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ABSTRACT

In this work, we study the problem of joint active device detection
and channel estimation in an uplink grant-free massive MIMO sys-
tem scenario. Based on the hybrid generalized approximate message
passing (HyGAMP) algorithm, we propose the message-scheduling
GAMP (MSGAMP), where we apply different sequential scheduling
techniques in which messages are generated using the latest avail-
able information. We present three scheduling techniques that up-
date the messages based on the activity detection performed at each
new iteration. Simulations show that MSGAMP-type schemes ex-
hibits good performance in terms of activity error rate and normal-
ized mean squared error (NMSE), while outperforming HyGAMP
and requiring a small number of iterations for convergence.

Index Terms— Compressed sensing, message-scheduling, joint
activity detection and channel estimation, mMTC.

1. INTRODUCTION

Massive machine-type communications (mMTC) is one of the key
application scenarios of fifth generation (5G) and beyond cellular
networks. Since the total number of machine-type devices (MTDs)
is much larger than the receive processing resources, conventional
scheduling-based orthogonal multiple access schemes is not suit-
able. Due to the high probability of frame collisions, the scheme in
which the base station (BS) allocates orthogonal time/frequency re-
sources to each device is impractical for the mMTC scenario. More-
over, specific features of the mMTC scenario as low data rates and
sporadic transmission of short packets [1], are compromised due to
signalling overhead and excessive latency. The uncoordinated ac-
cess proposed in recent years can solve those issues. Based on a
grant-free non-orthogonal multiple access (NOMA) [2], active de-
vices transmit frames without previous scheduling, in order to elim-
inate the need for round-trip signaling. Thus, it is up to the BS to
estimate the channels, detect active devices and transmitted signals.

Due to the intermittent activity pattern of the mMTC devices, the
transmitted vector and the channel matrix can be modeled as a sparse
vector. In this way, the multi-user detection (MUD) problem can be
seen as a sparse signal recovery problem. Several approaches have
been proposed to formulate joint user activity and data detection as
the works in [3, 4, 5, 6]. In most of these studies, the uplink chan-
nel state information (CSI) from the MTD to the BS is assumed to
be perfectly known to the BS, which allows interference mitigation
techniques [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. However,
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in practice, the uplink CSI should be estimated before data detec-
tion. In order to address this issue, various joint active user detection
(AUD) and channel estimation (CE) schemes have been proposed.

Exploiting the a priori distribution of the sparse vector to be re-
covered, the works in [20, 21, 22] presents denoising-based AMP
algorithms verifying the activity error rate performance, while the
work in [23] uses the expectation propagation (EP) and computes it-
eratively the moment matching. As an extension of the GAMP [24]
algorithm, the inference algorithm HyGAMP [25] is then developed.
Since the components of the channel are particularly independent
with conditional distribution, the combination of a loopy belief prop-
agation (LBP) part for user activity detection and a GAMP-type
strategy for channel estimation makes HyGAMP outperform other
existing algorithms in terms of mean square error (MSE). However,
HyGAMP considers a completely parallel update of the messages,
where each iteration performs exactly one update of all edges.

Commonly applied in LDPC decoders, the sequential schedul-
ing, in which messages are generated using the latest available in-
formation, significantly improve the efficiency in terms of conver-
gence and error rates [26]. The main idea is to find the best sequence
of message updates, focusing on the part of the graph that has not
converged. Thus, in order to find a more efficient implementation
or/with better convergence solution, in this work, we propose three
message scheduling strategies of a HyGAMP based algorithm (MS-
GAMP). The proposed MSGAMP algorithm and strategies exploit
the a priori distribution of the sparse channel matrix and use the
number of antennas in the base station to enhance the activity detec-
tion. Simulations show that MSGAMP results in an improved per-
formance over HyGAMP in terms of NMSE while requiring a small
number of iterations for convergence and a lower computational cost
than HyGAMP.

2. SYSTEM MODEL

In this section, we detail the uplink system model. We assume there
are N single-antenna devices communicating with a BS equipped
with M antennas. The problem of interest here is to estimate the
channel matrix H ∈ CN×M from a received signal Y ∈ CL×M
obtained through the following model

Y =

N∑
n=1

an
‖an‖

hTn + W = Φ H + W, (1)

where W ∈ CL×M is the independent complex-Gaussian noise ma-
trix with CN

(
0, σ2

w

)
. The pilot matrix Φ ∈ CL×N is composed by

independent pilot sequences an = exp (jπκ) of each device, where
each element of vector κ ∈ RL is drawn uniformly at random in



[−1, 1] and L is the length of the pilot sequence. Each active device
transmits L pilot symbols, which we denote here as a frame. Since
the frame size of each device is typically very small, we assume that
all devices are synchronized in time.

Each element of H represents the channel gain between the n-th
device and the m-th BS antenna. Since mMTC is a sparse scenario,
we denote the Boolean variable ξn ∈ {0, 1} that indicates if the
device is active when ξn = 1 and inactive otherwise. Thus, consid-
ering as ρn the probability of being active of the n-th device,

P (ξn = 1) = 1− P (ξn = 0) = ρn, (2)

where all ξn are considered i.i.d. and each device has its own prob-
ability of being active. Thus, given the vector ξ, the components of
H are independent with the conditional densities

hnm|ξ ∼
{
δ(hnm), ξn = 0,
CN (hnm|0, βn) , ξn = 1,

(3)

where δ (·) is Dirac delta function. As in the mMTC scenario N is
larger than M , the system is overloaded. However, due to the low
activity probability of devices, H is sparse, which makes its recov-
ery possible through the theory of compressed sensing (CS) [27].
Then, we propose MSGAMP for joint activity detection and channel
estimation.

3. JOINT CHANNEL AND USER ACTIVITY ESTIMATION

In order to present the message updating rules of the MSGAMP
algorithm, first we introduce some statistics of the system model.
Setting Z = Φ H and given the independence of the devices, the
prior distribution of hm and the likelihood are given by p (hm|ξ) =∏N
n=1 p (hnm|ξn) and p (Y|Z) =

∏L
l=1

∏M
m=1 p (ylm|zlm), re-

spectively. Since the main objective of HyGAMP is to approximate
the marginal posterior density by a product of the prior and a Gaus-
sian distribution, the minimum mean squared error (MMSE) esti-
mate of hnm, ĥnm = Ehnm|y [hnm]∀n,m, is given by

p (hnm|Y) =

∫
p (H, ξ|Y) dξ dH\nm (4)

where H\nm denotes all elements except hnm and p (H, ξ|Y) de-
notes the posterior distribution, given by the Bayes’ rules

p (H, ξ|Y) =
1

p (Y)
p (Y|H, ξ) p (H|ξ) p (ξ) (5)

=
1

p (Y)

[
L∏
l=1

M∏
m=1

p

(
ylm
∣∣ N∑
n=1

φln hnm

)]

×

[
N∏
n=1

M∏
m=1

P (hnm|ξn)

][
N∏
n=1

P (ξn)

]
,

where P (hnm|ξn) is the conditional density for the random variable
in (3).

3.1. Factor graph approach

As HyGAMP can be seen as an approximate employment of the
sum-product loopy belief propagation (BP), we first write the mes-
sages to marginalize the problem. Fig. 1 shows a factor graph (FG)
that represents the factorization of (5), where variable nodes ξn and
hnm are depicted as spheres and the factor nodes are represented as

message
scheduling

Fig. 1. The factor graph of joint distribution p(H,Y, ξ) where cubes
denote factor nodes and spheres variable nodes.

cubes. Factor nodes are the density functions, prior and likelihood.
Factor nodes are the density functions, prior and likelihood. The ap-
proach that will be presented in what follows is inspired by work
on low-density parity-check (LDPC) codes [28, 29, 30] and message
passing algorithms [26, 31, 15, 32, 33].

As the sensing matrix in our problem (Φ) is a dense matrix, the
FG in Fig. 1 is fully connected. Computing the messages in fully
connected graphs is tricky as the messages themselves are functions.
The messages are approximated by prototype functions that resem-
ble Gaussian density functions which can be described by two pa-
rameters only. Thus, message passing reduces to the exchange of
the parameters of a function instead of the function itself. Therefore,
it is possible to iteratively approximate, for a FG with cycles as in
Fig. 1, the marginal posteriors passing messages between different
nodes. So, we can define the messages from p

(
ylm
∣∣·) to hnm and

to the opposite direction as

ν
(i)
n←lm (hnm) ∝

∫
p

(
ylm
∣∣ N∑
k=1

φlk hkm

)
(6)

×
N∏
j 6=n

ν
(i)
j→lm (hjm) dhjm

ν
(i+1)
n→lm (hnm) ∝ ν(i)n→nm (hnm)

M∏
k 6=m

ν
(i)
n←lk (xnk) (7)

and, considering ∝ as proportional, the messages from P (hnm|ξn)
to hnm and to the opposite direction are given by

ν(i)n←nm (hnm) ∝
M∏
k=1

ν
(i)
n→lk (hnm) , (8)

ν(i+1)
n→nm (hnm) ∝

∫
p (hnm|ξn) ν(i)n→nm (ξn) dξn. (9)

Specifically, each iteration of the Algorithm 1 has three stages.
The first stage, labelled as “GAMP approximation” contains the up-
dates of the GAMP based on expectation propagation algorithm,
which treats the components hn as independent with the probability
of being active ρ̂n. Drawing inspiration in [23, 34, 35], we incor-
porated the EP in the process of LBP to relaxed belief propagation
and then to GAMP. At iteration i, the MSGAMP algorithm produces
estimates ĥ(i) and ẑ(i) of the vectors h and z. Several other inter-
mediate vectors, p̂(i), r̂(i) and ŝ(i), are also produced. Associated
of each of these vectors are matrices like Qh(i) and Qz(i) that rep-
resent covariances. In a nutshell, in order to reduce the complexity



of O (LNM) to O (NM), the message in (6) is firstly mapped to
Gaussian distribution based on the central limit theorem and Taylor
expansions. So, ν(i)n←lm (hnm) is updated by the Gaussian reproduc-
tion property. Following the same procedure in the messages of (7),
(8) and (9), relaxed BP is obtained by the combination of the approx-
imated messages. Since many of these messages only differ slightly
from each other, in order to fill up those differences, new variables
are produced and ignoring the infinitesimals, the GAMP based on
EP is obtained.

The second stage of Algorithm 1, labelled as “sparsity-rate up-
date”, refers to the LBP part of the FG in Fig. 1 and updates the
estimates of each probability of being active ρ̂nm. Computed using
Gaussian approximations of likelihood functions, these estimates are
then used to define the message scheduling proposed in this work.
The messages in the “sparsity-rate update” stage are given by

ν(i)n←nm (ξn) ∝
∫
p (h|ξn) ν(i)n←nm (h) dh, (10)

ν(i)n→nm (ξn) ∝P (ξn)

M∏
k 6=m

ν
(i)
n←nk (ξn) , (11)

where (10) refers to the message from P (hnm|ξn) to ξn while (11)
denotes the message in opposite direction and each belief at ξn is
given by ν(i)n (ξn) ∝ P (ξn)

∏M
m=1 ν

i
n←nm(ξn).

The message in (10) can be approximated as a likelihood func-
tion given by ν(i)n←nm (ξn) = CN

(
hnm|r̂(i)nm, Qr(i)nm

)
. Applying the

Gaussian reproduction property [35] enables us to define

LLR(i)
n←nm = log

ν
(i)
n←nm (ξn = 1)

ν
(i)
n←nm (ξn = 0)

= log
CN

(
0
∣∣r̂(i)nm, Qr(i)nm + βn

)
CN

(
0
∣∣r̂(i)nm, Qr(i)nm

) . (12)

Similarly to (12), we have LLRn , log ν
(i)
n (ξn=1)

ν
(i)
n (ξn=0)

and LLR(i)
n→nm ,

log ν
(i)
n→nm(ξn=1)

ν
(i)
n→nm(ξn=0)

. Substituting (12) in (11) and in each belief,

LLR(i)
n→nm is given by

LLR(i)
n→nm = log

(
ρn

1− ρn

)
+

M∑
d6=m

LLR(i)
n←nd. (13)

Thereby, the message in (9) is described by

ν
(i+1)
n→lm (hnm) =P (hnm|ξn = 1) ν(i)n→nm (ξn = 1) (14)

+ P (hnm|ξn = 0) ν(i)n→nm (ξn = 0)

= ρ̂(i)nm CN (hnm|0, βn) +
(
1− ρ̂(i)nm

)
δ (hnm) ,

where
ρ̂(i)nm , ν

(i+1)
n→lm (ξn = 1) = 1− 1

1 + exp
(

LLR(i)
n←nm

) . (15)

With HyGAMP established for mMTC, the next step is to use the
estimates obtained in (15) in the message-scheduling techniques.
3.2. Message-scheduling schemes

We propose three ordering schemes for designing the message
scheduling of MSGAMP. Given the device activity detection in (15),
the idea of the schemes is to only update the messages of the active

Algorithm 1 MSGAMP-AUD for mMTC
initialize
1: i = 1, ŝ(0)lm = 0, r̂(0)nm = 0, Qr(0)nm = 1, ρ̂(0)nm = ρn,

S(0) = [1, . . . , N ]
repeat

% GAMP approximation
2: for

(
n = 1, . . . , |S(i−1)|

)
∀n ∈ S(i−1)

3: for (m = 1, . . . ,M)

4: ĥ
(i)
nm = E

[
Xnm

∣∣r̂(i−1)
nm , Q

r(i−1)
nm ; ρ̂

(i−1)
n

]
5: Q

h(i)
nm = Var

[
Xnm

∣∣r̂(i−1)
nm , Q

r(i−1)
nm ; ρ̂

(i−1)
n

]
6: for (l = 1, . . . L)

7: Q
p(i)
tm =

∑N
n=1 |Φtn|2Q

h(i)
nm

8: p
(i)
tm =

∑N
n=1 Φtn ĥ

(i)
nm −Q

p(i)
tm ŝ

(i−1)
tm

9: z̃
(i)
tm =

(
ylmQ

p(i)
tm + σ2

wp
(i)
tm

)/(
Q
p(i)
tm + σ2

w

)
10: Q

z(i)
tm =

(
σ2
wQ

p(i)
tm

)/(
Q
p(i)
tm + σ2

w

)
11: ŝ

(i)
tm =

(
z̃
(i)
tm − p

(i)
tm

)/
Q
p(i)
tm

12: Q
s(i)
tm = Q

−p(i)
tm

(
1−Qz(i)tm /Q

p(i)
tm

)
13: end for

14: Q
−r(i)
nm =

∑L
l=1 |Φtn|2Q

s(i)
tm

15: r
(i)
nm = ĥ

(i)
nm +Q

r(i)
nm

∑L
l=1 Φ∗tnŝ

(i)
tm

% Sparsity-rate update

16: LLR(i)
n←nm = log

CN
(
0
∣∣r̂(i)nm,Q

r(i)
nm +βn

)
CN

(
0
∣∣r̂(i)nm,Q

r(i)
nm

)
17: LLR(i)

n→nm = log (ρn/1−ρn) +
∑M
d6=m LLR(i)

n←nd

18: ρ̂
(i)
nm = 1− 1/1+exp

(
LLR(i)

n→nm

)
19: end for
20: end for

% Message scheduling update
21: ρ̂

(i)
n =

∑M
m=1 ρ̂

(i)
nm

/
M

22: S(i) = update
[
S(i−1)

]
% chosen AUD message scheduling type

23: tol = (1/M)
∑M
m=1 ‖ĥ

(i)
m − ĥ

(i−1)
m ‖

/
‖ĥ(i)
m ‖

24: i = i+ 1

until
(
i > I or tol < 10−4

)
devices. Since mMTC is in a massive MIMO scenario, it is possi-
ble to refine the activity detection using the estimates of each BS
antenna, as ρ̂(i)n =

∑M
m=1 ρ̂

(i)
nm/M . If ρ̂(i)n is higher than a thresh-

old, the device is considered active and included in the set S(i).
Thus, MSGAMP proceeds until i reaches the maximum number of
iterations I or

(
tol/M < 10−4

)
, where tol is given by

tol =
M∑
m=1

‖ĥ(i)
m − ĥ(i−1)

m ‖
‖ĥ(i)

m ‖
, (16)

where ĥ(i)
m is a |S(i)| × 1 vector that corresponds to the estimated

channel gains between the |S(i)| devices and the m-th BS antenna.
The goal of this stopping criterion and message updating sched-

ule is to focus on the messages that belongs to the activity devices,
thus reducing computational complexity and possibly reducing the
number of iterations to reach convergence. A great advantage of
using these message scheduling schemes is that, unlike the well-
known parallel message update of HyGAMP that, in each iteration,
O(MN) messages must be computed, in our schemes we need only
O(M |S(i)|). Taken into account that it is expected up to 300, 000
devices per cell [36] in future mobile communication systems and
the sporadic transmission pattern of each device, the gain in schedul-
ing schemes is evident, since |S(i)| << N . With the activity detec-



Algorithm 2: Message scheduling based on AUD
initialize: p = 1

if
(
ρ̂
(i)
n >= threshold

)
, ∀n ∈ N :

s
(i)
p = n; p = p+ 1;

else ∀m ∈M :
ĥ
(i+1)
nm = ĥ

(i)
nm; Qh(i+1)

nm = Q
h(i)
nm ;

r̂
(i+1)
nm = r̂

(i)
nm; Qr(i+1)

nm = Q
r(i)
nm ;

end

tion procedure and stopping criterion defined, we present the first
message scheduling scheme.

3.2.1. MSGAMP-AUD

The Message scheduling based on activity user detection (MSGAMP-
AUD) is a dynamic scheduling strategy that updates all messages
of the devices detected as active in parallel, repeating the values of
the messages of other devices. As described in Algorithm 2, at each
new iteration, the set S(i) is updated based on the new values of ρ̂n,
thus modifying the messages to be updated in parallel.

3.2.2. MSGAMP-GAUD

In this strategy, we have a message scheduling inside the group of
messages that belongs to devices detected as active. If in MSGAMP-
AUD we update all the messages of the group in parallel, in the
Message Scheduling GAMP based on group activity user detection
(MSGAMP-GAUD) we do not update the messages that belong to
the first device of the active group.

When i = 2, we have the first values of ρ̂, thus enabling update
of the set S(i). In the next iteration, all messages that belong to S(i),
except for s(i)1 will be updated. Then, the index that refers to the
group of messages that had been updated is removed of S(i) as in

S(i) =
[
s
(i−1)
2 , . . . , s

(i−1)

|S(i−1)|

]
. (17)

Therefore, we exclude a group of messages that belong to a specific
device to be updated, one at a time. When S(i) is empty, a new
update of the set S(i) is performed. In a nutshell, we reduce the set
S(i) that is updated in parallel, until there is no message to update.

3.2.3. MSGAMP-GAUDp

Since the last message scheduling techniques do not update the
group of messages outside the set S(i), they could suffer if the activ-
ity detection is not properly done. In order to address such possible
errors, when a new set S(i) is computed, the Message Scheduling
GAMP based on group activity user detection with parallel update
(MSGAMP-GAUDp) modifies the messages that do not belong to
the set, as given by{

S(i) = [1, . . . , N ] , |S(i−1)| = 0,
proceed as in MSGAMP-GAUD, otherwise.

(18)

After the first update of the set S(i) is made, MSGAMP-GAUDp
proceeds as MSGAMP-GAUD. When S(i) is empty, all messages
are updated and a new activity detection is performed, as a new S(i).

4. SIMULATION RESULTS

We simulate an mMTC system with N = 128,M = 32 and
L = 64, designed as described in Section 2. The average SNR is set
to 1/σ2

w, while the activity probabilities pn are drawn uniformly at
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Fig. 2. Performance in terms of AER and NMSE versus average
SNR. The NMSE considered only the active devices.

random in [0.01, 0.05]. The threshold chosen to detect the activity
of devices is 0.9. The variations of MSGAMP are compared to the
well-known minimum mean squared error (MMSE), generalized
approximate message passing (GAMP) [24] and the state-of-the-art
algorithm, HyGAMP [25]. An MMSE detector with perfect activity
knowledge (oracle MMSE) is used as a lower bound. Figs. 2a and 2b
show results of AER and NMSE. One can see that the use of the
BS antennas in order to refine the activity detection improved the
AER performance since the proposed MSGAMP-type techniques
outperform HyGAMP. Regarding NMSE, Fig. 2b shows that the
message scheduling schemes have a competitive performance with
MSGAMP-GAUDp outperforming HyGAMP. Fig. 3 depicts the
convergence rate of MSGAMP-type techniques and HyGAMP. One
can notice that for different values of SNR, MSGAMP-type tech-
niques converge faster and to lower values of NMSE than HyGAMP.
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Fig. 3. Convergence rate of MSGAMP-type techniques and
HyGAMP. The NMSE considered all channel gains, not only the
ones of active devices.



5. CONCLUSION

In this paper we have presented MSGAMP-type techniques that per-
form joint activity detection and channel estimation for mMTC. Ex-
ploiting the BS antennas, we developed three scheduling techniques
for MSGAMP that update the messages based on the activity de-
tection. The results indicate that MSGAMP-type techniques outper-
form other solutions in terms of NMSE and AER, while requiring a
small number of iterations for convergence.
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