml


× exp

(
zml p̂

i
ml

νpiml
− z2

ml

2νpiml

)
exp

(
−p̂i2ml
2νpiml

)
dzml

= ∂

∂p̂iml

{
ln
(

exp
(
− p̂i

2
ml

2νpiml

))
+ ln

 zml√
2πνpiml


+ ln

∫
exp

(
ln pyml|zml (yml|zml) −

z2
ml

2νpiml
+ zml p̂

i
ml

νpiml

)
dzml

}

= − p̂
i
ml

νpiml
+ ∂

∂p̂iml
ln

∫
exp

(
ln pyml|zml (yml|zml) −

z2
ml

2νpiml
+ zml p̂

i
ml

νpiml

)
dzml.

(B-14)

Defining u , zml/ν
pi
ml and choosing an appropriate function

φ (·), we have pu|p (u|p̂iml) , Z(p̂iml)−1 exp (φ(u) + p̂imlu) with Z(p̂iml) ,∫
exp (φ(u) + p̂imlu) du, then

H ′(p̂iml, ν
pi
ml; yml) = − p̂

i
ml

νpiml
+ ∂

∂p̂iml
ln
∫

exp
(
φ(u) + u p̂iml

)
νpiml du. (B-15)

Since the mean and variance are ∂
∂p̂i
ml

lnZ(p̂iml) = E{u|p = p̂iml} and
∂2

∂p̂i
2
ml

lnZ(p̂iml) = var{u|p = p̂iml}, we have
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H ′(p̂iml, ν
pi
ml; yml)

= − p̂
i
ml

νpiml
+

∫
u

exp (φ(u) + u p̂iml)
Z(p̂iml)

νpiml du (B-16)

= − p̂
i
ml

νpiml
+

∫
zml
p̂iml

exp
(

ln pyml|zml (yml|zml)− z2
ml

2νpi
ml

+ zml p̂
i
ml

νpi
ml

)
Z(p̂iml)

dzml

= − p̂
i
ml

νpiml
+ 1
p̂iml

∫
zml

pyml|zml (yml|zml) Nc
(
zml; p̂iml, ν

pi
ml

)
∫
pyml|zml (yml|z) Nc

(
z; p̂iml, ν

pi
ml

)
dz︸ ︷︷ ︸

pzml|pml(zml|p̂iml; νpiml)

dzml.

Similarly, the second derivative is given by

−H ′′(p̂iml, ν
pi
ml; yml)

= ∂

∂p̂iml

{
p̂iml
νpiml
− ∂

∂p̂iml
lnZ

(
p̂iml

)}
= 1
νpiml
− var{u|p = p̂iml}

= 1
νpiml
−

∫ (
u− E

{
u|p = p̂iml

}) 2 exp (φ(u) + u p̂iml)
Z(p̂iml)

du (B-17)

= 1
νpiml
− 1
p̂i

2
ml

∫
(zml − ẑml)2 pyml|zml (yml|zml) Nc

(
zml; p̂iml, ν

pi
ml

)
∫
pyml|zml (yml|z) Nc

(
z; p̂iml, ν

pi
ml

)
dz

dzml,

where ẑ is computed in (6-15). Now, we can go back to the message in (B-13).

Defining ŝiml and νsiml that are given by

ŝiml , H ′ml(p̂iml, ν
pi
ml; yml) (B-18) νsiml , −H ′′ml(p̂iml, ν

pi
ml; yml), (B-19)

we can substitute (B-18) and (B-19) in (B-13),

∆i+1
gml→xnl (xnl) (B-20)

≈ ĥil,mn
(
xnl − x̂inl

)
ŝiml + νhimn

(
xnl − x̂inl

)2
(1/2)

[
ŝiml + νhimn

]
+ 2 νhimn x̂inl

(
xnl − x̂inl

)
(1/2)

[
ŝi

2

ml + νhimn
]
− (1/2) ĥi2l,mn

(
xnl − x̂inl

)2
νsiml.
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Replacing νhil,mn by νhimn and ĥi2l,mn by ĥi2mn, as stated before, we obtain

∆i+1
gml→xnl (xnl) (B-21)

≈ ĥil,mn
(
xnl − x̂inl

)
ŝiml + νhimn

(
xnl − x̂inl

)2
(1/2)

[
ŝiml + νsiml

]
+ νhimn x̂

i
nl

(
xnl − x̂inl

) [
ŝi

2

mn + νsiml
]
− (1/2) ĥi2l,mn

(
xnl − x̂inl

)2
νsiml

≈
[
ŝiml ĥ

i
l,mn + νsiml ĥ

i2

mn x̂
i
nl

]
xnl − (1/2)

[
νsiml ĥ

i2

mn − νhimn
(
ŝi

2

mn − νsiml
)]
x2
nl.

In fact, pzml|pml (zml|·) in (B-16) is the i-th iteration approximation

of the algorithm to the true marginal posterior pzml|Y (·|Y). We note that

pzml|pml (zml|·) can also be interpreted as the exact posterior pdf for zml

given the likelihood pyml|zml (yml|·) from the beginning and the prior zml ∼

Nc(p̂iml, ν
pi
ml) that is implicitly assumed by i-th iteration of the algorithm.

Since ZT = XTHT, the derivation of the approximation of

∆i+1
gml→hnm (hnm) follows the same idea before, thus,

∆i+1
gml→hnm (hnm) (B-22)

≈
[
ŝiml x̂

i
m,nl + νsiml x̂

i2

nl ĥ
i
mn

]
hmn − (1/2)

[
νsiml x̂

i2

nl − νximn
(
ŝi

2

ml − νsiml
)]
h2
nl.

B.2
Derivation of means and variances of interest from variable to factor
nodes messages

We show the approximation of the messages from variable nodes to factor

nodes. Recalling (6-10), converting the messages to the form of log-pdf and
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substituting (B-22), we obtain

∆i+1
hmn→gml (hmn)

≈ ∆kmn→hmn(hmn)
∏
p6=l

∆i
gmp→hmn (hmn)

= ln
(
phmn|γn (hmn|γn) pγn (hmn|γn)

)
+
∑
p6=l

∆i
gmp→hmn (hmn)

= ln
(
phmn|γn (hmn|γn) pγn (hmn|γn)

)
(B-23)

+
∑
p 6=l

[
ŝiml x̂

i
m,nl + νsiml x̂

i2

nl ĥ
i
mn

]
hmn − (1/2)

[
νsiml x̂

i2

nl − νximn
(
ŝi

2

ml − νsiml
)]
h2
nl

Since in our system model x depends only on n and l and h only on m

and n, we ignore the components of x that mathematically depends on m and

the ones of h that depends on l, following the same idea of [140] and ignoring

the terms < O(1/N). This approximation on (B-23) leads to

∆i+1
hmn→gml (hmn) (B-24)

≈ ln
(
phmn|γn (hmn|γn) pγn (γn)

)
− (hmn − q̂imn)2

2 νqimn

= ln
(
phmn|γn (hmn|γn) pγn (γn)Nc

(
hmn; q̂imn, νqimn

))
,

for

νqimn ≈
(

L∑
l=1

x̂i
2

nlν
si
ml

)−1

(B-25)

q̂imn ≈ ĥimn

(
1− νqimn

L∑
l=1

νxinl ν
si
ml

)
+ νqimn

L∑
l=1

x̂i∗nl ŝ
i
ml. (B-26)

Therefore, the corresponding means of interest are then further approx-

imated as

ĥi+1
mn ,

∫
h h phmn|γn (h|γ) pγn (γ)Nc (h; q̂, νq)∫
h phmn|γn (h|γ) pγn (γ)Nc (h; q̂, νq)︸ ︷︷ ︸

bhmn(q̂,νq)

(B-27)

and the variances as given by
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νh i+1
mn , νhimn b

′
hmn

(
q̂imn, ν

qi
mn

)
(B-28)

where b′hmn is the first derivative of bhmn in (B-27). Similarly, following the

same steps and using 6-6), ∆i+1
xnl→gml (xnl), the means and variances of interest

for the problem are given by

∆i+1
xnl→gml (xnl)

≈ ln
(
pxnl Nc

(
xnl; r̂inl, νrinl

))

= ln
(
pxPnl (xnl)

∑
snl

∑
cnl

pxDnl (xnl, cnl, snl)Nc
(
xnl; r̂inl, νrinl

))
, (B-29)

where the means and variances are

νrinl ≈
(

M∑
m=1

ĥi
2

mnν
si
ml

)−1

(B-30)

r̂inl ≈ x̂inl

(
1− νrinl

M∑
m=1

νhimn ν
si
ml

)
+ νrinl

M∑
m=1

ĥi∗mn ŝ
i
ml (B-31)

with the mean and the variance to compute the data estimates given by

x̂i+1
mn ,

∫
x x pxPnl (x)∑s

∑
c pxDnl (x, c, s)Nc (x; r̂, νr)∫

x pxPnl (x)∑s

∑
c pxDnl (x, c, s)Nc (x; r̂, νr) (B-32)

νx i+1
nl , νxinl b

′
xnl

(
x̂inl, ν

ri
nl

)
(B-33)

as well as for the channel, the left part of (B-32) is bxnl (r̂, νr) and b′xnl in (B-33)

is its first derivative.
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