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Abstract

Ssettumba, Tonny; de Lamare, Rodrigo C. (Advisor); Lukas Tobias
Nepomuk Landau (Co-Advisor). Iterative Interference Mitiga-
tion Techniques for Cell-Free Massive MIMO Networks .
Rio de Janeiro, 2024. 104p. PhD Dissertation – Departament of
Electrical Engineering, Pontifícia Universidade Católica do Rio de
Janeiro.
Cell-free massive multiple-input multiple-output (CF-mMIMO) is an

advanced variant of network multiple-input multiple-output (MIMO) which
considers absence of cell boundaries. Thus, the interference between cells in
cellular systems is greatly minimised and the system’s coverage capacity
is improved due to the shorter distances between the access points (APs)
and the users. It is a multi-user massive MIMO communications solution
that involves an extended number of APs that can either be equipped
with MIMO or single antennas to provide service to users simultaneously.
The APs are controlled by a central processing unit (CPU) to ensure co-
ordination within the network and for information processing and decoding.
Possible arrangements for the CF-mMIMO architecture include, but are not
limited to: centralized and decentralized schemes.
In this thesis, the uplink of a CF-mMIMO system architecture is studied
for the centralized and decentralized implementations. In particular, we
study the performance of interference mitigation techniques for CF-mMIMO
networks using iterative detection and decoding (IDD) schemes. The per-
formance of the system is studied assuming perfect and imperfect channel
state information (CSI). Access point selection based on the effective chan-
nel gain to make the network more practical and scalable are devised. The
use of low-density parity check (LDPC) codes that adopt message passing
has been investigated. Furthermore, log likelihood ratio (LLR) refinement
strategies have been proposed to improve decentralized processing for CF-
mMIMO networks. Finally, the performance of the considered schemes is
analyzed theoretically and simulations are used to assess the performance
in terms of BER, number of fronthaul signaling, and computational cost.

Keywords
Cell-free systems; multiple-antenna systems; iterative detection

and decoding; minimum mean square error soft interference cancellation
detector; access point selection.



Resumo

Ssettumba, Tonny; de Lamare, Rodrigo C.; Lukas Tobias Nepomuk
Landau. Técnicas Iterativas de Mitigação de Interferência
para Sistemas MIMO Livres de Células. Rio de Janeiro, 2024.
104p. Tese de Doutorado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.
Sistemas multi-input multi-output (MIMO) massivos livres de célu-

las são uma variante de sistemas MIMO multi-celulares que consideram a
ausência de células. Desta forma, a interferência entre as células é minimi-
zada e a capacidade de cobertura do sistema é melhorada devido à menor
distância entre os pontos de acesso (APs) e os usuários. É uma solução de
comunicação MIMO massiva multi-usuário que envolve um número esten-
dido de APs que podem ser equipados com tecnologia MIMO para fornecer
serviço a usuários simultaneamente. Os APs são controlados por uma uni-
dade central de processamento (CPU) para garantir a coordenação dentro
da rede e para processamento e decodificação de informação.
Possíveis arranjos para a arquitetura livre de células incluem esquemas
centralizados e descentralizados. Para a configuração centralizada, os APs
enviam todas as suas estimativas de canal e informações recebidas para
a CPU por meio de enlaces de transporte frontais para processamento e
detecção de sinais. Além disso, na arquitetura centralizada, os APs atuam
como repetidores na rede. Outro nível de cooperação para sistemas MIMO
massivos livre de células é o esquema descentralizado.
Nesta proposta de tese, a arquitetura dos sistema MIMO massivos livres de
células no canal reverso é estudada para as implementações centralizadas
e descentralizadas. Em particular, estuda-se o desempenho de técnicas
de mitigação de interferência para essas redes supondo-se conhecimento
perfeito de canal e usando técnicas de detecção lineares e não lineares,
seleção de APs, e esquemas iterativos de detecção e decodificação com
códigos LDPC para melhorar o desempenho do sistema e reduzir a carga
de sinalização. Para o caso em que há falta de compartilhamento de
informações sobre os canais, o uso de pilotos para obter estimativas de
canais é considerado e explorado.

Palavras-chave
Sistemas sem células; sistemas de antenas múltiplas; detecção iterativa

e decodificação; detector de cancelamento de interferência suave de erro
quadrado médio mínimo; seleção de ponto de acesso.
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1
Introduction

Cell-free massive multiple-input multiple-output (CF-mMIMO) leverages
the distributed nature of multiple-input multiple-output (MIMO) to improve
the quality of service as well as to result in very high throughput [1–3]. The
CF-mMIMO architectures enable a user equipment (UE) to be served by a
relatively large number of either single-antenna or multiple-antenna access
points (APs). The large number of antenna elements and the distributed nature
of the network with extra spatial degrees of freedom makes the channel between
the UE and APs almost orthogonal, which reduces the level of interference
and improves coverage as compared to conventional cellular systems with cell
boundaries.

1.1
Motivation and Prior Works

The use of error correction and control (ECC) codes like Low-Density
Parity-Check (LDPC) and Turbo codes was found to improve the performance
of cellular systems, conventional MIMO, and massive MIMO [4–10]. Iterative
detection and decoding (IDD) based techniques operate on the message passing
principle by exchanging soft information (beliefs) in the form of log-likelihood
ratios (LLRs) between the detector and the decoder. Linear block codes such
as LDPC codes yield very efficient implementations and close to maximum
likelihood (ML) performance when combined IDD schemes [4]. This has made
them widely used in the state of the art standards and many applications
in modern wireless communications systems [11–13]. The use of list-based
detection techniques that are capable of eliminating error propagation that
is often experienced in successive interference cancellation (SIC) and parallel
interference cancellation (PIC) receivers includes strategies with multiple-
feedback (MF) with SIC (MF-SIC) and multiple-branch multiple-feedback
(MF) processing with SIC (MB-MF-SIC), which were reported in [9, 10].

In [14], a local partial marginalization detector based on turbo iterations
was proposed for the uplink of a CF-mMIMO system architecture. The APs
were assumed to locally implement soft detection and the obtained beliefs were
shared over front-haul links for decoding at the central processing unit (CPU).
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The proposed detector was compared with other baseline schemes such as
minimum mean square error (MMSE) receive filter and MMSE with successive
interference cancellation (MMSE-SIC). The work in [15] presents a joint access
point selection scheme with interference cancellation (JAPSIC) for cell-free
MIMO systems. The method selects APs with the strongest channel gains and
cancels the contributions of interfering users. The proposed approach operates
in a way that is analogous to an adaptive parallel interference cancellation
(PIC) scheme in [16,17].

Based on the literature at the time of writing and to the best of our
knowledge, few works exist in the use of ECC codes such as LDPC codes
that employ message passing for the CF-mMIMO cooperation architectures.
Additionally, the use of list-based detection techniques such as MF-SIC have
not been studied for CF-mMIMO systems. Moreover, the use of MMSE receive
filters with soft interference cancellation (MMSE-Soft-IC) that apply the SIC
and PIC nonlinear detectors with LPDC codes has not been studied for the
CF-mMIMO setting yet its capable of achieving close to optimal performance
with minimal complexity. Thus, the main contributions of this thesis are given
in Section 1.2.

1.2
Contributions

In this thesis, interference mitigation techniques for centralized and de-
centralized CF-mMIMO antenna systems are presented. In particular, the bit
error rate (BER) performance of the proposed systems using linear filters,
nonlinear filters as well as soft IDD schemes for the proposed system architec-
ture using LDPC codes is studied. To make such systems more scalable and
practical, APs selection schemes that use largest-large scale fading (LLSF)
coefficients are proposed. New closed-form expressions for the MMSE-Soft-IC
are derived while taking into account APs selection, channel estimation and
uplink transmit powers. Insights are drawn into the derived expressions as the
number of iterations increase and give the expressions of the resulting receive
filters. A performance comparison between the proposed list-based detector
with other competing schemes such as soft MMSE, MMSE-SIC, MMSE-PIC
and the list-based with MMSE-SIC is carried out. Furthermore, the perfor-
mance comparison between the CF-mMIMO and co-located massive MIMO
(COL-mMIMO) are compared. The system with APs selection is also com-
pared with one that uses all the APs. Furthermore, a system that uses perfect
CSI is compared with that with imperfect CSI. Additionally, the computation
complexity and signaling load analyses of the centralized and decentralized CF-
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mMMO implementation are performed. Furthermore, LLR refinement strate-
gies have been proposed to improve the performance of decentralized process-
ing for CF-mMIMO networks. Further, cluster-based IDD schemes have also
been proposed and studied for CF-mMIMO networks. Finally, simulations are
performed to assess the performance of the proposed schemes against existing
approaches in terms of BER performance, signaling, normalized mean square
error (NMSE) and computational complexity.

1.3
Notation and Outline

Throughout this thesis, the notations in table 1.1 are adopted.

Table 1.1: Notation

Small letters Scalar, e.g., x

Bold small letters Vector, e.g., x

Bold capital letters Matrix, e.g., X

(.)T Transposition

(.)H Complex Conjugate (Hermitian) transpose

∥.∥ Euclidean norm of a vector

Tr(.) Trace of a matrix

diag{...} Creates a diagonal matrix with {...} on its diagonal entries

[Dkl]γ,γ Denotes the γ-th element of matrix Dkl

IK Denotes an identity matrix of dimension K ×K

Etx Denotes the signal energy

The rest of this thesis is organised as follows:

- Chapter II presents the analysis of linear detection techniques such as
those based on zero forcing (ZF) receiver filters, MMSE receive filters and
receive matched filtering (RMF). A nonlinear detection scheme based
on MMSE receive filters with SIC (MMSE-SIC) is also investigated.
Furthermore, literature on IDD is presented and the proposed system
model is introduced. Furthermore, an IDD scheme with centralized
processing at the CPU for CF-mMIMO networks is proposed. The
proposed model considers a CF-mMIMO system with large scale fading
using the three-slope path loss model. The system is assumed to have
perfect CSI of APs to user links and the small scale fading is modeled
based on Rayleigh fading channel. Particularly, the BER performance of
the soft MMSE, MMSE-SIC, MMSE-PIC and the list based detectors is
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studied. Finally, the performance of the CF-mMIMO is compared with
that one of co-located massive MIMO.

- Chapter III proposes iterative interference cancellation schemes with
access points selection (APs-Sel) for CF-mMIMO systems. Closed-form
expressions for centralized and decentralized linear MMSE (LMMSE)
receive filters with APs-Sel are derived assuming imperfect CSI. Based
on the derived expressions, insights are drawn and general expressions
are devised for several cases. Firstly, MMSE-SIC receivers for the non-
scalable CF-mMIMO that uses all APs are presented. Secondly, MMSE-
SIC receivers assuming perfect CSI are obtained. Thirdly, for the case
where there is no a priori information about the transmitted bit, a linear
MMSE filter is obtained. Additionally, a new Gaussian approximation
of the likelihood function is formulated by deriving new closed-form
expressions for the second order statistics (mean and variance) of the
detected signal parameters in presence of channel estimation errors,
APs-Sel matrix and multi-user interference (MUI). Since the MMSE-SIC
receiver experiences error propagation due to erroneous decisions from
the previous stages, a list-based detector based on LMMSE receive filters
is devised for CF-mMIMO systems that exploits interference cancellation
and the constellation points to mitigate the error propagation that occurs
in conventional MMSE-SIC receivers. Furthermore, low-complexity and
low latency local detectors based on PIC and RMF schemes are proposed.
New closed-form expressions for the local soft MMSE-PIC and RMF
detectors are derived. An IDD scheme that employs LDPC codes is
then developed. Moreover, LLR refinement strategies based on censoring
and a linear combination of local LLRs are proposed to improve the
network performance. Finally, the proposed centralized and decentralized
IDD schemes are assessed against existing approaches in terms of BER,
complexity, and signaling under perfect CSI and imperfect CSI and verify
the superiority of the distributed IDD architecture with LLR refinements.

- Chapter IV presents two cluster-based IDD schemes for mitigating intra-
cluster (ICL) and out of cluster (OCL) interference. Firstly, a soft iter-
ative PIC receiver for network clustered CF-mMIMO networks is pro-
posed. In particular, new closed-form expressions for MMSE-PIC re-
ceivers are derived by assuming the presence of ICL interference, channel
estimation errors and additive white Gaussian noise (AWGN). The de-
rived expressions are used to develop the resulting receivers by varying
the number of iterations and assuming perfect and imperfect CSI. By de-
termining the mean and variance of the detected signals, new closed-form
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expressions for the Gaussian approximation of the likelihood function are
also obtained. Simulations evaluate both clustered and full CF-mMIMO
networks equipped with the proposed cluster-based MMSE-PIC and lin-
ear MMSE receivers in terms of BER and complexity. Secondly, an it-
erative soft IC scheme for intra-cluster (ICL) and out-of-cluster (OCL)
interference in user-centric clustered CF-mMIMO networks. In particu-
lar, MMSE receive filters for the proposed IC scheme in the presence of
ICL and OCL interference and noise are derived. Furthermore, a least
squares estimator (LSE) to perform multiple OCL interference compo-
nents estimation is devised. An IDD scheme that adopts LDPC codes
and incorporates the OCL interference estimate is then presented. Sim-
ulations assess the proposed scheme against existing techniques in terms
of BER performance.

- Finally, concluding remarks of this thesis are presented and future works
are discussed in Chapter V.

1.4
Publication List
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2. T. Ssettumba, R. Di Renna, L. Landau, R. C. de Lamare, A List-
Based Detector for Access Point Selection in Cell-Free Mas-
sive MIMO Using LDPC Codes, 2022 Int. Symp. on Wireless
Commun. Systems (ISWCS), Hangzhou, China, 2022, pp. 1-6, doi:
10.1109/ISWCS56560.2022.9940407.

3. T. Ssettumba, S. Zhichao, L. Landau, S. P. F. Michelle, P. Branco
da Silva, R. C. de Lamare, Centralized and Decentralized IDD
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2
System Models and Fundamentals of Interference Mitigation

This chapter introduces mathematical models that are used to represent
single-user MIMO, multiuser MIMO, massive MIMO (mMIMO) and cell-free
massive MIMO (CF-mMIMO) systems. Moreover, it gives a brief description
of the basic CF-mMIMO architecture and reviews the fundamentals of interfer-
ence mitigation for several MIMO systems. In particular, existing sub-optimal
detection techniques such as linear ZF, linear MMSE, MMSE-SIC and RMF
receivers are described. The expressions of the receive filters are derived using
the adopted system models, which provides a fundamental mathematical un-
derstanding of the key concepts. Furthermore, descriptions of the PIC and list-
based detectors and a brief introduction to IDD schemes is provided. Finally,
an IDD scheme for CF-mMIMO systems assuming perfect CSI is proposed
and its BER performance is compared with that one of co-located mMIMO
systems.

2.1
Overview of MIMO Systems

This section provides an overview of MIMO systems. It starts by intro-
ducing point-to-point MIMO systems, co-located mMIMO and CF-mMIMO.
Additionally, the signal model for CF-mMIMO is given. The concept of signal
detection is discussed while giving examples of linear and nonlinear detection
techniques applicable to CF-mMIMO systems. The concepts of list-based de-
tection and IDD are then introduced. Numerical examples for the introduced
detectors are provided along with a discussion of numerical results.

2.1.1
Point-to-Point MIMO

Point-to-point MIMO was invented at Bell Labs with the aim of increas-
ing data rates [18].

However, the system was impractical and thus multi-user MIMO has
become the most popular setting. In multiuser MIMO the base station (BS) is
equipped with multiple antennas, and the users can be equipped with either
single or multiple antennas. The number of antennas at the BS is assumed to be
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greater than the number of users so that the system results in a mathematical
model of full-rank. When multiuser MIMO systems have a large number of
antennas then this configuration can make the channels nearly orthogonal,
facilitating efficient signal detection [17,19–22].

2.2
System models for the MU-MIMO Uplink

2.2.1
Co-located Massive MIMO System

In this system, the BS is located in the center and equipped with a large
number of antennas. The BS broadcasts its signal to the entire network area
to serve multiple user equipments (UEs) in a given cell. For a fair comparison
with CF-mMIMO, the BS is equipped with a number of antenna elements
equal to the number of APs in the network. The same propagation channel
model is considered for the co-located mMIMO and CF-mMIMO settings.

2.2.2
Cell-Free Massive MIMO System

A CF-mMIMO system is a multiuser communications system that in-
volves a large number of distributed antenna elements [1,3]. The system model
comprises of L APs that are geographically distributed in given area, each
equipped with N antenna. Additionally, there are K randomly distributed
users , where L >> K. The APs are connected to a CPU by a backhaul con-
nection (fronthaul links). In the uplink transmission, the users send their pilots
to the APs in each coherence interval. The orthogonal frequency-division mul-
tiplexing (OFDM) sub-carrier is assumed to follow an independent and identi-
cally distributed (i.i.d) flat-fading distribution, such that the channel remains
constant in the coherence bandwidth [3]. The system model is shown in Figure
2.1 but more simplified models will be presented in the subsequent chapters.
The channel coefficient between the l-th access point (AP)and the k-th user is
given by [13],

gl,k =
√
βl,khl,k,

where βl,k is the large scale fading coefficient between the l-th AP and the k-th
user, that accounts for path loss and shadowing effects. The random variable
hl,k is the i.i.d NC ∼ (0, 1) small scale fading coefficients. The large scale fading
coefficients can be modeled using the three-slope pathloss model [3, 13] or the
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Figure 2.1: Cell-Free Massive MIMO System Model.

3GPP pathloss model [14]. The received signal is given by

y = Gs + n ∈ CNL×1, (2-1)

where G ∈ CNL×K is the channel matrix, s is the transmitted symbol vector,
and n ∈ CNL×1 is the noise vector at the APs.

2.3
Detection Techniques

The signals transmitted by the users to the APs overlap and result in
MUI at the receiver side. Signals suffering from interference cannot be easily
demodulated at the receiver. Thus, there is need for methods to separate such
signals by reducing the Euclidean distance between the transmitted signal and
its estimate at the receiver.

In this thesis, the focus is on IDD techniques that utilize message passing
using LDPC codes and promote the exchange of messages between a receiver
that outputs soft information and the decoder. We begin our exposition
by looking at linear and non-linear detection techniques that are applicable
to multiple-antenna systems. Detection is necessary to equalize the channel
matrix G as well as to estimate the transmitted symbols. Several types of
detectors include the optimal detectors such maximum likelihood (ML) and
maximum a-posterior (MAP) detectors, sub-optimal detectors such as linear
detectors, non-linear detectors and those based on IDD schemes. To carry out
linear detection, the CF-mMIMO channel is equalized with a linear receive
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filter W ∈ CK×NL [23,24]. It is assumed that the input symbols are taken from
a discrete set, i.e., sk ϵ A. For simplicity, the output of the linear equalizer is
given by

s̃ = W(Gs + n), (2-2)

where s̃ ∈ CK×1, G ∈ CNL×K , s ∈ CK×1, n ∈ CNL×1, are the detected signal,
channel matrix, transmitted symbol vector, and the noise vector, respectively.
The detected symbols are mapped to the closest possible solution such as
s̃→ ŝ ∈ AK . Additionally, if the noise and the signal are uncorrelated, then
E
{
nsH

}
= 0, Cs = E

{
ssH

}
, Cn = E

{
nnH

}
.

2.3.1
Linear Minimum Mean Square Error Receivers

The linear MMSE receive filter is obtained by solving a convex optimiza-
tion problems given by [24–27]

WMMSE = argminW E
{
∥s− s̃∥2

2

}
. (2-3)

This implies that while using the MMSE receive filter, a global minimum is
always guaranteed since the problem is convex. After substituting (2-2) into
(2-3), the problem can be rewritten as

E
{
∥s− s̃∥2

2

}
= E

{
∥
(
IK −WG

)
s−Wn∥2

2

}
, (2-4)

= E
{
∥
(
IK −WG

)
s∥2

2

}
+ E

{
∥Wn∥2

2

}
,

= tr
{(

IK −WG
)
Cs
(
IK −WG

)H
}

+ tr
{
WCnWH

}
.

Differentiating (2-4) with respect to WH and equating the resulting terms to
zero yields

dE
{
∥s− s̃∥2

2

}
dWH

= −
(
IK −WG

)
CsGH + WCn = 0. (2-5)

The optimal linear MMSE receive filter is then obtained by equating (2-5) for
W which results in

WMMSE = CsGH
(
GCsGH + Cn

)−1
. (2-6)
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By applying the matrix inversion lemma in (2-6), it yields

WMMSE =
(
C−1

s + GHC−1
n G

)−1
GHC−1

n . (2-7)

In the low SNR region, when C−1
n has very small entries the filter can be

approximated as follows

lim
SNR→∞

WMMSE → CsGHC−1
n . (2-8)

A more special form of this filter is obtained when the noise covariance matrix
is Cn = σ2

nINL and the signal covariance matrix is Cs = Etx

K
IK , respectively.

Thus the filter can be rewritten such as

WMMSE =
(
Kσ2

n
Etx

IK + GHG
)−1

GH . (2-9)

The main drawback of the MMSE filter is that it gives a biased estimate of
the error [25, 28]. It requires a cubic cost in the number of APs and UEs due
to the matrix inversion.

2.3.2
Linear Zero-Forcing Receivers

For a fair treatment of the analysis, the ZF receive filter gives an unbiased
estimate of the error in the detected signal [25, 29, 30]. The expected value of
the estimator conditioned on the input signal is given by

E
{
s̃|s
}

= WGs = s, (2-10)

This implies that the expected value of the estimator conditioned on the input
signal is simply equal to identity matrix given by WG = I. This constraint
for the unbiased estimate can be combined with the MMSE design criterion to
formulate the ZF optimization problem such as

WZF = argminW E
{
∥s− s̃∥2

2

}
s.t WG = I. (2-11)

Substituting the receive filter into the received signal in (2-11) yields

WZF = argminW E
{
∥s−W(Gs + n)∥2

2

}
s.t WG = I. (2-12)
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The solution to (2-12) yields the ZF filter [25,31] given by

WZF =
(
GHC−1

n G
)−1

GHC−1
n . (2-13)

A special case of this filter occurs when Cn = σ2
nI. Thus, the filter expression

is modified to a form given by

WZF =
(
GHG

)−1
GH . (2-14)

The drawback of this filter is that it does not take into account the noise,
yet communication systems always have noise in practical scenarios. Thus, it
magnifies the noise when the channel gain is small [25].

2.3.3
Receive Matched Filter

The receive matched filter (RMF) has the objective of maximizing the
signal-to-noise ratio (SNR) at the receiver [25]. The SNR is given by

γ(W) =
|E
{
sH s̃

}
|2

Var
{
sH s̃

} . (2-15)

With |E
{
sH s̃

}
|2 = |tr

{
WGCs

}
|2 and Var

{
sH s̃

}
= E

{
∥s∥2

2

}
E
{
∥Wn∥2

2

}
the

SNR can be rewritten as

γ(W) =
|tr
{
WGCs

}
|2

tr
{
Cs

}
tr
{
WCnWH

} . (2-16)

The filter G which maximizes γ corresponds to the matched filter given
by

WMF = arg max
W

γ (W). (2-17)

By solving the optimization in (2-17), the solution to the RMF is given by

W = αCsGHC−1
n , (2-18)

where α is a scalar which can be chosen arbitrarily [25].
The major drawback of the RMF is that interference remains constant

regardless of the SNR of the channel. As a result, the RMF’s performance for
uncoded systems is always poor as compared to the MMSE and ZF receivers.
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2.3.4
MMSE-Successive Interference Cancellation (SIC)

An MMSE-SIC detector is analogous to the linear MMSE detector.
However, it is followed by a subtraction of the signal of the successive decoded
users and processing of the remaining user data, recursively [32,33]. In general,
the data symbol of each user when using any of the SIC-based receivers is given
by

ŝk[i] = Q

(
wH

k yk[i]
)
, (2-19)

where the successively cancelled received data vector that follows from the
channel with the highest norm to the lowest in the k-th stage is given by

yk[i] = y[i]−
k−1∑
j=1

gj ŝj[i], (2-20)

where gj corresponds to the columns of the composite channel matrix G.
Several methods for SIC detectors can be summarized as follows:

1. SINR based ordering
In this SIC strategy, signals with the highest signal-to-interference-plus
noise ratio (SINR) are detected first, followed by the next strongest
signal. The process continues until the entire received streams is detected.

2. SNR-based ordering
The operation is analogous to the SINR based approach but employs the
SNR to order the received signals.

3. Column Norm-based norm
This SIC scheme uses the norm of the column vectors in a channel matrix
to perform the ordering and performs the cancellation.

4. Received Signal based Ordering
In this method, the received signals are incorporated into deciding a
detection order. This approach achieves achieves the better performance
than the above three schemes. As opposed to the first three schemes in
which ordering is required only once as long as the channel matrix is
fixed, this method involves the highest complexity as detection ordering
is required every time a signal is received at the APs.

The major challenges faced by SIC based receivers is the longer delays
due to latency at each successive cancellation stage. Also, in situations where
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there is an erroneous decision at any SIC stage, the receiver suffers from
error propagation which compromises the system’s performance. To solve these
challenges, a PIC and List-based receivers are usually preferred as discussed
in the next Subsections.

2.3.5
Parallel Interference Cancellation

The parallel interference cancellation (PIC) works in a way that, for
each symbol, the coarse initial estimate of the interfering symbols can be used
for regenerating the interference and then subtracting it from the composite
received signals [34]. PIC detector has lower processing delay, and is more
robust to inter-stream error propagation. The received signal at the k-th UE
after PIC is given by

yk[i] = y[i]−
K∑

j=1,j ̸=k

gj ŝj[i], (2-21)

PIC finds more applications in scenarios where the users have an equal BER
performance [35].

2.3.6
List-Based Detection

The block diagram of the proposed list-based detector is shown in Figure
2.2. The design leverages multiple feedback (MF) diversity by choosing a set of
constellation candidates when the previously detected symbol is considered to
be unreliable [9,13]. A shadow area constraint (SAC) is introduced in order to
obtain an optimal feedback candidate. This helps to reduce the computation
complexity in the search space, by avoiding it from growing exponentially.
One of the positive attributes of such a selection criterion, is that there is no
need for redundant processing when reliable decisions are made. Additionally,
the proposed MF-SIC scheme mitigates error propagation that usually occurs
when the conventional SIC-based approaches are used for detection.

The procedure for detecting ŝk for the k-th user is described following
a similar procedure presented in [9]. The k-th user soft estimate is obtained
by uk = wH

k y̌k where the MMSE filter vector wk = (ḠkḠH
k + σ2

n

Etx
I)−1gk. Ḡk

represents the matrix obtained by stacking the columns k, k+ 1, ...K of G and
y̌k = y −∑k−1

t=1 gtŝt denotes the received vector after performing cancellation
of the k − 1 previously detected symbols. The soft estimate uk for each layer
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Figure 2.2: Block diagram of a the Proposed MF-SIC detector.

is examined by the SAC to determine if this decision is reliable according to

dk = |uk − νf |, (2-22)

where νf = arg minνf ∈A

{
|uk−νf |

}
denotes the closest constellation point to the

k-th user soft estimate uk. If dk > dth the decision is considered to be unreliable
and the selected constellation point is dropped into the shadow area of the
constellation map. The parameter dth is the predefined threshold Euclidean
distance to guarantee reliability of the selected symbol [9]. If the soft estimate
uk is deemed to be a reliable estimate for user k, the MF-SIC algorithm
performs a hard slice as in the conventional SIC approach [9,10]. In this case,
ŝk = Q(uk) is the estimated symbol, where Q(·) is the quantization notation
which maps to the constellation symbol closest to uk. Otherwise, the decision is
deemed unreliable. In this case, a candidate set L = {c1, c2, ..., cm, ..., cM} ⊆ A
is generated, which consists of the M constellation points closest to uk. The
number of candidate points M is given by the QPSK symbols. As a result, there
is a trade-off between performance and complexity. The algorithm selects an
optimal candidate cm,opt from a pool of L candidates. As a result, the unreliable
choice Q(uk) is substituted by a hard decision, and ŝk = cm,opt is obtained. It
should be noted that the List-SIC algorithm’s performance benefits are based
on the assumption that cm,opt is correctly selected.

The following is a summary of the MF-SIC selection algorithm: To begin,
the selection vectors ϕ1,ϕ2, ...,ϕm, ...ϕM must be defined.
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The size of these selection vectors is equal to the number of the
constellation candidates that are used every time a decision is consid-
ered unreliable. For example, for the k-th layer, a K × 1 vector ϕm =[
ŝ1, ..., ŝk−1, cm, ϕ

m
k+1, ..., ϕ

m
q , ..., ϕ

m
K

]T
, which is a potential choice corresponding

to cm in the k-th user, consists of the following items: (a) The previously esti-
mated symbols ŝ1, ŝ2, ..., ŝk−1. (b) The candidate symbol cm obtained from the
constellation for subtracting a decision that was considered unreliable Q(uk)
of the k-th user. (c) Using (a) and (b) as the previous decisions, detection
of the next user data k + 1, ..., q, ..., K-th is performed by the SIC approach.
Mathematically, the choice ϕm is given by [10]

ϕm
q = Q(wH

q ŷ
m
q ), (2-23)

where the index q denotes a given UE between the (k+1)-th and the K-th UE,

ŷm
q = y̌k − gkcm −

q−1∑
p=k+1

gpϕ
m
p . (2-24)

A key attribute of the proposed MF-SIC algorithm is the same MMSE filter
wk that is used for all the constellation candidates. Therefore, the proposed
algorithm has the same computational complexity as the conventional SIC.
The optimal candidate m, opt is selected according to the local ML rule given
by

m, opt = arg min
1≤m≤M

∥y −Gϕm∥2 . (2-25)

2.4
Iterative Detection and Decoding

IDD schemes combine joint detection and decoding. IDD schemes lever-
age message passing and the exchange of soft information in the form of LLRs
to improve the performance of communication systems. The inherent benefits
of IDD can be summarized as follows:

1. IDD techniques result in significant reduction in the BER.

2. IDD schemes can be implemented cheaply using linear block codes.

3. Can yield high SINRs and higher spectral efficiencies.

Several channel codes have been applied recently to improve the per-
formance of massive MIMO systems [11–13,23,36–44]. In this context, LDPC
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codes are simple to implement because of their linear nature and their decoding
is computationally efficient.

Thus, this thesis utilizes IDD schemes based on LDPC codes to improve
the performance of CF-mMIMO networks.

The block diagram in Figure 2.3 depicts how IDD is incorporated in
a communication system. The K transmitted information signals from users
are encoded using a channel code. The channel code converts the messages
into code words of length n that are modulated to form constellation symbol
points that are transmitted over the channel. The receiver has a soft detector
that equalizes the received information to retrieve the originally transmitted
messages. These received bits are then decoded and a hard decision is made.
The IDD processing is performed through the feedback between the detector
and decoder which exchange the messages in an iterative fashion using LLRs
[11–13]. Examples of codes used in literature include but are not limited to
convolution Codes, LDPC Codes, turbo codes, polar codes among others.

Detector

N code

bits

K

Information bits

Coded

Symbols

S/P
ModulatorEncoder

Transmitter

LD

LC

Soft

Decoder

Hard

Decisions

Receiver

Figure 2.3: Block diagram of a communication system with IDD scheme.

In this thesis, low-complexity IDD schemes using LDPC codes are
considered as it is shown in the next section and subsequent chapters of the
thesis.

2.5
Iterative Detection and Decoding for Cell-Free Massive MIMO Using
LDPC Codes

This section proposes an IDD scheme for a CF-mMIMO system. Users
send coded data to the APs, which is jointly detected at the CPU. The symbols
are exchanged iteratively in the form of LLRs between the soft detector and the
LPDC decoder, increasing the coded system’s performance. In particular, we
present an IDD scheme for CF-mMIMO systems, which unlike the work in [14],
employs message passing. Therefore, the main contributions of this section are
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summarized as follows. First, a list-based soft MF-SIC detector is proposed
for the CF-mMIMO architecture. This proposed approach gives lower BER
values at the same computation complexity as the traditional SIC scheme.
Secondly, the proposed soft receiver is compared with other detectors such as
the linear MMSE, SIC, PIC and List-PIC. Thirdly, the impact of increasing
the IDD iterations is examined. The BER performance of CF-mMIMO is then
compared to that of co-located mMIMO systems.

2.5.1
Proposed System Model

The proposed low-complexity IDD scheme for CF-mMIMO systems
is shown in Figure 2.4. Particularly, an LDPC-coded CF-mMIMO system
comprising of L APs, K single antenna UEs, a joint detector at the CPU
and an LDPC decoder are considered.
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cK

AP1
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yL

LE

LU

s2

CPU

Figure 2.4: Block diagram of a CF-mMIMO system with an IDD scheme.

The data are first encoded (Enc) by an LDPC encoder having a code
rate R. This encoded sequence is then modulated (Mod) to complex symbols
with a complex constellation of 2Mc possible signal points and average energy
Es. The coded data are then transmitted by K UEs through the channel G to
the APs.

A centralized CF-mMIMO scenario is assumed, where the CPU does
soft processing and joint detection on the received signal from the APs.
Then the detector sends these soft outputs, LE, in the form of LLRs to the
LDPC decoder. The decoder adopts an iterative strategy by sending extrinsic
information, LU , to the detector. Additionally, the performance of the proposed
detector is examined for the case with no iterations and the case with iterations.
The channel coefficients between the l-th AP and the k-th UE are given
by [3,13]

gk,l =
√
βk,lhk,l, (2-26)
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where βk,l is the large-scale (LS) fading coefficients as a result of path loss (PL)
and shadowing. The small scale fading coefficients are given by hk,l, that are
i.i.d. Gaussian random variables with variance, E{h∗

k,lhk,l} = 1.
The LS fading coefficient is assumed to be deterministic and can be

obtained using the three-slope PL model [3, 13]. More precisely, the PL
exponent is 3.5 if the distance dkl between the k-th UE and l-th AP is greater
than d1, equals 2 if d1 ≥ dkl > d0, and equals 0 if dkl ≤ d0, for some d0 and d1.
For dkl > d1, the Hata-COST231 propagation model is applied. The PL PLkl

in dBs between the k-th UE and l-th AP is determined using

PLkl =


−Λ− 35 log(dkl), dkl > d1

−Λ− 15 log(d1)− 20 log(dkl), d0 <dkl ≤ d1

−Λ− 15 log(d1)− 20 log(d0), dkl ≤ d0

. (2-27)

The parameter Λ is given by

Λ ≜46.3 + 33.9 log10(f)− 13.82 log10(hAP)− (1.1 log10(f)− 0.7)hu (2-28)

+ 1.56 log10(f)− 0.8,

where f is the carrier frequency (in MHz), hu and hAP are the antenna heights
of the UE and AP, respectively. The LS coefficient βk,l models the PL and
shadow fading that are given by

βl,k = PLkl × 10σshζlk , (2-29)

where 10σshζlk denotes the shadowing with standard deviation σsh, and ζlk ∼
N (0, 1). The received signal y at the joint soft detector is given by

y = Gs + n, (2-30)

where G ∈ CL×K is the channel matrix comprising of both small scale and LS
fading coefficients. s = [s1, s2, .., sk−1, sk, sk+1, ..., sK ], n is the AWGN vector
that has zero mean and unit variance.

2.5.2
MMSE soft cancellation detectors

For simplicity of analysis, we consider sub-optimal detectors which
consists of PIC/SIC followed by an MMSE filter. The detector first forms
soft estimates of the transmitted symbols by computing the symbol mean s̄j
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based on the available a-priori information from the decoder [6]

s̄j =
∑
s∈A

sP (sj = s), (2-31)

where A is the complex constellation set. By assuming statistical independence
of bits within the same symbol as in [6], the a-priori probabilities are calculated
from the extrinsic LLRs provided by the LDPC decoder as

P (sj = s) =
Mc∏
l=1

[1 + exp(−sblLc(b(j−1)Mc+l))]−1, (2-32)

where sbl ∈ (+1,−1) denotes the value of the l-th bit of symbol s, Lc(bi)
denotes the extrinsic LLR of the i-th bit computed by the LDPC decoder in
the previous iteration, and Mc is the modulation order. We define Lc(bi) = 0
at the first iteration since the only available belief is from the channel. The
variance of the j-th UE symbol is calculated as [5]

σ2
j =

∑
s∈A
|s− s̄j|2P (sj = s). (2-33)

For the k-th user, the soft interference from the other K − 1 users is canceled
according to PIC to obtain

y = skgk +
K∑

j=1,j ̸=k

(sj − s̄j)gj + n. (2-34)

For SIC, the soft interference from the other K − 1 users is canceled to obtain

y = y−
K−1∑
j=1

s̄jgj. (2-35)

Using (2-34), a symbol estimate ŝk of the transmitted symbol on the k-th UE
is obtained by applying a linear filter wk to y such that

ŝk = wH
k y = (wH

k gk)sk +
K∑

j=1, j ̸=k

(wH
k gj)(sj − s̄j) + wH

k n, (2-36)

where wk is chosen to minimize the mean square error (MSE) between the
transmitted symbol sk and the filter output ŝk and depends on the variance of
the symbols used in the cancellation step. The estimated symbol while using
the SIC can be obtained using a similar approach applied for the PIC. In [6]
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it is shown that the corresponding linear filter is given by

wk =
(
σ2

n

Es

I + G∆kGH

)−1

gk, (2-37)

with

∆k = diag
[
σ2

s1

Es

, ...,
σ2

sk−1

Es

, 1,
σ2

sk+1

Es

, ...,
σ2

sK

Es

]
, (2-38)

where σ2
si

is the variance of the i-th user symbol computed as

σ2
si

=
∑
s∈A
|s− s̄i|2P (si = s). (2-39)

2.5.3
Iterative processing

In this section, the MMSE-based detectors are presented for the IDD
scheme, consisting of a joint detector and an LDPC decoder, and the iterative
processing is detailed. The operation is explained based on the MMSE detector
given in (2-37). Other studied detectors take the same procedure and their op-
eration has been omitted without loss of generality. The received signal at the
output of the filter, contains the desired symbol, residual co-user interference
and noise. We use similar assumptions given in [5,6] to approximate the ŝk as
an output of an AWGN channel given by

ŝk = µksk + zk, (2-40)

where µk = E{ŝks
∗
k}. The parameter zk is a zero-mean AWGN variable. Using

similar procedures as in [6], the parameter µk is given by

µk = gH
k

(
σ2

n

Es

I + G∆kGH

)−1

gk. (2-41)

The variance of ŝk is given by

λ2
k = µk − µ2

k, (2-42)
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The extrinsic LLR computed by the detector for the l-th bit l ∈ {1, 2, ...,Mc}
of the symbol sk transmitted by the k-th user is [6]

LD

(
b(k−1)Mc+l

)
= log

∑
s∈A+1

l
f (ŝk|s)P (s)∑

s∈A−1
l
f (ŝk|s)P (s) − Lc

(
b(k−1)Mc+l

)
, (2-43)

where A+1
l is the set of 2Mc−1 hypothesis s for which the l-th bit is +1. The a-

priori probability P (s) is given by (2-32). The approximation of the likelihood
function [6] f(ŝk|s) is given by

f (ŝk|s) ≃
1
πλ2

k

exp
(
− 1
λ2

k

|ŝk − µks|2
)
. (2-44)

2.5.4
Decoder Algorithm

The soft beliefs are exchanged between the proposed detectors and the
decoder in an iterative manner. The standard sum-product algorithm (SPA)
suffers from performance degradation caused by the tangent function especially
in the error-rate floor region [12]. Therefore, we use the box-plus SPA in this
thesis because it yields less complex approximations. The decoder is made up
of two stages, namely, the single parity check (SPC) stage and the repetition
stage. The LLRs sent from check node (CN)J to variable node (V N)i are
computed as described by

Lj−→i = ⊞i
′ ∈ N(j)⧹iLi′−→j . (2-45)

As shorthand, we use L1 ⊞ L2 to denote the computation of L(L1
⊕
L2). The

LLRs are computed by

L1 ⊞ L2 = log
(

1 + eL1+L2

eL1 + eL2

)
, (2-46)

=sign(L1)sign(L2) min(|L1| , |L2|) + log
(
1 + e−|L1+L2|

)
− log

(
1 + e−|L1−L2|

)
.

The LLRs from V Ni to CNj are given by

Li−→j = Li +
∑

j′ ∈N(i)\j

Lj′ −→i, (2-47)

where the parameter Li denotes the LLR at V Ni, j
′ ∈ N(i)\j denotes all CNs

connected to V Ni except CNj.
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Figure 2.5: BER versus SNR for CF-mMIMO for (a) SIC, (b) List-SIC and (c) PIC with
L = 100, K = 40, while varying the number of IDD iterations.

2.6
Numerical Results

In this section, the BER performance of the proposed soft detectors
is presented for the CF-mMIMO and co-located mMIMO (COL-mMIMO)
settings. The CF-mMIMO channel exhibits high PL values due to LS fading
coefficients. Thus, the instantaneous SNR definition is given by

SNR = tr(σ2
sGGH)R
LKσ2

n

. (2-48)

The simulation parameters are varied as follows: we consider a cell-free
environment with a square of dimensions D×D =, where D = 1 km. Distances
d0 and d1 are 10 m and 50 m, respectively. hAP = 15m, hu = 1.65 m, f = 1900
MHz, dth = 0.38, LDPC code with code word length (Cleng) 256 bits, M = 128
parity check bits and Cleng − M message bits. The code rate R = 1

2 . The
maximum number of inner iterations is set to 10. The signal power σ2

s = 1
and the simulations are run for 103 channel realizations. Figure 2.5 presents
the BER versus the SNR as the number of IDD iterations are increased. It
can be visualized that increasing IDD iterations yields lower BER. This is
because more a-posterior information is exchanged between the joint detector
and decoder as the iterations increase, which improves the system performance.
The number of iterations do not cause any marginal effect on the linear MMSE
filter without cancellation because there is no ∆k in this filter which is needed
for the IDD to improve the performance.

Figure 2.6 presents BER versus SNR while comparing the CF-mMIMO
and COL-mMIMO architectures. It can be shown that the CF-mMIMO
achieves low BER compared to the Col-mMIMO. This is due to the distributed
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Figure 2.6: BER versus SNR for CF-mMIMO and Col-mMIMO with L = 100, K = 40,
IDD = 2, single Base Station (BS) with 100 antennas.

nature of CF-mMIMO which improves the performance of the entire coverage
area.

Figure 2.7 presents the BER versus the SNR for the CF-mMIMO system
model for different values of L and the studied soft detectors for two (2) IDD
iterations. The PIC and List-PIC achieves the lowest BER values, followed by
List-SIC, SIC, MMSE, in that order. In addition, increasing L and K reduces
the BER. Also, the performance benefit of conventional PIC and List-PIC is
negligible.
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Figure 2.7: BER versus SNR for CF-mMIMO for the different detectors.

2.7
Summary

In this section, a brief background about traditional and CF mMIMO
systems has been presented and analysis of the proposed receivers has been
done. Specifically, an IDD scheme using LDPC codes has been studied for the
CF-mMIMO networks assuming perfect CSI (PCSI). A list-based detectors
for CF-mMIMO architectures and its performance has been compared with
other baseline detection schemes. Furthermore, the BER performance of CF-
mMIMO has been compared with co-located mMIMO. Finally, increasing IDD
iterations significantly reduces the BER.



3
Centralized and Decentralized IDD Schemes with AP Selec-
tion and LLR Refinement

In this chapter, iterative interference cancellation (IC) schemes with AP
selection (APs-Sel) and LLR refinement for CF-mMIMO systems are proposed.
Closed-form expressions for centralized and decentralized LMMSE receive fil-
ters with APs-Sel are derived assuming imperfect CSI. Based on the derived
expressions, insights are drawn and general expressions are devised for several
cases, namely, MMSE-SIC filter for the non-scalable CF-mMIMO that uses all
APs, an MMSE-SIC filter assuming perfect CSI, and a case with no IC and
the linear MMSE filter. Furthermore, we formulate a new Gaussian approxi-
mation of the likelihood function by deriving new closed-form expressions for
the second order statistics (mean and variance) of the detected signal param-
eters in presence of channel estimation errors, APs-Sel matrix and MUI. Since
the MMSE-SIC filter experiences error propagation due to erroneous decisions
from the previous stages, we develop a list-based detector based on LMMSE
receive filters for CF-mMIMO systems that exploits IC and the constellation
points to mitigate the error propagation that occurs in conventional MMSE-
SIC receivers. An IDD scheme that employs LDPC codes is then developed.
Moreover, LLR refinement strategies based on censoring and a linear combi-
nation of local LLRs are proposed to improve the network performance. We
assess the proposed centralized and decentralized IDD schemes against exist-
ing approaches in terms of BER performance, complexity, and signaling under
perfect CSI and imperfect CSI.

3.1
Proposed System and Signal Model

In this section, the uplink of a CF-mMIMO system with L APs and K

single-antenna user equipment (UE), where each AP is equipped withN receive
antennas, is considered. The system is assumed to have imperfect channel
estimates. The received signal statistics and channel estimation procedures
are given below.
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3.1.1
Uplink Pilot Transmission and Channel Estimation

Assume that τp mutually orthogonal pilot sequences ψ1,..., ψτp with
||ψt||2 = τp are used to estimate the channel. Furthermore, K > τp is such
that more than one UE can be assigned per pilot. The index of UE k that uses
the same pilot is denoted as tk ∈ {1, ..., τp} with ϑk ⊂ {1, ..., K} as the subset
of UEs that use the same pilot as UE k inclusive. The complex received signal
at the l-th AP after the UE transmission, [1, 45] Yl, with dimensions N × τp,
is given by

Yl =
K∑

j=1

√
ηjgjlψ

T
tj

+ Nl, (3-1)

where ηj is the transmit power from UE j, Nl is the received noise signal with
independent NC ∼ (0, σ2) entries and noise power σ2, gjl ∼ NC (0,Ωjl), and
Ωjl ∈ CN×N is the spatial correlation matrix that describes the channel’s
spatial properties between the k-th UE and the l-th AP, βk,l ≜

tr(Ωjl)
N

is
the LS fading coefficient. The first AP correlates the received signal with
the associated normalized pilot signal ψtk

/
√
τp to ytkl

≜ 1√
τp

Ylψ
∗
tk
∈ CN to

estimate the channel gjl given by

ytkl
=
∑

j∈ϑk

√
ηjτpgjl + ntkl

, (3-2)

where ntkl
≜ 1√

τp
Nlψ

∗
tk
∼ Nc (0, σ2IN) is the obtained noise sample after

estimation. From [1], the MMSE estimate of gkl is given by

ĝkl = √ηkτpΩklΨ−1
tkl

ytkl
, (3-3)

where Ψtkl
= E

{
ytkl

yH
tkl

}
= ∑

j∈ϑk
ηjτpΩjl + IN is the received signal vector

correlation matrix. The channel estimate ĝkl and the estimation error g̃kl =
gkl − ĝkl are independent with distributions ĝkl ∼ Nc (0, ηkτpΩklΨ−1Ωkl) and
g̃kl ∼ Nc (0,Ckl), where the matrix Ckl is given by

Ckl = E
{
g̃klg̃H

kl

}
= Ωkl − ηkτpΩklΨ−1Ωkl. (3-4)

It should be noted that the pilot contamination is caused by the mutual
interference made by UEs using the same pilot signals in (3-2), which lowers
the system’s performance [1].

From (3-1), the received signal vector after stacking the channel vectors
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from all the APs is given by

y = Gs + n, (3-5)

where the channel matrix G ∈ CNL×K has both small scale and LS fading
coefficients. Vector s = [s1, .., sK ]T is the transmitted symbols with E {sks

∗
k} =

ρk, the average transmit power is given by ρ = [ρ1, .., ρK ]T , n is the AWGN
sample vector with zero mean and unit variance.

In CF-mMIMO networks, there are limitations on the complexity and
amount of signaling the APs and CPU must exchange. Both of these issues
make system modeling and design almost impracticable. To solve this problem,
we adopt a scalable CF-mMIMO setup that takes the selection of APs into
account. This is accomplished using the APs-selection technique described as
follows:

3.1.2
Access Point Selection Procedure

The dynamic cooperative clustering (DCC) approach described in [45]
is considered when selecting the APs. Unlike existing approaches for APs-Sel,
the proposed approach incorporates the APs-Sel in the receive filter expression,
which facilitates its computation. By letting Mk ⊂ {1, ..., L} be the subset of
APs in service of UE k, the matrix Dkl is defined as

Dkl =

IN if l ∈Mk

0N if l ̸∈ Mk.
(3-6)

The APs that provide service to a specific UE are determined by the block
diagonal matrix Dk = diag (Dk1, ..,DkL) ∈ CNL×NL. Specifically, when Dk =
INL, all APs serve all the UEs. However, using all APs is not scalable and
practical, and thus clustering approaches such as user-centric techniques can
be adopted. Then, the set of UEs that are served by AP l is

Dl =
{
k : tr (Dkl) ≥ 1, k ∈ {1, .., K}

}
. (3-7)

It is important to note that the DCC does not alter the received signal
statistics since all APs receive the broadcast signal. An essential feature of
such a selection process is limiting the number of APs that take part in signal
detection. The joint AP selection criterion described in [45] determines which
APs will provide service to a specific UE. In this scenario, the UE designates
a master AP to coordinate uplink (UL) detection and decoding based on the
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LLSF. The CPU then establishes a threshold value βth for non-master APs
to provide service to a certain UE. A detailed explanation of the operation
of the DCC approach can be found in [45]. There is a need to demodulate
the transmitted symbols at the receiver. Thus, the proposed centralized IDD
receiver structure is detailed in the following section.

3.2
Proposed Centralized IDD Scheme

In this section, the proposed centralized processing architecture for
coded CF-mMIMO systems is presented. The block diagram of the proposed
centralized IDD scheme is depicted in Figure 3.1. The codeword sequence ck

m1

mK

Enc

Enc

Mod

Mod

Det Dec
Compute

Λi

AP1

APL

c1

cK

s1

sK

y1

yL

Λe

y1,1

yN,1

y1,L

yN,L sk

CPU

ReceiverTransmiter

Figure 3.1: Block diagram for IDD scheme with centralized processing.

is created by first encoding the message sequence mk for UE k by an LDPC
encoder (Enc) with a code rate of R. This encoded sequence is then modulated
(Mod) to form complex symbols with a complex constellation of 2Mc possible
signal points. The K UEs then send the modulated symbols to the APs. The
APs serve as relays during data reception and transfer the information to the
CPU, which has a joint detector (Det), an LLR computing module, and an
LDPC decoder (Dec). Then, the detector forwards the data to a module that
computes the LLRs Λi. These computed LLRs are then sent to the decoder. By
providing extrinsic data Λe to the joint detector, the decoder uses an iterative
technique presented in Section 3.6 that enhances the detection performance of
the receiver.

3.2.1
Proposed Centralized Receiver Design

The proposed receiver configuration aims to cancel the MUI caused by
the other K − 1 UEs in the network. The receiver consists of an MMSE filter
followed by a soft IC scheme, which may use either a SIC or a list-based
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with SIC technique. The receiver first creates soft estimates of the transmitted
symbols by computing the jth UE symbol mean s̄j based on the soft beliefs
from the LDPC decoder [5–7] given E {sj} = s̄j as described by equation
(2-31). The a priori probability of the extrinsic LLRs [6–8] is given by equation
(2-32). The variance of the j-th UE symbol [6] can be computed using (2-33).
After decomposition of (3-5) and using G = Ĝ + G̃, the received signal at the
CPU is given by

y = ĝksk + Ĝis̄i +
K∑

m=1
g̃msm + n, (3-8)

where the first term on the right-hand side (RHS) is the desired signal, ĝk

and sk are the estimate of the channel vector. and transmitted symbol for the
desired signal, respectively. The second term is the interference from the other
K−1 users; s̄i is the vector with the interfering symbols except the k-th symbol,
and Ĝi is the matrix with channel estimates of the other K − 1 users. The
third term denotes the interference due to channel estimation errors, and the
fourth is the phase-rotated noise. After the estimated MUI has been removed
and APs have been selected, the received symbol estimate of the k-th UE data
stream at the CPU is given by

s̃k = wH
k Dk

(
y− Ĝis̄i

)
, (3-9)

The optimization of the receive combining filter wk is achieved by minimizing
the MSE between the symbol estimate and the transmitted symbol conditioned
on Ĝ. The formulation of the optimization problem is given by

wk = arg min
(wk)

E
{
||s̃k − sk||2 | Ĝ

}
. (3-10)

Differentiating the objective function on the RHS of (3-10) with respect to
(w.r.t.) wH

k , the optimal MMSE receive filter wk should satisfy the following
relation:

DkE{yRyH
R}DH

k wk −DkE{yRs
∗
k} = 0, (3-11)

where yR = y− Ĝis̄i. The solution to the filter is obtained by making wk the
subject of (3-11) as

wk =
(
DkE{yRyH

R}DH
k

)−1
DkE{yRs

∗
k}. (3-12)
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By using the orthogonality principle in [46, 47] and assuming statistical
independence of each term in the received signal y, the terms E{yRs

∗
k} and

E{yRyH
R} are given by

E{yRs
∗
k} = ρkĝk, (3-13)

and

E{yRyH
R} = ρkĝkĝH

k + Ĝi∆iĜH
i +

K∑
m=1

(
| sm |2 +σ2

m

)
Cm + σ2INL. (3-14)

The matrix ∆i = diag
[
σ2

1, ..., σ
2
k−1, σ

2
k+1, ..., σ

2
K

]
denotes the covariance matrix

that consists of the entries computed in (2-33). By substituting (3-13) and
(3-14) into (3-12), the centralized MMSE filter is given by

wk =

ρk

(
Dk

(
ρkĝkĝH

k + Ĝi∆iĜH
i + σ2INL +

K∑
m=1

(
| sm |2 +σ2

m

)
Cm

)
DH

k

)−1

Dkĝk.

(3-15)

A detailed derivation of (3-15) can be found in Appendix B.

3.2.2
Insights into the Centralized MMSE Filter

The major parameters that affect the performance of the derived receiver
in (3-15) can be explained as follows.

- The channel estimation error, a high channel estimation error which re-
sults into imperfect CSI (ICSI). This yields poor channel coefficients
which results into wrong detection decisions, thus degrading the perfor-
mance. This can be reduced by using longer pilots to estimate the channel
but at the expense of increasing complexity in terms of training time. On
the other hand if there is no channel estimation error the performance of
the network improves and this is the case with perfect channel estimates
(PCSI). For the case with PCSI, the channel estimation error g̃m is 0,
which makes Cm = 0. This yields ĝk = gk. Thus, the third term in (3-15)
vanishes to zero, and we obtain

wk = ρk

(
Dk

(
ρkgkgH

k + Gi∆iGH
i + σ2INL

)
DH

k

)−1

Dkgk. (3-16)

- The number of APs and APs-Sel matrix Dk. Increasing the number of
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APs in the network improves the detector performance which yields lower
BERs. For the case with all APs, the selection matrix Dk = INL. Thus,
the filter in (3-15) is given by

wk =
(
ρkĝkĝH

k + Ĝi∆iĜH
i +

K∑
m=1

(
| sm |2 +σ2

m

)
Cm + σ2INL

)−1

ρkĝk.

(3-17)

Note that Dk = 0, implies that wH
k Dk = 0, where wH

k is the receive
vector. This means that only APs with Dk ̸= 0 will apply receive
combining in the uplink detection.

- The number of IDD iterations and interference cancellation matrix ∆i.
Increasing the number of iterations improves the performance. This is
because more information is exchanged between the decoder and detector
with improves on the interference cancellation capability of the receiver.
Mathematically, this can be explained as: In the first iteration it is
considered that s̄i = 0 in (2-31). In this case, we have a linear MMSE
filter and the estimated signal in (3-9) is

s̃k =ρkĝH
k DH

k

(
ρkDkĝkĝH

k DH
k + DkĜi diag (ρi) ĜH

i DH
k

+ Dk

(
σ2INL +

K∑
m=1

ρmCm

)
DH

k

)−1

y. (3-18)

The vector ρi denotes the average transmit power vector for the other
K−1 UEs. As the number of iterations increases, there is more a posterior
information about the transmitted bit. This implies that mean of the
interference symbol s̄i ≈ si in (2-31). Thus, the filter becomes a perfect
interference canceler, and (3-9) yields

s̃k =ρkĝH
k DH

k

(
ρkDkĝkĝH

k DH
k + Dk

(
σ2INL +

K∑
m=1
| sm |2 Cm

)
DH

k

)−1

×
(
y−DkĜisi

)
. (3-19)

The centralized detection schemes experience high levels of complexity as
the number of UEs, APs, and antennas at the APs increases. This makes the
design of receivers more complicated, and the amount of required signaling
between APs and the CPU increases. To alleviate the above problem, the
decentralized IDD scheme is proposed as follows:
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3.3
Proposed Decentralized IDD Scheme

The proposed decentralized IDD scheme is shown in Figure 3.2. The
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Figure 3.2: Block diagram for IDD scheme with decentralized processing.

transmitter operates in the same way as that of the centralized processor
in Section 3.2. At the receiver, each AP is equipped with a local detector,
an LLR computing module, and an LDPC decoder. The APs use their local
channel estimates to perform IDD on the received signals. The detector sends
its symbol estimates to a module that computes the local soft information λi

in the form of LLRs. The computed LLRs are then sent to the decoder, which
performs iterative processing by exchanging extrinsic information λe with the
local detector. In the decentralized operation, the APs act as compute-and-
forward relays by sending their soft beliefs to the CPU for further processing.
The challenge at the CPU is to design an intelligent way of processing these
LLRs. We devised three techniques for processing these LLRs. The first scheme
(standard LLR processing) is based on individual decisions from each AP, and
an average BER is then computed based on these decisions from each AP. The
second scheme considers censoring the LLRs (LLR censoring) and decoding
each UE data at the AP, where it achieves the largest mean absolute value
of LLRs. The third scheme is based on the linear combination of the LLRs
(LLR Ref). A detailed explanation, operation, and analysis of the proposed
LLR processing schemes are given in Section 3.6.
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3.3.1
Proposed Decentralized Receiver Design

The channel statistics, estimation, and received signals follow the model
introduced in Section 3.1.1. The received signal at the l-th AP is given by

yl =
K∑

i=1
gilsi + nl ∈ CN×1, (3-20)

which can further be decomposed as

yl = ĝklsk + Ĝilsi +
K∑

m=1
g̃mlsm + nl, (3-21)

where the first term on the RHS is the desired signal, the second term is the
interference from the other K−1 users, the third term denotes the interference
due to channel estimation errors, and the fourth term is the phase-rotated
noise. The received local symbol estimate of the k-th UE data stream at the
l-th AP after removing the MUI is given by

s̃kl = wH
klDkl

(
yl − Ĝils̄i

)
, (3-22)

where the notation Dkl implies that the l-th AP is among the selected
APs. Here, the optimization of the received combining filter wkl is obtained
by minimizing the error between the estimated detected symbol and the
transmitted symbol. The optimization problem is formulated as

wkl = arg min
(wkl)

E
{
||s̃kl − sk||2 | Ĝl

}
. (3-23)

The derivation is similar to the centralized approach, and, for completeness,
it is described in detail in Appendix C. The optimal receive filter wkl should
satisfy the following relation:

DklE{yRlyH
Rl}DH

klwkl −DklE{yRls
∗
k} = 0. (3-24)

Thus, the solution to the receive filter is given by

wkl =
(
DklE{yRlyH

Rl}DH
kl

)−1
DklE{yRls

∗
k}. (3-25)

The terms E{yRls
∗
k} and E{yRlyH

Rl} are respectively, given by

E{yRls
∗
k} = ρkĝkl, (3-26)
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E{yRlyH
Rl} = ρkĝklĝH

kl + Ĝil∆ilĜH
il +

K∑
m=1

(
| sm |2 +σ2

m

)
Cml + σ2IN , (3-27)

where ∆il denotes the covariance matrix that consists of the entries computed
in (2-33), locally computed at the l-th AP. By substituting (3-26) and (3-27)
into (3-25), the solution of the local receive filter wH

kl is given by

wkl = ρk

(
Dkl

(
ρkĝklĝH

kl + Ĝil∆ilĜH
il + σ2IN +

K∑
m=1

(
| sm |2 +σ2

m

)
Cml

)
DH

kl

)−1

×Dklĝkl. (3-28)

3.3.2
Insights into the Decentralized MMSE Filter

In what follows, we draw insights into the derived local MMSE filter
expression to study the impact of the major parameters and scenarios that
affect the receiver’s performance for the cases with a selected AP, PCSI, and
different number of iterations. When the local AP is selected with all its
antennas, the selection matrix Dkl = IN . The local filter in (3-28) is

wkl = ρk

(
ρkĝklĝH

kl + Ĝil∆ilĜH
il +

(
K∑

m=1

(
| sm |2 +σ2

m

)
Cml + σ2IN

))−1

ĝkl.

(3-29)

Assuming PCSI, the fourth term in (3-28) vanishes to zero, and we obtain the
filter given by

wkl = ρk

(
ρkDklgklgH

klDH
kl + DklGil∆ilGH

il DH
kl + σ2DklIND̃H

kl

)−1

gklDkl.

(3-30)

In the first iteration, s̄i = 0 in (2-31), which yields the linear MMSE filter and
the estimated signal in (3-22) given by

s̃kl = ρkĝH
klDH

kl

×
(

Dkl

(
ρkĝklĝH

kl + Ĝildiag (ρ) ĜH
il +

K∑
m=1

(
| s̄m |2 +σ2

m

)
Cml + σ2IN

)
DH

kl

)−1

yl,

(3-31)

where the parameter ρ denotes the average transmit power vector for the
other K − 1 UEs. The mean symbol s̄i ≈ si in (2-31) increases as the number
of iterations increases. Thus, the filter becomes a perfect interference canceler.
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(3-22) yields

s̃kl =ρkĝH
klDH

kl

(
Dkl

(
ρkĝklĝH

kl +
K∑

m=1
| sm |2 Cml + σ2IN

)
DH

kl

)−1

×
(
yl −DklĜilsi

)
. (3-32)

The derived MMSE-SIC filters in (3-15) and (3-28) experience error prop-
agation at each sequential step. In what follows, we describe the proposed
list-based detector that is capable of suppressing the error propagation that
occurs at each cancellation step.

3.4
Proposed List-based detector

In this section, a list-based detection scheme is proposed and detailed
[13,48,49] as presented in Subsection 2.3.6.

The latency and complexity for the above SIC-based receivers is quite
high and gets worse as the number of UE and antennas in the network increases,
which is inevitable in CF-mMIMO networks [50]. To handle the issue of latency,
we propose the use of PIC based receiver. Also, the RMF is known for its
low complexity since it does not require any matrix inversions. Therefore, we
present the analysis of the proposed local low latency and complexity receivers
in the following section.

3.5
Low Latency and Low Complexity Local receivers

This section presents low latency and low complexity soft iterative
detectors for a coded CF-mMIMO based on PIC and RMF, respectively.
Particularly, new closed-form expressions for the local MMSE-PIC detector
are derived considering the interference from channel estimation and APs-Sel.
Assuming the absence of prior information on the transmitted code bit at the
first iteration, a local linear MMSE detector expression is deducted from the
MMSE-PIC expression. Furthermore, the MMSE-PIC detector is compared
with the linear MMSE and RMF detectors.

3.5.1
Iterative Local Receiver Design

The proposed low-complexity and low-latency local receivers are exam-
ined in this section.
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The estimate of the detected signal of the k-th UE at the l−th selected
AP is given by

s̃kl = wH
klDklyl, (3-33)

where wH
kl denotes the receive local filter.

3.5.2
Receive Matched Filter

For the RMF, the weighting vector for the k-th UE stream is given by [48]

wkl,RMF = Dklĝkl. (3-34)

By substituting (3-34) into (3-33), the detected signal at the output of a RMF
for the k-th UE is given by

s̃kl =
N∑

γ=1
| ĝkl,γ |2 [Dkl]γ,γ sk +

N∑
γ=1

K∑
i=1,i ̸=k

ĝ∗
kl,γ ĝil,γ [Dkl]γ,γ si

+
N∑

γ=1
ĝ∗

kl,γ [Dkl]γ,γ nl,γ +
N∑

γ=1

K∑
m=1

ĝ∗
kl,γ g̃ml,γ [Dkl]γ,γ sm, (3-35)

The detection estimate in (3-35) can be further simplified to yield

s̃kl = Nθsk +
N∑

γ=1

K∑
i=1,i ̸=k

ĝ∗
kl,γ ĝil,γ [Dkl]γ,γ si +

N∑
γ=1

K∑
m=1

ĝ∗
kl,γ g̃ml,γ [Dkl]γ,γ sm

+
N∑

γ=1
ĝ∗

kl,γ [Dkl]γ,γ nl,γ. (3-36)

The parameter θ is given by θ = 1
N

∑N
γ=1 | ĝkl,γ |2 [Dkl]γ,γ =∑N

γ=1

(
ν2

kl,γ + ψ2
kl,γ

)
[Dkl]γ,γ , where νkl,γ = 1√

N
ℜ{ĝkl,γ} and ψkl,γ = 1√

N
ℑ{ĝkl,γ}.

We assume that νkl,γ and ψkl,γ are Gaussian random variables (RVs) with
zero mean and variance σ2

ν = 1
2N

. Then, for a selected AP θ is a Chi-
Squared RV with 2N degrees of freedom whose mean and variance are given
by E {θ} = 2Nσ2

ν = 1 and Var {θ} = 4Nσ2
ν = 1

N
, respectively [50]. The second

order moment of θ is mathematically expressed as

E
{
θ2
}

= E {θ}+ Var {θ} = 1 + 1
N
. (3-37)

From (3-37), we can deduct that as the number of antennas N ≫ 1 at each
AP, θ2 ≈ E {θ2} ≈ 1. The MUI and the channel estimate error of the RMF are
denoted by the second and third terms of (3-36). Interference remains constant
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regardless of the SNR of the channel. As a result, the RMF’s performance for
uncoded systems is never good. We propose to enhance its performance with
soft RMF and LLR refining techniques. We also propose a low-latency local
iterative interference cancellation strategy based on soft MMSE-PIC, detailed
in the next subsection.

3.5.3
MMSE with Parallel Interference Cancellation

The local detected symbol estimate of the k-th UE at the l-th AP is
obtained by applying an MMSE-PIC filter after subtracting the expectation
of the soft mean values computed in (2-31). This is given by

s̃kl =wH
kl,PICDklĝklsk + wH

kl,PICDkl

K∑
i=1,i ̸=k

ĝil (si − s̄i) + wH
kl,PICDklnl

+ wH
kl,PICDkl

K∑
m=1

g̃mlsm. (3-38)

The receive filter wH
kl,PIC is chosen to minimize the error between the symbol

estimate and the transmitted symbol. The optimization problem to obtain the
optimal value of wH

kl,PIC is formulated as

wH
kl,PIC = arg min

(wH
kl,PIC)

E
{
||s̃kl − sk||2 | Ĝl

}
. (3-39)

The objective on the RHS of (3-39) is obtained by assuming statistical inde-
pendence between each term of yl and ignoring terms that do not depend on
wH

kl,PIC. After some mathematical and algebraic manipulations, the objective
should satisfy the following relation

E
{
||s̃kl − sk||2 | Ĝl

}
= wH

kl,PICDkl

(
ρkĝklĝH

kl +
K∑

i=1,i ̸=k

ĝilE
{
| si − s̄i |2

}
ĝH

il

+
K∑

m=1

(
| sm |2 +σ2

m

)
Cml + σ2IN

)
DH

klwkl,PIC − ρkwH
kl,PICDklĝkl, (3-40)

where E
{
g̃mlg̃H

ml

}
= Cml, E

{
nlnH

l

}
= σ2IN , E

{
sks

H
k

}
= ρk, E {sms

∗
m} =

|sm|2 + σ2
m. The term E {| si − s̄i |2} denotes the covariance and its values are

computed locally at each AP according to (2-33). By differentiating (3-40) with
respect to (w.r.t) wH

kl,PIC and equating to zero , the optimal local MMSE-PIC
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filter is given by

wkl,PIC =ρk

[
Dkl

(
ρkĝklĝH

kl +
K∑

i=1,i ̸=k

ĝilE
{
| si − s̄i |2

}
ĝH

il (3-41)

+
K∑

m=1

(
| sm |2 +σ2

m

)
Cml + σ2IN

)
DH

kl

]−1

Dklĝkl.

At the first iteration, there is no prior information about the transmitted code
bit. In this case, s̄i = 0 in (3-41). This yields the local linear MMSE filter given
by

wkl,MMSE =ρk

[
Dkl

(
ρkĝklĝH

kl +
K∑

i=1,i ̸=k

ĝilĝH
il ρi +

K∑
m=1

(
| sm |2 +σ2

m

)
Cml (3-42)

+ σ2IN

)
DH

kl

]−1

Dklĝkl,

where ρi = E {| si |2}.
The derived centralized and decentralized filters suffer from interference

due to the other K−1 users, channel estimation errors, and AWGN noise. This
makes the derived filters non-Gaussian because the output of a Gaussian filter
should be Gaussian for a Gaussian input. In the next section, we approximate
the filters to be Gaussian by computing the mean and variances, present
the LLR processing schemes, perform signaling and computational complexity
analysis, and explain the considered decoding algorithm.

3.6
Iterative Processing and Refinement

This section presents the iterative processing of the IDD schemes for
the studied MMSE-based detectors, which employ a detector and an LDPC
decoder, and the proposed LLR refinement techniques. The received signal at
the output of the receive filter contains the desired symbol, MUI, and noise.
The parameter uk in Figure 2.2 is assumed to be an output of an AWGN
channel [9–11,14,51] given by

uk = ωksk + zk, (3-43)

where E{s∗
kuk} = ρkwH

k D̃kĝk and E{s∗
kukl} = ρkwH

klD̃klĝkl are for the
centralized and decentralized schemes, respectively. The parameter zk is a zero-
mean AWGN variable. Using similar procedures as in [12,49,52], the variance
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κ2 of zk is computed by κ2 = E {| uk − ωksk |2}:

κ2 = wH
k Dk

(
Ĝi∆iĜH

i +
K∑

m=1
ρmCm + σ2INL

)
DH

k wk, (3-44)

and

κ2
l = wH

klDkl

(
Ĝil∆iĜH

il +
K∑

m=1
ρmCml + σ2IN

)
DH

klwkl, (3-45)

are for the centralized and decentralized schemes, respectively. Detailed deriva-
tions of (3-44) and (3-45) are presented in Appendices D and E for centralized
and decentralized processing schemes, respectively. For the case of low com-
plexity and latency receivers, consider the relation given by

s̃kl = µklsk + ςkl. (3-46)

By comparing (3-46) with (3-36) and (3-38), µkl,RMF = Nθ and µkl,PIC =
wH

kl,PICDklĝkl. The noise terms ςkl are

ςkl,RMF =
N∑

γ=1

K∑
i=1,i ̸=k

ĝ∗
kl,γ ĝil,γ [Dkl]γ,γ si +

N∑
γ=1

K∑
m=1

ĝ∗
kl,γ g̃ml,γ [Dkl]γ,γ sm

+
N∑

γ=1
ĝ∗

kl,γ [Dkl]γ,γ nl,γ, (3-47)

and

ςkl,PIC =wH
kl,PICDkl

K∑
i=1,i ̸=k

ĝil (si − s̄i) + wH
kl,PICDkl

K∑
m=1

g̃mlsm + wH
kl,PICDklnl.

(3-48)

The variance σ2
h = E {| s̃kl − µklsk |2} = E {ςklς

∗
kl} of ςkl can be obtained using

similar steps used in [5, 6] and is expressed as

σ2
RMF = N

(
Es (K − 1) +

K∑
m=1

(
| sm |2 +σ2

m

)
tr {Cml}+ σ2

)
, (3-49)

and

σ2
PIC =wH

kl,PICDkl

(
K∑

i=1,i ̸=k

ĝilE
{
| si − s̄i |2

}
ĝH

il +
K∑

m=1

(
| sm |2 +σ2

m

)
Cml + σ2IN

)

×DH
klwkl,PIC. (3-50)

Where (3-44) is based on the assumption that Dkl = IN .
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The extrinsic LLR computed by the detector for the l-th bit l ∈
{1, 2, ...,Mc} of the symbol sk [4–6,53] is given by

Λe

(
b(k−1)Mc+l

)
=

logP
(
b(k−1)Mc+l = +1|uk

)
logP

(
b(k−1)Mc+l = −1|uk

) − logP
(
b(k−1)Mc+1 = +1

)
logP

(
b(k−1)Mc+1 = −1

)
= log

∑
s∈A+1

l
f (uk|s)P (s)∑

s∈A−1
l
f (uk|s)P (s) − Λi

(
b(k−1)Mc+l

)
, (3-51)

where the last equality of (4-51) follows from Bayesian rule. The parameter
A+1

l is the set of 2Mc−1 hypotheses for which the l-th bit is +1. The a-
priori probability P (s) is given by (2-32). The approximation of the likelihood
function [7, 53] f(uk|s) is given by

f (uk|s) ≃
1
πκ2 exp

(
− 1
κ2 |uk − ωks|2

)
. (3-52)

After local processing, the CPU has to perform final decisions by using the
LLRs from the different APs. This is accomplished by proposing three LLR
processing strategies presented as follows:

3.6.1
Standard LLR Processing

In this strategy, each AP computes the BER based on decisions from its
LLRs. After obtaining the BER from each AP, an average BER is calculated for
the entire network. However, such an approach yields poor results, as some APs
have very unreliable LLRs for particular UEs. We then discuss two proposed
strategies to improve the performance of local detectors.

3.6.2
LLR Censoring

In this subsection, we present an LLR censoring technique that helps to
reduce the redundant processing of LLRs at the CPU. First, the independent
streams of LLRs are sent from the APs to the CPU with dimensions KCleng.
At each AP, we compute the mean absolute value of the LLRs, which is given
by

µΛkl,e
= 1
Cleng

Cleng∑
c=1
|Λl,e|. (3-53)

Based on µΛkl,e
, the UE is decoded at the AP when this parameter is highest

and the other LLRs are discarded. This is done for all APs, and a new matrix
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Λnew
k,e with the censored LLRs is formed and used in performing final decoding.

The LLR censoring strategy is summarized in Algorithm 1.

Algorithm 1 Algorithm for Censoring Local LLRs
Λe ∈ CKClengL, Λnew

k,e = 0KCleng

for l=1 to L do
for k=1 to K do

if µΛkl,e
≥ max

(
µΛk,e

)
then

Λnew
k,e = Λkl,e

else
Continue

end if
k ← k + 1

end for
l← l + 1

end for
Output Λnew

k,e

3.6.3
LLR Refinement

We propose an LLR refinement strategy that computes the linear sum-
mation of the multiple streams of LLRs obtained from the locally computed
joint IDD detectors. Mathematically, the refined combination of LLRs at the
CPU is given by

Λavg,e
(
b(k−1)Mc+l

)
=

L∑
l=1

Λl,e

(
b(k−1)Mc+l

)
. (3-54)

The idea of combining multiple streams of LLRs creates some diversity benefits
from the LLRs and yields some performance improvement in the network.
Another key advantage of decentralized processing is that each AP has accurate
channel estimates; thus, it is better to perform the detection locally than at
the CPU. The mean of the refined LLRs is given by

E[Λavg,e
(
b(k−1)Mc+l

)
] =

L∑
l=1

E[Λl,e

(
b(k−1)Mc+l

)
], (3-55)

= µΛavg,e , (3-56)

where E[Λl,e

(
b(k−1)Mc+l

)
]→ 0 since

E[Λl,e

(
b(k−1)Mc+l

)
] = log

∫
Λl,e

(
b(k−1)Mc+l

)
pΛl,e|H0dΛl,e,

= log
∫ pΛl,e|H1

pΛl,e|H0

pΛl,e|H0dΛl,e = 0,
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where pΛl,e|H1 is the conditional probability density function (pdf) of the LLR
of stream l given bit 1 and pΛl,e|H0 is the conditional pdf of the LLR given bit
0. The variance of the refined LLRs is given by

σ2
Λavg,e = E[

(
Λavg,e

(
b(k−1)Mc+l

)
− µΛavg,e

)2
]

= 1
L

L∑
l=1

(
(Λavg,e

(
b(k−1)Mc+l

)2
−

L∑
n=1

Λn,e

(
b(k−1)Mc+l)

)
.

(3-57)

This suggests that the refinement benefits come from enhancing the quality of
the LLRs through their variance reduction, which shifts the LLRs with small
values away from the origin.

3.6.4
Computational Complexity

The worst-case with all APs to assess the computational complexity of
obtaining the studied detection schemes is considered. A key observation from
the derived expressions is that decentralized detection reduces the complexity
at the CPU in terms of computations since each AP locally detects its signal
based on the available channel estimates, i.e., local detection only requires
N × N matrix inversions. On the other hand, NL × NL matrix inversions
are required for the centralized processing scenario since all the combined
signal is detected as a whole at the CPU, which increases the complexity
of the detectors. However, the CPU is designed to have high processing
power to handle such complexity [1]. A detailed complexity analysis for the
considered detectors can be found in Table A.1. It can be observed that the
computational complexity of the decentralized and centralized detectors is of
the order O(N2LK) and O(N2L2K), respectively. Where O(·) is the big O
notation.

3.6.5
Signaling Analysis

In CF-mMIMO, the APs detect the signals locally or delegate the task
fully or partially to the CPU. However, there should be a trade off between
the required front-haul signaling amount and detection performance [45]. Both
the centralized and the decentralized processing require (τc − τp)N scalars for
the uplink received data and τpN complex scalars for the pilot sequences.
Additionally, the centralized processing requires the KLN2

2 -dimensional spatial
correlation matrix Ωkl. For decentralized processing, the CPU does not require
any statistical parameters for the spatial correlation matrix since the local
channel estimates exist at the APs. However, the CPU should know the



Chapter 3. Centralized and Decentralized IDD Schemes with AP Selection and
LLR Refinement 56

Table 3.1: Computational complexity per detector.

Detector Multiplications

Decentralized-MMSE 2N2LK +2K2NL+8KNL+4KL2Mc +2McKL2Mc +KL

Centralized-MMSE 2N2L2K + 8KNL + 2K2NL + 4K2Mc + 2McK2Mc + K

Decentralized-SIC 4N2LK +2K2NL+8KNL+9KL2Mc +4McKL2Mc +KL

Centralized-SIC 2(NLK)2 + 2(NL)2K + K2NL + 5NLK + K + 9K2Mc +
4McK2Mc

Decentralized-List 4N2LK+5K2NL+12KNL+9KL2Mc +4McKL2Mc +2KL

Centralized-List 2(NLK)2 + 2(NL)2K + 3K2NL + 9NLK + K + 9K2Mc +
4McK2Mc

Decentralized-RMF 2K2L + 4KNL + 4KLMc2Mc + 4KL2Mc

Decentralized-MMSE-
PIC

4N2LK +3K2NL+8KNL+9KL2Mc +4McKL2Mc +KL

KClengL-dimensional matrix of the LLRs in (3-54) to compute the average,
where Cleng is the code word length. Thus, the signaling is summarized in
Table A.2 and is analogous to the one in [45], with additional knowledge of
the dimension of the LLR matrix for the final decoding of the LLRs received
from local processors.

Table 3.2: Number of complex sequences to share via front haul connections, from APs to
CPU.

Processing
Scenario

Each Coher-
ence block

Statistical
Parame-
ters

Centralized τcNL [45] KLN2/2
[45]

Decentralized (τc − τp) KL
[45]

−

3.6.6
Decoding Algorithm

The proposed detectors use the box-plus SPA decoder discussed in
chapter two. The decoder comprises of two steps namely: Single parity check
(SPC) stage and the repetition stage. The LLRs sent from check node (CN)J

to variable node (VN)i are computed as

Λj−→i = ⊞i′ ∈N(j)⧹iΛi′−→j , (3-58)
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where ⊞ denotes the pairwise “box-plus" operator given by

Λ1 ⊞ Λ2 = log
(

1 + eΛ1+Λ2

eΛ1 + eΛ2

)
, (3-59)

=sign(Λ1)sign(Λ2) min(|Λ1| , |Λ2|) + log
(
1 + e−|Λ1+Λ2|

)
− log

(
1 + e−|Λ1−Λ2|

)
.

The LLR from V Ni to CNj is given by

Λi−→j = Λi +
∑

j′ ∈N(i)\j

Λj′ −→i, (3-60)

where the parameter Λi denotes the LLR at V Ni, j
′ ∈ N(i)\j means that all

CNs connected to V Ni except CNj.

3.7
Simulation Results

In this section, the bit error rate (BER) performance of the proposed soft
detectors is presented for the CF-mMIMO settings. The CF-mMIMO channel
exhibits high PL values due to LS fading coefficients. Thus, the instantaneous
SNR is expressed by

SNR =
∑L

l=1(Gl diag (ρ) GH
l )

σ2
nNLK

. (3-61)

The simulation parameters are varied according to Table 4.2, unless stated
otherwise.

Network setup, assumptions and remarks: We consider a cell-free
environment with a square of dimensions D × D. The spatial correlation
matrices Ωjl are assumed to be locally available at the APs, and their entries
are generated using the Gaussian local scattering model [45] with an angular
standard deviation defined in Table 4.2. The modulation scheme used is
QPSK. The LS fading coefficients are obtained according to the 3rd Generation
Partnership Project (3GPP) Urban Microcell model in [45] given by

βk,l [dB] = −30.5− 36.7 log10

(
dkl

1m

)
+ Υkl, (3-62)

where dkl is the distance between the k-th UE and l-th AP, Υkl ∼ N (0, 42)
is the shadow fading. We believe that the considered propagation channel
model is sufficiently general to allow simple changes and assessments of line of
sight (LoS), path loss, and shadowing distributions for evaluating CF-mMIMO
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Table 3.3: Simulation Parameters.

Parameter Value

Codeword length (Cleng) 256

Parity Check bits (M) 128

Message bits Cleng −M

Code rate R 1
2

Threshold Euclidean distance
(dth)

0.38

τu, τp, τc 190, 10, 200

ηk 100 mW

Threshold for non-master AP
(βth)

−20 dB

Maximum decoder iterations 10

Signal power ρ 1 W

Maximum decoder iterations 10

Square length of CF-mMIMO
Network D

1 km

Angular standard deviation 15◦

Noise power −96 dBm

Bandwidth 20 MHz

Number of channel realizations 10000

networks, as recommended in the literature for micro cell scenarios [45]. The
simulation results are based on single antenna UEs for simplicity of analysis,
the test of ideas, and to allow a shorter simulation time. However, this can be
extended to multiple antenna UEs to fully address the most practical systems.
Note should also be taken that the considered scenarios and network settings
in terms of code word length, number of APs, and antennas provide reasonably
acceptable performances in terms of BER. However, improvements in the BER
can be obtained by using longer channel codes and increasing the number of
APs and antennas in the network at the expense of increased complexity.

In Table 3.4, we provide numerical values for the number of multiplica-
tions that should be done per iteration for each detector for different numbers
of UEs K, APs L and APs antennas N . It can be seen that the linear MMSE-
based receivers have low complexity values as compared to the SIC and list-
based receivers. Also, it is noteworthy that decentralized receivers have lower
complexity values as compared to centralized receivers. Nevertheless, the pro-
posed list-based receivers achieve costs that are slightly higher than those of
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the SIC-based receivers. However, using list-based detection improves perfor-
mance, as shown in the numerical results. Figure 4.3 presents the BER versus

Table 3.4: Cost in number of multiplications for the detectors.

Detector Cost for K = 8,
L = 16, N = 4

Cost for K = 8,
L = 32, N = 4

Decentralized-
MMSE

1.70× 103 3.40× 104

Centralized-MMSE 7.81× 104 2.87× 105

Decentralized-SIC 2.57× 104 5.15× 104

Centralized-SIC 5.97× 105 2.37× 106

Decentralized-List 3.84× 104 7.68× 104

Centralized-List 6.08× 105 2.39× 106

the SNR for the cases (a) before LLR refinement (w/o-LLR-Ref) and (b) after
LLR refinement (w-LLR-Ref) for the studied detectors. It can be noticed that
there is a significant reduction in the BER for the case with LLR refinement
as compared to the scenario without LLR refinement. This performance im-
provement is attributed to the linear combination of the multiple streams of
LLRs from the different APs, which improves their reliability by shifting the
LLRs with small values away from the origin. Secondly, some benefits arise due
to the diversity of LLRs, which improves the system performance, whereas in
the w/o-LLR-Ref case, the hard decisions are made based on the individual
APs LLRs, and later an average BER is obtained. This naive approach leads
to performance degradation as some APs have very unreliable estimates and
hence poor LLRs. Thus, hard decisions made on LLRs from such APs com-
promise the entire network performance. Additionally, the figure compares the
case with perfect CSI (PCSI) and imperfect CSI (ICSI). It can be observed
that the detection based on the PCSI achieves lower BERs as compared to the
case with the ICSI. This is because the channel estimation error and pilot con-
tamination degrade the network performance, resulting in high BERs. Another
key observation is that the proposed list-based detector achieves lower BER
values than the SIC detector. This is because the conventional SIC experiences
error propagation that occurs due to erroneous decisions in the previous can-
cellation stages. To overcome this issue and improve performance, list-based
detection provides multi-feedback (MF) diversity that helps to correct this er-
ror propagation as the number of iterations increases. Note also that the linear
MMSE receiver has the worst performance among the studied detectors since
it does not have the ∆i matrix used for interference cancellation.
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Figure 3.3: BER versus SNR while comparing detectors for decentralized processing for
L = 4, N = 4, K = 4: (a) Before LLR Refinement and (b) After LLR Refinement.

A comparison of the centralized and decentralized processing schemes in
terms of BER versus SNR is presented in Figure 3.4. The results show that
the case with centralized processing achieves lower BER values than the case
with decentralized processing. This is because centralized processing takes the
joint detection of all the received signals into account. Also, the case w/o-LLR-
Ref achieves the worst performance since each AP performs its hard decisions
locally based on the available LLRs and an average BER is obtained for the
entire network, which yields a huge performance gap and degradation. The
case w-LLR-Ref outperforms the standard processing scheme since it takes
advantage of LLR combining. This yields more reliable LLRs around the mean,
which improves performance. This performance improvement is significant for
CF-mMIMO architectures as it can yield less complex solutions in uplink
detection schemes, i.e., for the decentralized processing, there is a substantial
reduction in the computation complexity and the fronthaul signaling load in
the network, as shown in Tables A.1 and A.2, respectively.

Figure 3.5 shows the BER versus SNR for the decentralized processing
cases using w-LLR-Ref and LLR-Censoring. It is clear that the case using LLR
refinement has a lower BER than the one using LLR censoring. The UE can
only be decoded at the AP, achieving the highest mean absolute value when
LLR censoring is used. In contrast, LLR refinement enhances performance
by performing a linear combination of the LLRs from all APs. Nonetheless,
censoring LLRs prevents the redundant processing of the LLRs. The only
difficulty that might arise is a slight increase in the hardware complexity of the
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Figure 3.4: BER versus SNR for All APs comparing decentralized and centralized processing
for the case with imperfect CSI with L = 4, K = 4, N = 4, IDD = 2.
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Figure 3.5: BER versus SNR for All APs comparing LLR Censoring and LLR Refinement
for decentralized processing for the case with imperfect CSI with L = 4, K = 4, N = 4,
IDD = 2.

receiver design since the CPU must constantly scan all the APs to identify the
one that offers the largest absolute value of LLRs to a specific UE. However, the
CPU is usually designed with strong computing power, so it can handle such
complexity. One could interpret the proposed LLR censoring and refinement
as analogous to the selection combining and maximal ratio combining used in
diversity analysis. However, the former leverages the distributed computation
of LLRs from each AP, and therefore it should not be confused with the latter
schemes.
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Figure 3.6: BER versus SNR for a case that uses All APs and a case that uses APs-Sel for
L = 4, N = 4, K = 4: (a) Centralized Processing and (b) Decentralized Processing

.

Figure 3.6 plots the BER versus SNR for the case that the detectors
use all APs (All-APs) and the case that uses AP selection (APs-Sel) with
(a) centralized and (b) decentralized processing schemes. It can be observed
that for both processing levels, the system that uses All-APs achieves lower
BER values as compared to the one that selects the APs. This is because
selecting APs reduces the number of antennas in the network, distorting the
performance. However, APs-Sel reduces the signaling load, making the network
more scalable and practical. Moreover, the distributed location, the delay
spread of the APs, and the associated signal propagation latency will limit
the APs involved in cell-free MIMO systems. Therefore, APs-Sel techniques
are key to reducing fronthaul signaling, computational costs, and latency.

The BER versus SNR of the detectors while varying the number of outer
iterations for the detectors is presented in Figure 3.7. From the curves, it
can be noticed that increasing the number of iterations reduces the BER.
Specifically, for both centralized and decentralized (a) SIC and (b) List-SIC,
there is a significant performance improvement when the number of iterations
is increased from 1 to 2 iterations for both detectors. However, after the third
iteration, the performance benefits are marginal.

Figure 3.8 (a) plots the computational complexity versus the number of
UEsK while considering the studied detectors for centralized and decentralized
processing. It can be observed that the linear MMSE detectors have the
lowest computation complexity for both cases. The list-based detectors have
slightly higher computation complexity than the SIC-based detectors. It is
worth mentioning that the differences in computational complexity between
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Figure 3.7: BER versus SNR while varying number of IDD iterations for L = 4, N = 4,
K = 4: (a) SIC and (b) List-SIC.
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Figure 3.8: Number of multiplications versus number of UE K and number of APs L (a)
Computational complexity for L = 50, Mc = 2, N = 4 and (b) Signaling load for K = 4,
N = 8.
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SIC and List-SIC are marginal, whereas centralized detectors have a higher
computation cost than decentralized detectors. The signaling load is given by
the number of complex scalars that must be exchanged in the network, which
is shown in Figure 3.8 (b) for the centralized and decentralized CF-mMIMO
setups. From the curves, it can be noticed that decentralized processing
requires less signaling between the APs and CPU than the centralized setup.
The decentralized processing requires knowledge of the KClengL-dimensional
matrix of the LLRs from all APs to perform the final processing. Nevertheless,
decentralized schemes greatly reduce the required signaling in the network and
can achieve close performance to that of centralized processing while using LLR
refinement.
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Figure 3.9: BER versus SNR while comparing the studied detectors and LLR refinement
strategies for L = 4, N = 4, K = 4: (a) all APs (Full-Network), IDD = 2 (b) LP-wAPS
(Scalable), IDD = 2.

The BER versus SNR characteristic for the three LLR processing schemes
is presented in Figures 3.9 (a) and 3.9 (b) for all APs and scalable networks,
respectively, while comparing the detectors. The MMSE-PIC detector achieves
the lowest BER, followed by the MMSE and lastly the RMF. The LLR com-
bining and censoring schemes achieve the best performance, while individual
decoding at each AP achieves the worst performance. This is because the LLR
refinements improve the network’s performance. The superior performance of
the PIC-based detector is attributed to its ability to cancel MUI in a robust
manner. On the other hand, RMF has poor performance but does not require
any matrix inversions, which reduces the complexity. Furthermore, LLR cen-
soring helps to mitigate redundant processing at the CPU. However, because
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Figure 3.10: BER versus SNR while variying number of IDD Iterations for PIC with different
LLR refinement strategies for L = 4, N = 4, K = 4: (c) Full-Network (d) Scalable-Network.

the CPU must constantly search through all APs to identify the one with the
most reliable LLRs for a specific UE, which increases the hardware complex-
ity of the receiver. The superior performance of LLR combining is due to its
ability to achieve LLR diversity and shift LLRs with poor beliefs away from
the origin. Figures 3.10 (c) and 3.10 (d) are, respectively, for all APs and scal-
able networks with the MMSE-PIC detector. Varying iterations from one to
two provide a significant reduction in BER for LLR processing schemes but a
marginal reduction after the second iteration. The exchange of soft beliefs be-
tween decoders and detectors improves performance as more prior information
is useful in the cancellation step.
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3.8
Summary

In this chapter, an IDD scheme using LDPC codes has been devised
with APs selection for centralized and decentralized CF-mMIMO architectures.
In particular, we have proposed low-complexity interference mitigation tech-
niques including a list-based detector that uses MMSE receive filter to improve
the performance. New closed-form expressions for the MMSE-soft-IC detectors
have been derived for both the centralized and decentralized implementations,
taking the channel estimation errors and APs selection into account. The per-
formance of the proposed list-based detector is compared with other baseline
detectors, such as the soft linear MMSE, MMSE-SIC, and the results show that
the list-based detector yields low BER values compared to the other detectors.
Additionally, Low-complexity and low-latency local receive filters based on
RMF and MMSE-PIC have been studied for the decentralized CF-mMIMO
network. Furthermore LLR refinement strategies based on combining and cen-
soring LLRs have been proposed. The results have shown that LLR refinement
strategies obtained lower BER values than standard processing. The proposed
scalable APs-Sel APs-Sel scheme based on LLSF coefficients can reduce the
signaling load between APs and the CPU, resulting in a trade-off between
performance, signaling load and network feasibility.



4
Iterative Soft Intra-Cluster and Out-of-Cluster Interference
Cancellation

In this chapter, cluster-based IDD schemes for network and user-centric
CF-mMIMO networks are proposed. This is motivated by the fact that cluster-
based transmit and receive processing strategies are scalable, requiring much
lower signaling loads to convey CSI to the APs and CPUs, and reduced
computational complexity to compute transmit and receive filters [45]. In fact,
IDD schemes used with both linear and non-linear receivers have been found
to provide performances that are close to the optimal receivers [9–12,48,49].

We first develop an IDD scheme for network clustered CF-mMIMO
network that can mitigate intra-cluster (ICL) interference in the presence of
both ICL and out-of-cluster (OCL) interference in CF-mMIMO networks. New
closed-form expressions for cluster-based MMSE-PIC receivers by considering
channel estimation errors, interference, and AWGN for full and clustered CF-
mMIMO networks are derived. Moreover, we devise closed-form expressions for
the Gaussian approximation of the likelihood function by computing the mean
and variance of the detected signals. Simulations evaluate both clustered and
full CF-mMIMO networks equipped with the proposed cluster-based MMSE-
PIC and linear MMSE receivers in terms of BER and complexity.

We then propose an iterative soft interference cancellation scheme for
ICL and OCL interference in user-centric clustered CF-mMIMO networks. In
particular, we develop MMSE receive filters for the proposed interference can-
cellation scheme in the presence of ICL and OCL interference and noise. We
also devise a least squares estimator (LSE) to perform multiple OCL interfer-
ence estimation. An IDD scheme that adopts LDPC codes and incorporates the
OCL interference estimate is then presented. Simulations assess the proposed
scheme against existing techniques in terms of BER performance.

4.1
Proposed System Model and Statistical Analysis

The proposed full and network cluster-based IDD schemes and receiver
designs are presented in this section.
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4.1.1
Proposed IDD Scheme for full CF-mMIMO networks

The block diagram of the proposed IDD scheme for full CF-mMIMO
networks is shown in Figure 4.1. The transmitter comprises of K UEs, an
LDPC encoder (Enc) and a modulator (Mod). The receiver is equipped with L
APs each with N antennas, and a CPU which comprises of a detector, an LLR
computing module and an LDPC decoder. The detector computes a symbol
estimate x̃k and sends it to a module which computes the intrinsic LLRs. These
obtained LLRs are then sent to the decoder which computes the extrinsic
LLRs Λe that are sent as feedback to the detector in an iterative fashion. This
feedback between the decoder and detector improves the performance as the
number of iterations increases as it shall be seen in the results.
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Figure 4.1: Block diagram for the IDD scheme of the full CF-mMIMO.

The received signal at the CPU for the full CF-mMIMO network setting
is given by

y = Gs + n, (4-1)

where s ∈ CK×1 and n ∈ CNL×1 are the transmitted symbol vector and
the AWGN noise vector with zero mean and unit variance, respectively. The
channel matrix G ∈ CNL×K comprises of both the small scale fading (SSF)
and large scale fading (LSF) coefficients and its entries between the l-th AP
and the k-th UE are given by [54]

gkl =
√
βklhkl, (4-2)

where βkl is the LSF coefficients as a result of path loss (PL) and shadowing.
The SSF coefficients are given by hkl that are assumed to be i.i.d. Gaussian
random variables with variance E{|hkl|2} = 1.
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4.1.1.1
Proposed Receiver Design for full CF-mMIMO

After PIC and channel estimation, the received signal at the CPU for the
k-th UE can be decomposed as

y = (ĝk + g̃k) +
K∑

i=1,i ̸=k

(si − s̄i) (ĝi + g̃i) + n, (4-3)

where the first term on the RHS of (4-3) is the desired signal, the second term
is the residue interference from the other K − 1 UEs and the third term is
an AWGN noive vector with zero mean and unit variance. The parameters
ĝk ∈ CNL×1, g̃k ∈ CNL×1, ĝi ∈ CNL×1, and g̃i ∈ CNL×1 are the estimated
channels and channel estimation errors for the k-th UE and interfering UEs,
respectively. The estimated symbol xk for the k-th UE is given by

xk =wH
k y, (4-4)

where wH
k ∈ C1×NLis the receive weighting vector for the k-th UE that is

chosen so that the error between the transmitted signal and the estimated
symbol is minimized.

The optimization problem to obtain wk is formulated as follows

wk = arg min
(wk)

E
{
||xk − sk||2

}
. (4-5)

The objective function on the RHS of (4-5) is obtained after assuming that
E {sks

∗
k} = 1 and can be written as

F =wH
k

(
(ĝk + g̃k) (ĝk + g̃k)H +

K∑
i=1,i ̸=k

(ĝi + g̃i)E
{
| si − s̄i |2

}
(ĝi + g̃i)H

×+E
{
nnH

})
wk −wH

k (ĝk + g̃k) . (4-6)

The optimal receive vector is obtained by differentiating (4-6) w.r.t wH
k

and equating to zero which yields

wk =
(ĝk + g̃k) (ĝk + g̃k)H +

K∑
i=1,i ̸=k

σ2
i (ĝi + g̃i) (ĝi + g̃i)H + σ2

nINL

−1

× (ĝk + g̃k) , (4-7)

where σ2
i = E {| si − s̄i |2} given by (2-33), σ2

nINL = E
{
nnH

}
.
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4.1.1.2
Insights into the receiver

For the case when there is no a-priori information about the transmitted
symbol, s̄i = 0, the receiver in (4-7) yields an MMSE filter given by

wk =
(

(ĝk + g̃k) (ĝk + g̃k)H +
K∑

i=1,i ̸=k

(ĝi + g̃i) (ĝi + g̃i)H + σ2
nINL

)−1

(ĝk + g̃k) ,

(4-8)

where E {sis
∗
i } = 1. As the number of iterations increases, si ≈ s̄i. The receiver

in (4-7) becomes a perfect interference canceler which yields a maximum ratio
combiner (MRC) given by

wk =
(
(ĝk + g̃k) (ĝk + g̃k)H + σ2

nINL

)−1
(ĝk + g̃k) . (4-9)

4.1.2
Proposed IDD Scheme for Network Clustered CF-mMIMO networks

The uplink of a cluster-based CFm-MIMO network with M clusters is
considered. Each cluster has L APs, each equipped with N antennas and K
UEs. The code word sequence in each cluster is formed by first encoding the
message sequence for a particular UE by an LDPC encoder with a code rate of
R. The encoded sequence is modulated to form a complex constellation of 2Mc

possible signal points. Then, the UEs send their encoded and modulated data
to the APs which act as forwarding relays to transfer the information to the
CPU, which has a joint detector that can either be a soft MMSE or MMSE-
PIC receiver, an LLR computing module and an LDPC decoder. The detector
and decoder exchange the information iteratively in a way that is analogous
to that of the full CF-mMIMO receiver.

The NL-dimensional received signal vector at the CPU is given by

yi = Giisi +
M∑

j=1,j ̸=i

Gijsj + ni, (4-10)

where Gii ∈ CNL×K, si ∈ CK×1, Gij ∈ CNL×K, and sj ∈ CK×1 are the sub
matrices in the i-th cluster, transmitted symbol vector in the i-th cluster, sub
matrices in the j-th cluster due to the i-th cluster, and the transmitted symbol
vector in the j-th cluster, respectively. The AWGN vector with zero mean and
unit variance is denoted by ni ∈ CNL×1.
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4.1.2.1
Proposed Intra-Cluster Soft Interference Cancellation

The proposed receiver configuration aims to cancel the MUI or the ICL
interference that is caused by the other K−1 UEs in the desired cluster without
removing the OCL interference from the neighboring clusters.

The received signal for the i-th cluster is given by

yi = gk,iisk,i +
K∑

q=1,q ̸=k

gq,ii (sq,i − s̄q,i) +
M∑

j=1,j ̸=i

Gijsj + ni, (4-11)

where the first term on RHS denotes the desired signal of the k-th UE in the
i-th cluster, the second term is ICL interference from the other K − 1 UEs
in the i-th cluster, OCL from the other neighboring clusters. The parameter
s̄q,i is the symbol mean in the i-th cluster and can be computed using (2-31),
gk,ii ∈ CNL×1 and gq,ii ∈ CNL×1, respectively. The estimated symbol at the
i-th cluster after parallel ICL interference suppression is given by

x̃k,i = wH
kigk,iisk,i + wH

ki

K∑
q=1,q ̸=k

gq,ii (sq,i − s̄q,i) + wH
ki

M∑
j=1,j ̸=i

Gijsj + wH
kini.

(4-12)

The design of the optimal filter wH
ki ∈ C1×NL aims to reduce the Euclidean

distance between the transmitted symbol ski and the estimated symbol x̃k,i.
The optimization problem is formulated as

wki = arg min
(wki)

E
{
||x̃k,i − sk,i||2

}
. (4-13)

The objective function on the RHS of (4-13) is given by (4-14) and it is obtained
after assuming that E

{
sk,is

∗
k,i

}
= 1 and σ2

nINL = E
{
ninH

i

}
.

F1 =wH
ki

(
gk,iigH

k,ii + σ2
nINL +

K∑
q=1,q ̸=k

gq,iiE
{
| sqi − s̄qi |2

}
gH

q,ii

+
M∑

j=1,j ̸=i

GijCjGH
ij

)
wki −wH

kigk,ii. (4-14)

Differentiating (4-14) w.r.t wH
ki and equating to zero, the optimal receive
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filter wki is given by

wki =
(

gk,iigH
k,ii +

K∑
q=1,q ̸=k

gq,iiE
{
| sqi − s̄qi |2

}
gH

q,ii +
M∑

j=1,j ̸=i

GijCjGH
ij + σ2

nINL

)−1

gk,ii.

(4-15)

4.1.2.2
Insights into the derived filter

At the first iteration, the parameter s̄qi = 0 and the filter in (4-15) yields
an MMSE filter given by

wki =
(

gk,iigH
k,ii +

K∑
q=1,q ̸=k

gq,iigH
q,ii +

M∑
j=1,j ̸=i

GijCjGH
ij + σ2

nINL

)−1

gk,ii.

(4-16)

As the number of iterations increase, a posterior information is exchanged
between the decoder and detector, thus s̄qi ≈ sqi. In this case, we have a
maximal ratio combining with the addition of OCL interference

wki =
(

gk,iigH
k,ii +

M∑
j=1,j ̸=i

GijCjGH
ij + σ2

nINL

)−1

gk,ii. (4-17)

For the case with imperfect channel state information (ICSI), gk,ii = ĝk,ii+g̃k,ii,
gq,ii = ĝq,ii+g̃q,ii, Gij = Ĝij+G̃ij. where, ĝk,ii, g̃k,ii, are the estimated channels,
channel estimation errors for the desired UE in the i-th cluster, ĝq,ii, g̃q,ii, are
estimated channels, channel estimation errors for the interference UEs in the
i-th cluster and Ĝij, G̃ij are estimated channels, channel estimation errors for
the channel sub-matrices in the j-th cluster due to APs in in the i-th cluster,
respectively. The resulting filter with ICSI is given by

wki =
(

(ĝk,ii + g̃k,ii) (ĝk,ii + g̃k,ii)H + σ2
nINL +

K∑
q=1,q ̸=k

(ĝq,ii + g̃q,ii)

× E
{
| sqi − s̄qi |2

}
(ĝq,ii + g̃q,ii)H +

M∑
j ̸=i

(
Ĝij + G̃ij

)
Cj

(
Ĝij + G̃ij

)H
)−1

× (ĝk,ii + g̃k,ii) . (4-18)
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4.1.3
Gaussian Approximation of the Receive Filter

The received signal at the output of the receive filter, contains the desired
symbol, residual co-user interference and noise. We use similar assumptions
given in [9–11,14,51] to approximate the ŝk as an AWGN channel given by

x̃k,i = µk,esk,i + zk,e, (4-19)

where e ∈ (CL-CF,Full-CF) denote the clustered and full CF mMIMO
networks, respectively. By comparing (4-19) with (4-4) and (4-12) , µk,CL-CF =
wH

kigk,ii and µk,Full-CF = wH
k gk for clustered CF and Full-CF mMIMO networks,

respectively. The parameter zk,e is a zero-mean AWGN variable given by

zk,CL-CF = wH
ki

K∑
q=1,q ̸=k

gq,ii (sq,i − s̄q,i) + wH
ki

M∑
j=1,j ̸=i

Gijsj + wH
kinj, (4-20)

and

zk,Full-CF = wH
k

K∑
i=1,i ̸=k

(si − s̄i) (ĝi + g̃i) + wH
k n. (4-21)

The variance σ2
z,e = E{zk,ez

∗
k,e} of zk,e is given by

σ2
z,CL-CF = wH

ki

( K∑
q=1,q ̸=k

gq,iiE
{
|sq,i − s̄q,i|2

}
gH

q,ii +
M∑

j=1,j ̸=i

GijE
{
sjsH

j

}
GH

ij + σ2
n,iINL

)
wki.

(4-22)

σ2
z,Full-CF = wH

ki

(
K∑

i=1,i ̸=k

σ2
i (ĝi + g̃i) (ĝi + g̃i)H + σ2

nINL

)
wki. (4-23)

4.2
Iterative Detection and Decoding

The extrinsic LLRs computed by the soft MMSE-PIC receiver for the
l-th bit l ∈ {1, 2, ...,Mc} of symbol sk transmitted by the k-th UE [9–11, 51]
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are given by

Λe

(
b(k−1)Mc+l

)
=

logP
(
b(k−1)Mc+l = +1|x̃k

)
logP

(
b(k−1)Mc+l = −1|x̃k

) − logP
(
b(k−1)Mc+1 = +1

)
logP

(
b(k−1)Mc+1 = −1

)
(4-24)

= log
∑

s∈A+1
l
F (x̃k|s)P (s)∑

s∈A−1
l
F (x̃k|s)P (s) − Λi

(
b(k−1)Mc+l

)
,

where Bayes’s rule is applied to obtained the last equality of (4-51).The 2Mc−1

hypothesis set for which the l-th bit is +1 is denoted by the parameter A+1
l .

The a-priori probability P (s) is obtained from (2-32). The likelihood function
F (x̃k|s) is approximated as [9–11,51]

F (x̃k|s) ≃
1

πσ2
z,e

exp
(
− 1
σ2

z,e
|x̃k − µk,es|2

)
. (4-25)

4.2.1
Decoding Algorithm

The box-plus SPA decoder is used as discussed in Chapter 2 Subsection
2.5.4. The decoder comprises of two steps namely: Single parity check (SPC)
stage and the repetition stage. The LLRs sent from check node (CN)J to
variable node (VN)i are computed as

Λj−→i = ⊞i′ ∈N(j)⧹iΛi′−→j , (4-26)

where ⊞ denotes the pairwise “box-plus" operator given by

Λ1 ⊞ Λ2 = log
(

1 + eΛ1+Λ2

eΛ1 + eΛ2

)
, (4-27)

=sign(Λ1)sign(Λ2) min(|Λ1| , |Λ2|) + log
(
1 + e−|Λ1+Λ2|

)
− log

(
1 + e−|Λ1−Λ2|

)
.

The LLR from V Ni to CNj is given by

Λi−→j = Λi +
∑

j′ ∈N(i)\j

Λj′ −→i, (4-28)

where the parameter Λi denotes the LLR at V Ni, j
′ ∈ N(i)\j means that all

CNs connected to V Ni except CNj.
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4.2.2
Computational Complexity

The number flops for the receivers of the full CF-mMIMO and clustered
CF-mMIMO networks are presented in Table A.1. It can be observed the full
CF-mMIMO receivers achieve the highest number of flops as compared to
that of the clustered CF-mMIMO with orders of O

(
(NL)3K

3

)
and O

(
(NL)3K

3

)
,

respectively, where O(·) is the Big O notation.

Table 4.1: Number of flops per detector.

Receiver Number of flops

PIC-Full-CF (NL)3K
3 + (NL)2

K + 4NLK2 + 6NLK +
4KMc2Mc + 9K2Mc

Linear MMSE-Full CF (NL)3K
3 + (NL)2

K + 2NLK2 + 6NLK +
4KMc2Mc + 9K2Mc

PIC-WITH-OCL (NL)3K
3 + 2 (NL)2KM + 2MNLK2 + 9NLK +

4KMc2Mc + 9K2Mc −M (NL)2K −MNLK

Linear MMSE-WITH-
OCL

(NL)3K
3 + 2 (NL)2KM + 3MNLK2 + 9NLK +

4KMc2Mc + 9K2Mc − M (NL)2K − MNLK −
NLK2

4.3
Simulation Results

In this section, the BER performance of the proposed receivers is pre-
sented for the full CF-mMIMO and clustered CF-mMIMO networks. The CF-
mMIMO channel exhibits high PL values due to LS fading coefficients. Thus,
the instantaneous SNR definition takes into account the channel coefficients
and it is given by

SNR = tr(σ2
sGGH)R
NLKσ2

n

. (4-29)

The simulation parameters are varied as follows: We consider a cell-free
environment with a square of dimensions D × D =, where D = 0.4 km.
Distances d0 and d1 are 10 m and 50 m, respectively. hAP = 15m, hu = 1.5 m,
f = 1900 MHz, LDPC code with code word length 32 bits,M = 16 parity check
bits and N −M message bits. The code rate R = 1

2 . The maximum number of
inner iterations is set to 10. The signal power σ2

s = 1 and the simulations are
run for 104 channel realizations for fair statistical inference. The modulation
scheme used is quadrature phase shift keying (QPSK). We consider G as the
perfect CSI. Then the estimated channel and channel estimation error are
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modeled as Ĝ = √γG and G̃ =
√
αG. thus, the imperfect CSI channel is

modeled as GI = Ĝ + G̃, where the parameters γ and α should satisfy the
relations α + γ = 1, γ >> α. In the simulations, γ = 0.95 and α = 0.05.
For the full CF-mMIMO network, there are L randomly located APs with K

uniformly distributed UEs for simplicity of the analysis. For the clustered CF-
mMIMO network, we consider M non-overlapping clusters each equipped with
L randomly distributed APs and K uniformly distributed UEs with uniform
power allocation.

The three-slope PL model is used to obtain the LS fading coefficients,
which are assumed to be deterministic [54]. More specifically, the PL exponent
is 3.5 if the distance dkl between the k-th UE and the l-th AP is more than
d1, equals 2 if the distance is d1 ≥ dkl > d0, and equals 0 if the distance is
dkl ≤ d0. If dkl > d1, the Hata-COST231 propagation model is used. The PL
PLkl in dBs between the k-th UE and l-th AP can be given such as

PLkl =


−Θ− 35 log dkl, dkl > d1

−Θ− 15 log d1 − 20 log dkl, d0 <dkl ≤ d1

−Θ− 15 log(d1)− 20 log d0, ifdkl ≤ d0

. (4-30)

The parameter Θ is given by Θ ≜ 46.3 + 33.9 log10(f) − 13.82 log10(hAP) −
(1.1 log10(f) − 0.7)hu + (1.56 log10(f) − 0.8), where f is the carrier frequency
(in MHz), hu and hAP are the antenna heights of the UE and AP, respectively.
The shadow fading and PL are modelled by the LS coefficient βkl that is given
by βkl = PLkl × 10σshζlk . Where 10σshζlk denotes the shadowing with standard
deviation σsh, and ζlk ∼ N (0, 1).

Figure 4.6 presents the BER versus SNR as the number of iterations
increases for the full CF-mMIMO network. From this figure, it can be observed
that there is a significant performance improvement as the number of iterations
increase from the first to second iteration. After the second iterations, there
is moderate performance gains and after the third iteration the gains are
marginal. This improvement in the performance is due to reliable LLRs in
the cancellation step as the number of iterations increases, which yields to
reductions in the BER. Figure 4.3 (a) and 4.3 (b) present the BER versus
the SNR for the linear MMSE and PIC-MMSE receivers for full and cluster-
based CF-mMIMO networks with and without OCL for different UE and AP
settings. The details of the receivers compared are summarized as follows:

- Baseline MMSE: no statistics of the OCL in the covariance matrix of the
receiver but with OCL in the received signal.

- Linear MMSE-With-OCL: OCL statistics in the covariance matrix and
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Figure 4.2: BER versus SNR while varying number of IDD iterations for L = 16, N = 1,
K = 8, for the full-CF-mMIMO Network.
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Figure 4.3: BER versus SNR for Linear and Non-Linear receivers for (a) L = 4, N = 1,
K = 2 in each cluster and L = 16, N = 1, K = 8, for the full-CF-mMIMO Network and (b)
L = 16, N = 1, K = 4 in each cluster and L = 64, N = 1, K = 16, for the full-CF-mMIMO
Network.
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in the received signal.

- Linear MMSE-Without-OCL: no OCL in both the received signal and
covariance matrix of the receiver.

- Linear MMSE-Full-CF: uses all APs and UEs in the network.

- Proposed PIC-Full CF: uses all APs and UEs in the network.

- Proposed PIC-No-OCL: no OCL in both the received signal and covari-
ance matrix of the receiver.

- Proposed PIC-With-OCL: OCL statistics in both the received signal and
covariance matrix of the receiver.

.
From both figures, it can be observed that the PIC-based receivers

achieve the lowest BER values because of their capability of canceling OCL
interference for both clustered and full-CF networks. The linear MMSE receiver
without OCL (Linear MMSE-no-OCL) yields lower BER than the MMSE
with OCL (Linear MMSE-With-OCL). The same performance is analogous
to the PIC-MMSE-based receiver without OCL (PIC-NO-OCL) and PIC-
With-OCL. This performance degradation is due to OCL interference from
the other clusters which yields very poor beliefs and thus high BER values.
Furthermore, note should be taken that the baseline MMSE without statistics
of the OCL in the covariance matrix achieves the worst performance in the
studied receivers. Thus, it is always important to include the effects of OCL
in the receiver computation to avoid such a performance degradation. It is
also noteworthy that the performance of figure 4.3 (b) is better than that of
4.3 (a) since the former employs more APs in the network as compared to
the later. This performance improvement is also due to the higher diversity
order and reduction in the large scale fading as the number of APs in the
network increases due to the channel hardening property and orthogonality of
the channels. Finally, the Full-CF network receivers achieve the lowest BER
values than the clustered network due to use of more APs in the network.

4.4
Iterative Interference Cancellation with Interference Estimation

In this section, OCL interference estimation is performed and it is used in
the proposed user-centric CF-mMIMO architecture IDD scheme as discussed
in the following subsection.
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4.4.1
Proposed System Model, Channel and Interference Estimation

The uplink of a user-centric clustered CF-mMIMO system [55] is consid-
ered as shown in Figure 4.4. Figure 4.4 (a) shows the desired (dotted) links
within a given cluster as well as OCL (dashed) links to each cluster. The
proposed IDD scheme is presented in Figure 4.4 (b), where the transmitter
comprises of K single antenna user equipment (UEs), encoders which employ
LDPC codes and quadrature phase-shift keying (QPSK) modulators. The sys-
tem suffers from M OCL interfering sources that are assumed to be identical
to the UEs in terms of operation. The receiver consists of L APs each equipped
with N antennas, and a central processing unit (CPU) which comprises of a
detector, a log-likelihood ratio (LLR) computing module (LLR Mod) and an
LDPC decoder. The detector computes a symbol estimate r̃d and sends it to
the LLR Mod which computes the intrinsic LLRs Λi. The obtained LLRs are
then sent to the decoder which computes extrinsic LLRs Λe. The exchange of
LLRs between the detector and the decoder is done in an iterative fashion to
improve performance.

4.4.2
Channel Estimation for the Serving Users

To estimate the channels, K mutually orthogonal τp ≥ K length pilot
signals are assumed to be assigned to UE k denoted by ϕk, with ∥ϕk∥2 = 1.
The received signal during the pilot phase at AP l is given by [56]

Yl = √pτpHlΦH + GlSH + Nl (4-31)

where p, Hl ∈ CN×K , Φ ∈ Cτp×K , Gl ∈ CN×M ,S ∈ Cτp×M , and Nl ∈ CN×τp

is the transmit power of each UE, the channel matrix between UEs and l-th
AP, the channel matrix between the OCL interference and the l-th AP, the
transmitted signal matrix of OCL interference, and the receiver noise at the
l-th AP, respectively. The LSE is then applied to compute the channel estimate
given by

Ĥl = 1
√
pτp

YlΦ (4-32)
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(a)

(b)

Figure 4.4: (a) Schematic of the clustered cell-free systems. (b) Proposed IDD scheme with
users and APs in a cluster.

4.4.3
Interference Estimation

Unlike prior work on estimation of out-of-system channels [56], we
consider the estimation of OCL interference in user-centric clustered CF-
mMIMO networks. To estimate the OCL interference, the received signal at
each AP is first pre-processed to reduce the impact of the channel components
of the serving UEs from them, i.e {Hl, l = 1, ..., L}. This preprocessed signal
is called the residual signal [56] given by

Zl = Yl −
√
pτpĤlΦH . (4-33)
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After some mathematical manipulations and following similar steps as in [56],
(4-33) can be written as

Zl =
(
GlSH + Nl

)
P⊥, (4-34)

where P⊥ =
(
I−ΦΦH

)
is the projection onto the orthogonal complement of

the pilot matrix Φ.

4.4.3.1
Remarks

Note that the projection matrix is non invertible, and thus the OCL
interfering signals can not be estimated completely. Therefore, only its com-
ponents spanned by P⊥ can be estimated [56]. Thus, to make meaningful the
estimates of S from Zl, the condition τp > K should be verified. Otherwise,
the residual matrices at all the APs will be zero [56]. From these two remarks,
the projection matrix P can be decomposed as

P⊥ = ΨΨH , (4-35)

where Ψ ∈ Cτp×(τp−K) is a tall matrix that satisfies the orthogonality property
ΨHΨ = I, which yields the economy-size singular value decomposition (SVD)
of P. The projected signal component is then given by

S̄ = ΨHS (4-36)

. In order to estimate ˆ̄S of S̄, the residual signal is first despread by projecting
it on Ψ as follows

ZlΨ =
(
GlSH + Nl

)
Ψ,

= GlS̄H + N′

l, (4-37)

where N′
l = NlΨ. Having obtained the processed signal at each AP, the channel

and signal estimates ˆ̄S of the OCL interference can be obtained by adopting the
centralized processing scheme proposed in [56]. In this scheme, the processed
signals from all APs are collected at the CPU and the following least squares
problem is formulated:

min
G, S̄
||ZΨ−GS̄H ||F , (4-38)
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where Z =
[

ZT
1 , ....,ZT

L

]
, G =

[
GT

1 , ....,GT
L

]
, ∥·∥F denotes the Frobenius

norm of the argument. The solution to the problem is obtained by taking the
best rank-1 approximation of ZΨ using the SVD. The estimated values of the
matrices G and S are the left and right singular matrices of ZΨ scaled by the
largest singular value [56], which requires O(KNL).

4.4.4
Uplink Data Transmission

The received signal at the l-th AP after estimating the channels of the
serving UEs and OCL interference sources is given by

yl = Hlx + Gls + nl, (4-39)

where Hl ∈ CN×K , x ∈ CK×1, Gl ∈ CN×M , s ∈ CM×1, nl ∈ CN×1, is the
channel matrix of the UEs in the system, the transmitted signals of the UEs
in the system, the channel matrix of the OCL interference, the transmitted
symbol for the OCL interference and AWGN vector with zero mean and unit
variance, respectively.

4.4.5
Proposed Iterative Receiver Design

The proposed soft receiver aims to cancel the ICL and OCL interference
sources. The demodulator comprises an MMSE filter followed by a SIC, PIC
or list-based interference canceller. The receiver first computes the jth UE
symbol mean s̄j to obtain soft estimates [5]. The symbol mean is defined as
E {sj} = s̄j and it is given by equation (2-31) The a priori probability of the
extrinsic LLRs [5] is given by equation (2-32). The symbol variances can be
computed from (2-33).

After channel estimation and interference estimation, the received signal
in (4-39) can be re-written as

yl =
[
Ĥl Ĝl

] x
s

+ nl. (4-40)

Let us define Al =
[
Ĥl Ĝl

]
∈ CN×(K+M) and r =

x
s̄

 ∈ C(K+M)×1, which

allows the received signal at the l-th AP be described by

yl = Alr + nl. (4-41)
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For centralized processing, the received signal at the CPU is given by

y = Ar + n, (4-42)

where A =
[

AT
1 , ....,AT

L

]
is the matrix consisting of all the channels from the

serving UEs and the OCL interfering signals. The received signal in (4-42) can
be decomposed as

y = adrd +
K+M∑

i=1,i ̸=d
airi + n, (4-43)

where ad and rd, are the channel vector and transmitted symbol of the desired
signal, the second term denotes the interference signal from the other K − 1
UEs and the OCL interference and the third term denotes the noise. The
detected signal for the desired UE after PIC is given by

r̃d = wH
d

(
adrd +

K+M∑
i=1,i ̸=d

ai (ri − r̄i) + n
)
, (4-44)

where wd is the receive combining vector. The design of an efficient receive filter
wd aims at minimizing the error between the desired user signal rd and the
estimated signal r̃d. The optimization problem to minimize the mean square
error (MSE) between r̃d and rd is formulated as

MSE = E
{
|rd − r̃d|2

}
. (4-45)

By substituting (4-44) into (4-45), yields the MSE given by

MSE = −wH
d ρdad (4-46)

+ wH
d

ρdadaH
d +

K+1∑
i=1,i ̸=d

aiE
{
|ri − r̃i|2

}
aH

i + σ2
nINL

wd.

By differentiating (4-46) with respect to (w.r.t) wH
d and equating to zero, the

optimal MMSE-PIC receive filter is given by

wd =ρd

ρdadaH
d +

K+M∑
i=1,i ̸=d

aiE
{
|ri − r̃i|2

}
aH

i + σ2
nINL

−1

× ad. (4-47)

The main factors affecting the performance of the receiver are the number of
OCL interference sources, the parameter E

{
|ri − r̃i|2

}
which consists of entries

computed in (2-33), the number of UEs K, as well as the number of APs L.
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The impact of these parameters on the performance are discussed in detail in
the simulations section. Receivers for SIC and list-based receivers modify the
PIC as in [46]. A Gaussian approximation of the receiver output is needed and
detailed next.

4.5
Proposed Iterative Detection and Decoding

The received signal at the output of the filter in (4-44), contains the
desired symbol, ICL and OCL interference as well as the noise. We use similar
assumptions given in [46–48] to approximate the r̃d as a Gaussian output given
by

r̃d = µdrd + zd, (4-48)

By comparing (4-48) with (4-44) µd = wH
d ad. The parameter zd is a

zero-mean AWGN variable given by

zd =wH
d

(
K+M∑

i=1,i ̸=d
ai (ri − r̄i) + n

)
. (4-49)

The variance σ2
z = E{zdz

∗
d} of zd is given by

σ2
z = wH

d

 K+M∑
i=1,i ̸=d

aiE
{
|ri − r̃i|2

}
aH

i + σ2
nINL

wd. (4-50)

The extrinsic LLR computed by the soft MMSE receiver for the l-th bit
l ∈ {1, 2, ...,Mc} of symbol rd [48] is given by

Λe

(
b(d−1)Mc+l

)
=

logP
(
b(d−1)Mc+l = +1|r̃d

)
logP

(
b(d−1)Mc+l = −1|r̃d

) − logP
(
b(d−1)Mc+1 = +1

)
logP

(
b(d−1)Mc+1 = −1

) (4-51)

= log
∑

s∈A+1
l
F (r̃d|s)P (s)∑

s∈A−1
l
F (r̃d|s)P (s) − Λi

(
b(d−1)Mc+l

)
,

where Bayes’s rule is applied to obtain the last equality of (4-51).The 2Mc−1

hypothesis set for which the l-th bit is +1 is denoted by the parameter A+1
l .

The a priori probability P (s) is obtained from (2-32). The likelihood function
F (r̃d|s) is approximated as [48]

F (r̃d|s) ≃
1
πσ2

z

exp
(
− 1
σ2

z

|r̃d − µds|2
)
. (4-52)



Chapter 4. Iterative Soft Intra-Cluster and Out-of-Cluster Interference
Cancellation 85

The decoder used is the box-plus SPA in this work is discussed in chapter
II.

4.6
Simulation Results

The performance of the proposed approaches is assessed in this section.
The instantaneous SNR used in the simulations is defined by

SNR =
∑L

l=1(Hl diag (ρ) HH
l )

σ2
nNLK

. (4-53)

The simulation parameters are in Table 4.2.

Table 4.2: Simulation Parameters.

Parameter Value

Codeword length (Cleng) 512

Parity Check bits (Cleng −M) 256

Message bits (M) 128

Code rate R 1
2

Threshold Euclidean distance
(dth)

0.38

τu, τp, τc 190, 10, 200

Maximum decoder iterations 10

Signal power ρ 1 W

Maximum decoder iterations 10

Number of channel realizations 10000

Network setup: We consider a cell-free cluster with square of dimen-
sions of D × D where D = 1 km. The channels between OCL interference
sources and APs are generated randomly by assuming them to follow block
fading. The QPSK modulation is used and the LS fading coefficients are ob-
tained according to the 3rd Generation Partnership Project (3GPP) Urban
Microcell model in [45] given by

βk,l [dB] = −30.5− 36.7 log10

(
dkl

1m

)
+ Υkl, (4-54)

where dkl is the distance between the k-th UE and l-th AP, Υkl ∼ N (0, 42) is
the shadow fading [45].

Fig. 4.5 presents the normalized mean square error (NMSE) for the
interference estimation and channel estimation. It can be observed that for
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Figure 4.5: NMSE versus SNR L = 32, N = 4, K = 8, OCLIs = 4 for OCL interference
estimation and channel estimation.

both cases the NMSE reduces as we approach higher SNR values up to the error
floor region. For the case with channel estimation this can be further reduced
by using longer pilots to provide more accurate estimation. The interference
estimation is based on a sub optimal approach and more improvements
in performance can be obtained by using advanced estimators. Accurate
estimation of the interference channels is useful in the IDD cancellation step
as it improves the accuracy and efficiency of the receiver.

−4 −2 0 2 4 6 8 10 12 14 16 18 20 22 2410−3

10−2

10−1

SNR [dB]

B
ER

IDD=1
IDD=2
IDD=3

Figure 4.6: BER versus SNR L = 32, N = 4, K = 8, OCLIs = 4 for the system with ICL
and OCL interference and varying number of PIC IDD iterations.

The BER performance versus SNR for a varying number of IDD iterations
for the system that suffers from both ICL and OCL interference is shown in
Fig. 4.6. Note that as the number of iterations is increased from the first to
the second iteration, there is a significant reduction in BER. After the second
iteration to the third iteration, there is a marginal reduction in BER at high
SNR regime. This improvement is attributed to the fact that as the number of
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IDD iterations is increased, extra a posterior information is exchanged between
the decoder and the detector which improves the quality of the soft beliefs used
at the interference cancellation scheme.
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Figure 4.7: BER versus SNR for (a) L = 32, N = 4, K = 8, M = 4 and (b) L = 32, N = 4,
K = 8, M = 2 for the system with ICL and OCL interference.

Fig. 4.7 presents the BER versus SNR for the system with OCL and
ICL interference. It can be observed that the system which suffers from only
ICL interference achieves lower BER values than that which experiences both
OCL and ICL interference. Moreover, PIC receivers achieve the lowest BER
values as compared to the other studied receivers. This is because of PICs
ability in cancelling multiple streams of interference. Moreover, the List-based
receiver performs better than the conventional SIC receivers because of its
ability in removing the error propagation that is prevalent at each stage of
SIC. Linear MMSE-based receivers achieve the worst performance because of
their inability of cancelling interference but with performances that are still
acceptable. Fig. 4.7 (a) and 4.7 (b) compare the impact of the reducing the
number of OCL interference sources from 4 to 2. It is shown that the curves in
Fig. 4.7 (b) achieve lower BER than those in Fig. 4.7 (a) for all the receivers
with OCL interference. This is because increasing the OCL interference sources
yields more unreliable channel estimates which compromises the entire network
performance.
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4.7
Summary

In this chapter, IDD schemes for network and user-centric clustered CF-
mMIMO networks have been proposed. For the case of network clustering, new
closed-form expressions for the linear MMSE receiver and the soft PIC-MMSE
cluster-based receivers have been derived assuming ICSI, the presence of ICI
signals and AWGN. Insights into the derived filters are drawn by assuming
PCSI, and varying the number of IDD iterations to yield the resulting receivers.
Moreover, the proposed cluster-based MMSE-PIC receivers are compared in
terms of BER and computational complexity. The numerical results show that
the full-CF-mMIMO network achieves lower BER values than the clustered
one. However, clustering reduces both the computation complexity of the
MMSE receive filters as well as reducing the amount of required signaling.

In the case where user-centric clustering is assumed, we have investigated
soft interference cancellation schemes for user-centric clustered CF-mMIMO
networks in the presence of ICL and OCL interference. We developed MMSE
receive filters for the proposed interference cancellation schemes and devised
a LSE to perform OCL interference estimation. An IDD scheme that adopts
LDPC codes and incorporates the OCL interference estimate was presented.
The results showed that the proposed algorithms outperform competing tech-
niques and approach the performance of the system without OCL interference.



5
Conclusions and Future Work

In this chapter, the conclusions of the main contributions of this thesis
are drawn and future works that could be based on the concepts and algorithms
developed in this thesis are discussed.

5.1
Concluding Remarks

In this thesis, an IDD scheme using LDPC codes has been devised for
centralized and decentralized CF-mMIMO architectures. In particular, low-
complexity interference mitigation techniques that use MMSE-based detectors
to improve the performance have been proposed. Moreover, list-based detectors
that can mitigate error propagation at the interference cancellation stage have
been proposed along with PIC based detectors. The main conclusions of this
thesis are summarized in what follows.

List-based detectors have been proposed for the CF-mMIMO architec-
ture. Specifically, an IDD scheme using LDPC codes has been studied for CF-
mMIMO systems and it has been shown that increasing IDD iterations signifi-
cantly reduces the BER. The performance of the CF-mMIMO architecture has
been compared with standard mMIMO systems with co-located antennas. The
results have shown that CF-mMIMO systems achieve better performance than
mMIMO systems with co-located antennas. Additionally, the performance of
the proposed MF-SIC/PIC schemes has been compared with other detectors.
The proposed MF-PIC achieves lower BER values than those of the SIC and
linear schemes.

An IDD scheme for decentralized and centralized CF-mMIMO architec-
tures has also been proposed. New closed-form expressions for the MMSE-soft-
IC detectors have been derived for both the centralized and decentralized im-
plementations, taking into account the channel estimation errors. Insights have
been drawn into the derived expressions as the number of iterations increase,
and provide the resulting detectors with reasoning for their performance in the
considered scenarios. Low-complexity and low-latency local receive filters based
on RMF and MMSE-PIC have been also been studied for the CF-mMIMO
network. The performance of a system that uses all APs and the system with
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AP selection has been evaluated and it has been shown that the system that
uses all APs achieves lower BER values as compared to the one with AP se-
lection. Thus, there is a trade-off between scalability and BER performance
while using AP selection. The major advantage gained with AP selection is the
reduction in the signaling between the APs and the CPU, which makes the
network more scalable and practical. Moreover, novel LLR refinement tech-
niques based of LLR censoring and combination to improve the performance
of the decentralized CF-mMIMO architecture have been proposed. The results
have shown that the centralized architecture achieves lower BER than the de-
centralized setup. This is because the centralized one uses a joint sum of all the
channels and thus, with the many nodes and antennas, the channels become
nearly orthogonal, which minimises the interference as compared to the decen-
tralized scenario. However, one advantage of the decentralized processing as
compared to the centralized one is the reduction in signaling at the CPU. The
main advantages of the decentralized processing over the centralized process-
ing is reduction in computation complexity for each detector and reduction in
signaling in the network.

An IDD scheme for network clustered CF-mMIMO networks has also
been proposed to mitigate ICL and OCL interference. New closed-form ex-
pressions for the linear MMSE receiver and the soft PIC-MMSE cluster-based
receivers have been derived assuming imperfect CSI, the presence of ICL and
OCL signals and AWGN. Insights into the derived filters have been drawn
by assuming perfect CSI, and varying the number of IDD iterations. More-
over, the proposed cluster-based MMSE-PIC receivers are compared in terms
of BER and computational complexity. Furthermore, soft interference cancel-
lation schemes for user-centric clustered CF-mMIMO networks in the presence
of ICL and OCL interference have been proposed. MMSE receive filters for the
proposed interference cancellation schemes have been developed and an LSE to
perform OCL interference estimation has been devised. An IDD scheme that
adopts LDPC codes and incorporates the OCL interference estimate was then
developed. The results have shown that the proposed approaches outperform
competing techniques and approach the performance of the system without
OCL interference.

5.2
Future Work

In general, all the schemes and architectures presented in this thesis are
based on single antenna users, as detailed in Chapters 2, 3 and 4. These can be
extended to more general scenarios and configurations where multiple antenna
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users are taken into consideration. Furthermore, the simulations have been
based on the use of LDPC codes. Alternative coding schemes such as polar
codes can also be adopted to replace the LDPC codes used in this thesis. Other
possible suggestions for future works based on this thesis are summarized as
follows.

A study on energy-efficient interference cancellation techniques for CF-
mMIMO networks equipped with low-resolution signal processing using one-
bit quantization in the analog-to-digital converters (ADCs) and IDD schemes
could be carried out. Moreover, an investigation of the network throughput
along with an analysis of the sum rate and the spectral efficiency of the
proposed IDD schemes might be promising. In addition, further research
could be pursued with the aim of studying and developing machine learning
models and algorithms, which are capable of providing more robustness to IDD
schemes against imperfect CSI in CF-mMIMO networks.
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A
Computational Complexity of the proposed detectors

Table A.1: Computational Complexity per Detector

Detector Multiplications

Local-MMSE 2N2LK + 2K2NL + 8KNL + 4KL2Mc + 2McKL2Mc + KL

Centralized-MMSE 2N2L2K + 8KNL + 2K2NL + 4K2Mc + 2McK2Mc + K

Local-SIC 4N2LK + 2K2NL + 8KNL + 9KL2Mc + 4McKL2Mc + KL

Centralized-SIC 2(NLK)2 + 2(NL)2K + K2NL + 5NLK + K + 9K2Mc + 4McK2Mc

Local-List 4N2LK + 5K2NL + 12KNL + 9KL2Mc + 4McKL2Mc + 2KL

Centralized-List 2(NLK)2 + 2(NL)2K + 3K2NL + 9NLK + K + 9K2Mc + 4McK2Mc

Local-PIC 4N2LK + 3K2NL + 8KNL + 9KL2Mc + 4McKL2Mc + KL

Centralized-PIC 2(NLK)2 + 2(NL)2K + K2NL + 6NLK + K + 9K2Mc + 4McK2Mc

Table A.2: Number of complex signaling to send from APs to CPU via fronthaul links in
each coherence block or for each realization of UE statistics [1].

Cell Free Implementation Each Coherence block Statistical Parameters

Centralized/Level 4 τcNL KLN2/2

Distributed Level-2 (τc − τp) KL −



B
Derivation of the Proposed Centralized Detector

We start our analysis by expressing the conditional expectation on the
RHS of (3-10) as

F = E
{
||s̃k − sk||2 | Ĝ

}
= E

{
(s̃k − sk) (s̃k − sk)∗ | Ĝ

}
. (B-1)

Substituting (3-9) into (B-1) yields
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Further simplification of (B-2) can be done by letting yR = y − Ĝis̄i. Thus,
(B-2) can be re-written as

F = wH
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Differentiating (B-3) with respect to w.r.t wH
k we obtain
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k} . (B-4)

The optimal MMSE filter is obtained by equating (B-4) to 0. Thus, the optimal
MMSE filter wk is given by

DkE
{
yRyH

R

}
DH

k wk −DkE {yRs
∗
k} = 0. (B-5)

The reader can confirm that (B-5) is the same as (3-11). By making wk the
subject of (B-5), we obtain (3-12). The terms E{yRs

∗
k} and E{yRyH

R} are
given by (3-13) and (3-14), where E {sms

∗
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= Cm,
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nnH
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= σ2INL, E
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sks

H
k

}
= ρk, obtained after assuming statistical inde-

pendence between each term in the RHS of (3-8) and using the orthogonality
principle [57]. By substituting (3-13) and (3-14) into (3-12), we arrive at the
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centralized MMSE filter given by (3-15).



C
Derivation of the Proposed Decentralized Detector

The derivation of the proposed local MMSE filter is similar to that of
Appendix B. The expectation on the R.H.S of (3-39) can be expressed as

F2 = E
{
||s̃kl − sk||2 | Ĝl

}

= E
{

(s̃kl − sk) (s̃kl − sk)∗ | Ĝl

}
. (C-1)

By substituting (3-38) into (C-1) we obtain

F2 = E
{(

wH
klDklyRl − sk
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klDklyRl − sk

)∗}
. (C-2)

The term yRl is the residue signal obtained after soft-IC and substituting for
yl in the term in brackets of (3-38), we get

yRl = ĝklsk + Ĝil (si − s̄i) +
K∑

m=1
g̃mlsm + nl. (C-3)

After some mathematical and algebraic manipulations, (C-2) can be re-written
as
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klwkl + E {sks
∗
k} (C-4)

We take the first derivative of (C-4) w.r.t wH
kl to arrive at

∂F2

∂wH
kl

= DklE
{
yRlyH

Rl

}
DH

klwkl −DklE {yRls
∗
k} . (C-5)

After equating the resulting expression in (C-5) to 0, we obtain

DklE
{
yRlyH

Rl

}
DH

klwkl −DklE {yRls
∗
k} = 0. (C-6)

The optimal local MMSE filter wkl can be obtained from (C-6). The terms
E
{
yRlyH

Rl

}
and E {yRls

∗
k} can be obtained from (3-26) and (3-27), respectively,

where the terms E
{
g̃mlg̃H

ml

}
= Cml and E

{
nlnH

l

}
= σ2IN , by taking
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assumptions similar to those in Subsection A.



D
Derivation of the Soft Demapper Parameters for Centralized
Processing

We start the proof by making some assumptions on the output of the
MMSE filter to be a Gaussian approximation. The optimal soft bit metric
which takes into account the channel estimation error and APs-Sel can be
derived as below. Let k denote the desired UE which minimizes the mean
square error (MSE). Then, (3-9) can be expressed as

s̃k = wH
k Dky−wH

k DkĜis̄i. (D-1)

By substituting (3-8) into (D-1) we obtain

s̃k = wH
k Dkĝksk + wH

k DkĜi (si − s̄i) + wH
k Dk

K∑
m=1

g̃msm

+ wH
k Dkn. (D-2)

By comparing (D-2) with (3-46), it can be observed that

ωk = wH
k D̃kĝk, (D-3)

and the interference-plus-noise term is given by

zk = wH
k DkĜi (si − s̄i) + wH

k Dk

K∑
m=1

g̃msm + wH
k Dkn. (D-4)

By assuming that zk is a Gaussian random variable [36–40, 51] and as-
suming statistical independence of each term of (D-4), the variance κ2 =
E {| uk − ωksk |2} = E {zkz

∗
k} of zk is given by

κ2 = wH
k Dk

(
Ĝi∆iĜH

i +
K∑

m=1
ρmCm + σ2INL

)
DH

k wk. (D-5)

By substituting (D-3) and (D-5) into (4-52), the soft beliefs for the centralized
processor can be obtained in each subsequent iteration.



E
Derivation of the Soft Demapper Parameter for Decentralized
Processing

We also start by assuming that the output of the MMSE-SIC filter is a
Gaussian random variable. We then derive the local optimal soft bit metric
which takes the APs-Sel matrix, and channel estimation error as follows. Let k
denote the desired UE which minimizes the mean square error (MSE). Then,
(3-9) can be expressed as

s̃k = wH
klDklyl −wH

klDklĜils̄i. (E-1)

By substituting (3-21) into (E-1) we obtain

s̃k = wH
klDklĝklsk + wH

klDklĜil (si − s̄i) + wH
klDkl

K∑
m=1

g̃mlsm

+ wH
klDklnl. (E-2)

By comparing (E-2) with (3-46), it can be observed that

ωkl = wH
klD̃klĝkl, (E-3)

and the interference-plus-noise term is given by

zkl = wH
klDklĜil (si − s̄i) + wH

klDkl

K∑
m=1

g̃mlsm + wH
klDklnl. (E-4)

By assuming that zkl is a Gaussian random variable [23, 35] and assum-
ing statistical independence of each term of (E-4), the variance κ2

l =
E {| ukl − ωklsk |2} = E {zklz

∗
kl} of zkl is given by

κ2
l = wH

klDkl

(
Ĝil∆ilĜH

il +
K∑

m=1
ρmCml + σ2IN

)
DH

klwkl. (E-5)

By substituting (E-3) and (E-5) into (4-52), the soft beliefs for the lcoal
processors can be obtained in each subsequent iteration at each AP.
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