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Abstract

Oliveira, Robert Mota; de Lamare, Rodrigo Caiado (Advisor).
Cost-Effective Construction and Decoding of Polar Codes.
Rio de Janeiro, 2022. 117p. Tese de Doutorado – Departamento de
Engenharia Elétrica/CETUC, Pontifícia Universidade Católica do
Rio de Janeiro.

In 2009, a new class of block error correction codes, known as polar codes,
were proven by Erdal Arıkan to be able to achieve the Shannon limit. Using
cyclic redundancy check concatenated list successive cancellation decoding and
fast code constructs, polar codes have become an attractive, high-performance
error-correction code for practical use. These innovations have resulted in
adoption of polar codes in the 5th generation standard for cellular systems. Still,
polar codes are hindered by certain inflexible characteristics. Arıkan’s original
polar codes definition limits block lengths to powers of two, due to a recursive
Kronecker product of the 2x2 polarizing kernel. This constraint presents a
considerable obstacle, as many realistic scenarios call for all code lengths to
be readily available. Another aspect to be analyzed is the development of
a technique of construction of polar codes of low complexity and that has
an optimum performance on Additive white Gaussian noise channel, mainly
for long blocks, inspired by the optimization of the Gaussian approximation
construction. Another relevant aspect is the parallel decoding power of the
belief propagation decoder. This is an alternative to meet the new speed
and latency criteria foreseen for the next generation standard for cellular
systems. However, it needs performance improvements to become operationally
viable. This thesis propose techniques that are intended for maximizing the
flexibility and efficiency of polar codes, as well as analyze any trade-offs
affecting error correction performance. Therefore, in order to evaluate the
proposed techniques numerical results are provided. Lastly, conclusions and
future directions are discussed.

Keywords
Polar Codes; Non-uniform Polarization; Arbitrary-length; Picewise ap-

proximation; Belief propagation decoding; Adaptive reweightin.



Resumo

Oliveira, Robert Mota; de Lamare, Rodrigo Caiado. Cost-
Effective Construction and Decoding of Polar Codes. Rio
de Janeiro, 2022. 117p. Tese de Doutorado – Departamento de En-
genharia Elétrica/CETUC, Pontifícia Universidade Católica do Rio
de Janeiro.

Em 2009, uma nova classe de códigos de correção de erro de bloco,
conhecidos como códigos polares, foi comprovada por Erdal Arıkan como
capaz de atingir o limite de Shannon. Usando decodificação de cancelamento
sucessivo em lista, concatenada por verificação de redundância Cíclica e a
construções rápida de código, os códigos polares se tornaram um código de
correção de erros atraente e de alto desempenho para uso prático. Essas
inovações resultaram na adoção de códigos polares no padrão de geração 5th

para sistemas celulares. Ainda assim, os códigos polares são prejudicados por
certas características inflexíveis. A definição de código polar original do Arıkan
limita os comprimentos de bloco a potências de dois, devido a um produto
Kronecker recursivo do kernel polarizador 2x2. Essa restrição apresenta um
obstáculo considerável, pois muitos cenários realistas exigem que todos os
comprimentos de código estejam prontamente disponíveis. Outro aspecto a
ser analisado é o obtenção de uma técnica de construção de códigos polares de
baixa complexidade e que tenha um ótimo desempenho em canal de ruído
Additive White Gaussian, principalmente para blocos longos, inspirado na
otimização da construção da aproximação Gaussiana. Outro aspecto relevante
é o poder de decodificação paralela do decodificador de propagação de crenças.
Esta é uma alternativa para atender aos novos critérios de velocidade e
latência previstos para o padrão de próxima geração para sistemas celulares. No
entanto, precisa de melhorias de desempenho para se tornar operacionalmente
viável. Esta tese propõem técnicas que visam maximizar a flexibilidade e
eficiência dos códigos polares, bem como analisar quaisquer trade-offs que
afetem o desempenho da correção de erros. Portanto, para avaliar as técnicas
propostas, são fornecidos resultados numéricos. Por fim, são discutidas as
conclusões e direções futuras.

Palavras-chave
Códigos Polares; Polarização Não-uniforme; Comprimento Arbitrário;

Aproximação por partes; Decodificação de propagação de crenças; Reponde-
ração adaptativa.
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1
Introduction

Polar codes (PC) and channel polarization theory were introduced by
Arıkan [1] in 2009. Such codes constitute a powerful channel coding scheme,
with a low complexity encoder and decoder. In a scenario where the decoder
is Successive Cancellation (SC), the channel is Additive White Gaussian Noise
(AWGN) and the codewords are long, the capacity of binary symmetric discrete
memoryless channels (B-DMCs) can be achieved.

Choosing the most reliable channels is the basic premise for construction
of a polar codes. This channel reliability depends on the length of the codeword
and the signal-to-noise ratio, which is defined by the channel polarization
theorem [1]. The theorem proves that in channel polarization, for a long length
codeword enough, the bit channels tend to two conditions: either they become
noiseless or noisy. The former have high reliability and consequently are used
for the transmission of information bits. The latter are not used and are called
frozen bits.

The 3rd Generation Partnership Project (3GPP) Group selected polar
codes for the 5th generation (5G) [2], where they are used for uplink/downlink
control channels. Its low implementation complexity is one of the motivating
factors for researchers to improve its performance. Several alternatives often
appear in the technical literature which are aimed to improve the efficiency of
code construction and decoding techniques.

In this thesis, three aspects of polar codes are addressed: the construction
of codes with arbitrary lengths, the improvement of the construction method
by Gaussian approximation and the decoding of codes using an adaptive
reweighted belief propagation algorithm.

Therefore, this chapter presents the research background, motivations
and the objectives of this thesis. Moreover, the main contributions are de-
scribed, followed by the structure of the thesis. The last section lists the publi-
cations and the papers under preparation that are associated with this thesis.
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1.1
Motivation

The development of the 5th generation wireless communication systems
and other wireless standards has been conducted through massive investments
in fundamental research and development, and has been motivated by the
exponential increase in data transmission in today’s networks [3] [4] [5]
[6]. The different use cases of future wireless services will be increasingly
demanding, whether it is mobile broadband, vehicular communications or low-
power sensors that build the internet of things.

In addition, 5G systems have challenging requirements regarding the
required [7] transmission rates, power consumption, coverage, and latency in
data transmission. Among the central elements of 5G systems are the waveform
used in the transmission and the channel coding technique adopted to ensure
the required performance for the wireless links. Recently, polar codes have been
adopted for the control channels of the extended Mobile Broadband (eMBB)
scenario of 5G systems [8].

Polar codes have the potential to meet all these requirements if the
set formed by the code construction and the decoder architecture is well
designed. Among the main obstacles for the implementation are an adequate
code construction technique, an efficient puncturing, shortening and extension
scheme, which is of fundamental importance to meet the length and the rate
of the codes of the proposed structure in 5G systems, and efficient decoding
architectures.

In their original construction, polar codes only allowed code lengths that
are powers of two, while the message length (the number of information bits)
is arbitrary. This suggests that the code length of standard polar codes will
be 64, 128, 256, 512, 1024, etc. This restriction on the code lengths is a major
drawback of polar codes, which needs to be overcome for practical applications.

Another aspect in the construction of polar codes is the inaccuracy of
the Gaussian Approximation (GA) construction method when the code length
is long. The GA method is widely used for construction of polar codes. This
inaccuracy is caused by the selection of the channel due to the GA calculation
error, which uses a two-segment approximation function. The result is a
catastrophic loss of performance for long codes.

Low decoding latency can be achieved with parallel decoding, which
could greatly increase speed when compared to serial decoding by successive
cancellations, originally proposed for polar codes. However, these decoders lack
improvements to become operationally viable. Improvements can be obtained
by joint code construction with these decoders, or with direct implementation
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of meta-heuristics to aid in decoding, or even with methods to reduce the
number of iterations for the same performance.

1.2
Objectives of this Thesis

The objectives of this thesis are to present, analyze and discuss a new
method for polar codes construct codes with arbitrary length, an efficient
and simplified alternative for Gaussian approximation construction, and a
belief propagation decoding algorithm based on the concept of reweighting
for polar codes. Firstly, we present the non-uniform channel polarization
theory in the use of polar codes construction of arbitrary length. Next,
we present a simplified piecewise approximation as an alternative to the
Gaussian approximation construction method, with performance gains for
medium blocks and high precision for long blocks. Lastly, we present an
adaptive reweighting decoding algorithm based on sparse belief propagation
for polar codes, which obtains fast convergence by reducing the number of
iterations required.

1.3
Contributions

The goal of this thesis is to propose a set of techniques to improve the
performance of polar codes by improving their construction or decoding. Thus,
the main contributions are:

1. A review of the main concepts of polar codes, its encoding techniques
and the various decoding techniques, including the basic algorithms
for implementation, and basic concepts for puncturing, shortening and
extension methods.

2. Development of non-uniform polarization theory in the construction of
polar codes of arbitrary lengths. This technique is suitable for decoding
by successive cancellation and Gaussian noise channel. The coding and
decoding procedures are the same as those applied in the original polar
codes. In particular, we describe the design of rate-compatible polar
codes using the nonuniform polarization method. In addition, we include
a detailed description of the algorithm that performs code extension,
an analysis of the approach and extra simulation results for various
application scenarios.

3. Development of simplified piecewise approximation function of the Gaus-
sian approximation construction method. Gaussian approximation is a
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popular method for polar codes construction, however it is constituted
by transcendental functions of difficult numerical solution, mainly for
long code lengths. The piecewise approximation function developed is of
high precision and with low computational cost, being composed only by
polynomial functions.

4. Development of an adaptive reweighting decoding strategy based on
sparse belief propagation, which obtains a reduction in the average
number of iterations without increasing the algorithmic complexity, that
is, an efficient low-latency decoding.

1.4
Structure of this Thesis Proposal

The rest of this document is organized as follows:

■ In Chapter 2, a review of the literature is provided, covering the funda-
mentals of polarization, polar codes, puncturing, shortening and exten-
sion methods and a number of key concepts which will be used through-
out this work. The general coding system including channel models con-
sidered are introduced and the specific features of polar codes, including
the properties of the encoder and the decoder. We also introduce the ba-
sic successive cancellation decoder, successive cancellation list decoder,
belief propagation decoder and low-density parity-check code-like polar
codes decoder.

■ In Chapter 3, the channel polarization theory is revisited [1], we present
the non-uniform polarization of channels, and using the induction
method to compare with the uniform polarization of channels, we show
that it also achieves channel capacity and present the algorithms for im-
plementing shortening and extension techniques based on nonuniform
polarization based Gaussian approximation.

■ In Chapter 4, we present the construction of polar codes based on
Piecewise Gaussian Approximation techniques. Compared to the Gaus-
sian approximation construction method, showing performance gains for
medium blocks and high precision for long blocks, in scenarios with suc-
cessive cancellation decoding and additive white Gaussian noise channel.

■ In Chapter 5 we present the problem of belief propagation decoding,
the issue of reducing the number of iterations. We present an adaptive
reweighting decoding strategy based on sparse belief propagation that
can decrease decoder latency without increasing the computational com-
plexity.
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■ Chapter 6 concludes this dissertation, discussing the obtained results,
future directions and research opportunities.

1.5
List of Publications

Some of the results in this dissertation have been published, or will be
submitted to publications.

Journal Papers:

1. R. M. Oliveira and R. C. De Lamare, “Design of Rate-Compatible Po-
lar Codes Based on Non-Uniform Channel Polarization” in IEEE Access,
vol. 9, pp. 41902-41912, 2021, doi: 10.1109/ACCESS.2021.3065816.

2. R. M. Oliveira and R. C. de Lamare, “Polar Codes Based on Piece-
wise Gaussian Approximation: Design and Analysis,” in IEEE Access,
accepted and to appear in 2022.

3. R. M. Oliveira and R. C. de Lamare, “Adaptive Reweighted Sparse BP
Decoding for Polar Codes,” to be submitted to IEEE Communications
Letters in 2022.

Conference Papers:

1. R. M. Oliveira and R. C. de Lamare, “Non-Uniform Channel Polar-
ization and Design of Rate-Compatible Polar Codes,” in International
Symposium on Wireless Communication Systems (ISWCS), 2019, pp.
537-541, doi: 10.1109/ISWCS.2019.8877311.

2. R. M. Oliveira and R. C. de Lamare, “Rate-Compatible Polar Codes
Construction Based on Extension and Non-Uniform Channel Polariza-
tion for Iot Applications,” in IEEE Statistical Signal Processing Work-
shop (SSP), 2021, pp. 116-120, doi: 10.1109/SSP49050.2021.9513862.

3. R. M. Oliveira and R. C. De Lamare, “Construction of Polar Codes
Based on Piecewise Gaussian Approximation,” in 17th International
Symposium on Wireless Communication Systems (ISWCS), 2021, pp.
1-5, doi: 10.1109/ISWCS49558.2021.9562206.

4. L. M. de Oliveira, R. M. Oliveira and R. C. de Lamare, “Q-Learning-
Driven BP decoding for Polar Codes,” in XXXIX Simposio Brasileiro de
Telecomunicações e Processamento de Sinais, pp. 26–29, 2021.



2
Fundamentals and State of the Art

2.1
Chapter Overview

This chapter provides a review of polar codes and their encoding and
decoding methods. It begins with a description of the channel polarization
phenomenon and then describes the encoding method. The low-complexity suc-
cessive cancellation decoding method is reviewed with a simplified algorithm
description. We continue with the description of the successive cancellation
list decoding and also the Cyclic Redundancy Check (CRC)-aided successive
cancellation list decoding, which are widely used in the literature. Then, the
Belief Propagation (BP) decoding and the Low-Density Parity-Check Code
(LDPC) like polar codes decoder are detailed.

2.2
System Model

Figure 2.1 shows a block diagram of the polar coding system considered
in this thesis.

1xK 1xN 1xK1xN

u x y û

Encoder Channel Decoder

Figure 2.1: System model.

In this system, u is the binary message vector that is transmitted with
K bits, where u ∈ {0, 1}1xK . It is through the generator matrix G that the
message u is encoded, producing the codeword with N bits, that is,

x = u · G, (2-1)

with x ∈ {0, 1}1xN . The codeword x is then transmitted over an AWGN
channel, resulting in the received vector

y = x + w, (2-2)
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where w is the vector corresponding to the noise. In the decoding step, the
decoding algorithm observes y in order to estimate u. We call it an estimated
message û, and if u = û we say that the message has been fully recovered.
The problem we are interested in solving in this thesis is how to design polar
codes and decoding algorithms subject to several constraints.

Let W : X → Y denote a binary discrete memoryless channel (B-
DMC), with input alphabet X , output alphabet Y , and the channel transition
probability W (y|x), x ∈ X , y ∈ Y , where X ∈ {0, 1} and Y ∈ R. We
write WN : X N → YN to denote the vector channel that corresponds to
N independent uses of W with input alphabet X N , output alphabet YN and
transition probabilities WN(yN

1 |xN
1 ) = ∏N

i=1 W (yi|xi) [1]. Consider the input
vector u = uK

1 and the output vector x = xN
1 and y = yN

1 . In general, we use
the following notation: an aN

1 to denotes a vector (a1, a2, . . . , aN) and |aN
1 | is

the cardinality. Specifically K = |uK
1 |.

A channel W is defined as memoryless if its transition probability is

WY|X (y|x) =
N∏
i

WYi|Xi
(yi|xi). (2-3)

The mutual information of the channel with equiprobable inputs, or
symmetric capacity, is defined by

I(W ) ≜
∑
y∈Y

∑
x∈X

1
2W (y|x)log W (y|x)

1
2W (y|0) + 1

2W (y|1) (2-4)

and the corresponding reliability metric, the Bhattacharyya parameter is
defined by

Z(W ) ≜
∑
y∈Y

√
W (y|0)W (y|1). (2-5)

Note that the Bhattacharyya parameter is the measure of reliability and
it is an upper bound on the probability of Maximum Likelihood (ML) decoding.

All logarithms used throughout this thesis are base-2 logarithms; any
different case will be stated explicitly.

2.3
Channel Polarization

The channel polarization operation creates N synthetic channels {W (i)
N :

1 ≤ i ≤ n} from N independent copies of the B-DMC W [1]. The polarization
phenomenon decomposes the symmetric capacity, I(W (i)

N ) of these synthetic
channels towards 0 or 1 such that I(W (i)

N ) ≃ 0 implies that the ith channel
is completely noisy and I(W (i)

N ) ≃ 1 implies that the ith channel is perfectly
noiseless. The capacity separation enables an encoder to send information (free)
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bits through the noiseless channels and redundancy (frozen) bits through the
noisy channels.

Let A be the information set and Ac be the frozen set. The input vector,
uN

1 consists of both information bits uA and frozen bits uAc such that uA ∈ X K

and uAc ∈ X N−K , K = |uK
1 | = |A|.

In the following sections, we present the channel polarization as channel
combining, channel splitting and channel construction.

2.3.1
Channel Combining

A B-DMC WN is generated by combining two independent copies of
WN/2. At the 0th level of the recursion, we have only one copy of W and we
set W1 ≜ W . The first level of the recursion combines two copies of W1 for
obtaining the channel W2 : X 2 → Y2, as shown in Figure 2.2 [1] with transition
probabilities, with ⊕ being the binary operator XOR,

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2)W (y2|u2). (2-6)

u1

u2 y2

y1
x1

x2

W

W

Figure 2.2: Construction of W2 from W .

In a similar procedure, WN is constructed recursively from WN/2, WN/4,
..., W2, W in n steps, where N = 2n [1].

2.3.2
Channel Splitting

Having synthesized the vector channel WN , the next step is channel
splitting. This involves splitting the vector channel WN into N B-DMCs
W

(i)
N : X → YN × X i−1, 1 ≤ i ≤ N . The transition probability [1] of the

bit-channel W (i)
N is defined as

W
(i)
N (yN

1 , u
i−1
1 |ui) ≜

∑
uN

i+1∈X N−i

1
2N−1WN(yN

1 |uN
1 ). (2-7)



Chapter 2. Fundamentals and State of the Art 23

Each pair of the new B-DMC channels is obtained after applying the
single-step polar transform to one of the channels of the previous step:

(W (i)
N/2,W

(i)
N/2) → (W (2i−1)

N ,W
(2i)
N ). (2-8)

We have seen how the local single-step polar transform affects the rate
and reliability parameters. We next state the same results for the general
case. For the recursive channel transformation [1] we have (W (i)

N/2,W
(i)
N/2) →

(W (2i−1)
N ,W

(2i)
N ), 1 ≤ i ≤ N

2 and for the special case that W is a binary erasure
channel (BEC) with erasure probability ϵ, we have that

I(W (2i−1)
N ) = I(W (i)

N/2)
2, (2-9)

I(W (2i)
N ) = 2I(W (i)

N/2) − I(W (i)
N/2)

2, (2-10)

where I(W (1)
1 ) = 1 − ϵ, and

Z(W (2i−1)
N ) = 2Z(W (i)

N/2) − Z(W (i)
N/2)

2, (2-11)

Z(W (2i)
N ) = Z(W (i)

N/2)
2, (2-12)

where Z(W (1)
1 ) = ϵ.

The bit-channel W (i)
N is the channel that a successive cancellation decoder

sees when decoding the ith bit ui with perfect knowledge of channel output yN
1 .

Having combined two independent copies of W to create the vector
channel W2 : X 2 → Y2, we continue the channel polarization procedure
by splitting back this super channel into two B-DMCs, W1 : X → Y2 and
W2 : X → Y2 × X , defined as [1]

W
(1)
2 (y2

1|u1) ≜
1
2
∑

u2∈X
W2(y2

1|u2
1), (2-13)

W
(2)
2 (y2

1, u1|u2) ≜
1
2W2(y2

1|u2
1), (2-14)

for successive cancellation decoding, which will be defined in the next sections.
The transition probabilities are calculated in consecutive order from the

top splitting operation to the bottom splitting operation, because the decision
bit u1 must be known before the bottom splitting operation.

2.4
Encoding of Polar Codes

Polar codes can be encoded by using a simple linear mapping. For the
codeword with block length N the generator matrix, GN is defined [1] as

GN = BnF⊗n, (2-15)
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for any N = 2n as n ≥ 1, where BN is a bit-reversal matrix and F⊗n is the N th

Kronecker power of the matrix F =
[

1 0
1 1

]
. Below we show the construction

of the arrays F⊗2 and F⊗3:

F⊗2 =
 F 0

F F

 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


and

F⊗3 =
 F⊗2 0

F⊗2 F⊗2

 =


F 0 0 0
F F 0 0
F 0 F 0
F F F F



=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



.

In [1], the input sequence uN
1 is permuted by a permutation matrix BN ,

i.e.,
xN

1 = uN
1 BNGN . (2-16)

Since the permutation only serves as a reordering of the indices of
(x1, . . . , xN) and it does not affect the properties of polar codes, we skip this
permutation for simplicity of presentation throughout the thesis.

A length k polar encoder has an input vector uN
1 and an output vector

xN
1 with length n. The mapping of u → x is linear over the binary field, GF(2)

such that xN
1 = uN

1 GN . The rows of GN are linearly independent and they
form the basis for the code space. We exemplify below the encoding operation
using the G8 generating matrix,
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u4
1 = [u0, u1, u2, u3] = [1, 1, 0, 1],

x8
1 = [0, 0, 0, u0, 0, u1, u2, u3] × G8,

= [0, 0, 0, 1, 0, 1, 0, 1] × G8,

x8
1 = [0, 0, 1, 0, 0, 1, 0, 0].

In general, an n-bit encoder includes O(N
2 log2 N) XOR operations.

2.5
Successive Cancellation Decoding

It has been proved in [1] that polar codes with SC decoding can achieve
the capacity of B-DMCs. Since then, many other decoding algorithms have
been proposed [9], [10], [11], [12] and [13]; to improve the error rate performance
in the finite-length regime. We will review the SC decoding algorithm in this
section.

The SC decoder estimates the transmitted bits uN
1 as ûN

1 by using
the received vector yN

1 ∈ YN at the B-DMC, WN : X N → YN . The
channel likelihood information gained from the received vector is represented
as log likelihood ratio (LLR). The decoder performs soft-decision decoding as
computing intermediate LLR values. After a sequence of LLR computations,
SC decoder computes ûN

1 hard decisions in a successive order from û1 to ûN .
In other words, ûi is decided according to ûi−1

1 for 1 < i ≤ N .
A high-level description of the SC decoding algorithm is illustrated in

Algorithm 1 [14] [15]. The algorithm takes the received vector yN
1 , the code

block length N and the information set A as input and calculates the estimated
free bits ûA as an output vector. There are n decision steps in the algorithm.
If a hard decision belongs to the frozen set Ac, the decision will be a frozen
decision such that it is known by both encoder and decoder. Otherwise, the
decoder sets its hard decision with respect to the soft decision information.
After all N decisions are calculated, the output of the decoder is made by the
hard decisions, which belong to the free set.
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Algorithm 1: Successive Cancellation Decoding
Input: received codeword, yN

1

Input: code block length, N
Input: information set, A
Input: frozen bit vector, uAc

Output: estimated free bits, ûA

1 begin
2 for i = 1 : N do
3 if i /∈ A then
4 ûi = 0
5 else

6 if log(W
(i)
N (yN

1 ,ûi−1
1 |ûi=0)

W
(i)
N (yN

1 ,ûi−1
1 |ûi=1)

) ≥ 0 then

7 ûi = 0
8 else
9 ûi = 1

10 end
11 end
12 end
13 return ûA

14 end

Three different functions are defined to illustrate the behavior of the
SC decoder. These functions are called f , g, and d. Firstly, the f function
is responsible for the calculation of top channel splitting operation. The f

function, with likelihood ratio (L) representation is

f(La, Lb) = Lc,

= W (y2
1|ûc = 0)

W (y2
1|ûc = 1) ,

= W (y1|ûa = 0)W (y2|ûb = 0) +W (y1|ûa = 1)W (y2|ûb = 1)
W (y1|ûa = 0)W (y2|ûb = 1) +W (y1|ûa = 1)W (y2|ûb = 0) ,

= LaLb + 1
La + Lb

, (2-17)

where in (2-17) both numerator and denominator are divided by W (y1|ûa =
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1)W (y2|ûb = 1). The f function, with LLR (γ) representation is

f(γa, γb) = γc,

= 2tanh−1(tanh(γa

2 )tanh(γb

2 ),

= sign(γaγb)min(|γa|, |γb|), (2-18)

where the min-sum approximation is defined for BP decoding of LDPC codes
[16] and this approximation was used in SC decoding of polar codes for the
first time in [17].

Secondly, the g function computes the bottom channel splitting operation
in the SC decoder. The g function with likelihood ratio representation of soft
decisions is

g(La, Lb, û) = W (y2
1|û = 0)

W (y2
1|û = 1) , (2-19)

g(La, Lb, û) =


W (y1|ûa=0)W (y2|ûb=0)
W (y1|ûa=1)W (y2|ûb=1) if û = 0,
W (y1|ûa=1)W (y2|ûb=0)
W (y1|ûa=0)W (y2|ûb=1) if û = 1,

(2-20)

g(La, Lb, û) = L(1−2û)
a Lb. (2-21)

The g function with LLR representation is

g(γa, γb, û) = (−1)(û)γa + γb. (2-22)

Lastly, computes hard decisions from soft decisions such that

ûi =


0, if i /∈ A,

0, if i ∈ A and W(y,û(i−1)
1 |ûi=0

W(y,û(i−1)
1 |ûi=1

≥ 1,

1, otherwise.

(2-23)

In (2-22), û is the previously-decoded bits and corresponds to the
propagation of decoded bits from left to right in the decoding graph.

2.6
Successive Cancellation List Decoding

The successive cancellation list (SCL) decoding algorithm has been
introduced by Tal and Vardy [18] and generates L candidates for decoding or
possibilities, increasing the probability that one of the results will be correct
when compared to SC [19] [20]. With the use of CRC, this method has proven to
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be very effective for reducing the error rates of polar codes. If L is large enough,
the performance of ML decoding is achieved because a sufficient number of
decoding paths are visited [21].

Different from the selection of a particular path in each decision step in
the SC decoding, the SCL extends two paths, ûi = 0 and ûi = 1, for each
decision step. The complexity of SCL decoding is constrained by the size of
the list. The complexity of SCL is O(LN logN). So L more reliable paths or
paths are preserved at every decision step.

Let ûi[τ ] be the estimate ûi in the τth path, where τ ∈ 1, 2, ...,L. The
path metric (PM) is used to measure the reliability of the paths. The PM of
ûi[τ ] is approximated by

PM
(i)
1 = PM

(i−1)
1 + ci[τ ] · |L(i)

n [τ ]|, (2-24)

where i is the index of the decision step, PM (0)
τ = 0, ci[τ ] = 0 when i ∈ Ac,

|L(i)
n [τ ]| is the path metric value and ci[τ ] = 1 otherwise.

Since ui has two possible values, the L paths or candidates with lowest
metrics are selected in the decision step. After the last bit has been decoded,
the paths or path with lowest metric is considered as the decoding result.

A high level description is shown in Algorithm 2. The SCL algorithm
takes the received vector yN

1 , the code block length N , the information set A,
the frozen bit vector uAc and the maximum list size L as input and calculates
the estimated information bits ûA as output. The current list size variable (cL)
is set to 1 at the initialization of the algorithm. If the ith hard decision belongs
to the frozen set Ac, the ith hard decisions of all L lists are updated with the
frozen decision, ui. In case of a free decision, the decoder checks whether the
current list size is equal to the maximum list size. If they are not equal, the
current list size doubles and the decoder can track likelihoods of both decisions.
In case all lists are occupied, the decoder sorts 2L likelihoods to continue with
the best L decoding paths. At the end of the last decision step, the decoder
outputs the free bits from the best entry in the list as ûA.
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Algorithm 2: Successive Cancellation List Decoding
Input: received codeword, yN

1

Input: code block length, N
Input: information set, A
Input: frozen bit vector, uAc

Input: maximum list size, L
Output: estimated free bits, ûA

1 begin
2 cL = 1, // current list size variable
3 for i = 1 : N do
4 if i /∈ A then
5 for τ = 1 : cL do
6 ûτ,i = ui

7 end
8 else
9 if cL ≠ L then

10 for τ = 1 : cL do
11 ûτ,i = 0
12 ûτ+cL,i = 1
13 end
14 cL = 2cL
15 else
16 s = sort(W (i)

N (yN
1 , û

i−1
1 |ûL

1,i))
17 for τ = 1 : cL do
18 ûτ,i = sτ

19 end
20 end
21 end
22 end
23 return ûA

24 end

2.7
CRC-Aided Successive Cancellation List Decoding

The CRC-Aided Successive Cancellation List Decoding (CA-SCL) algo-
rithm consists of SCL decoding with CRC. The aim of the algorithm is to
increase the throughput of the SCL decoder in [18], [19], [21], [22] and [23].

A high level description of the algorithm is shown in Algorithm 3. Inputs



Chapter 2. Fundamentals and State of the Art 30

of the adaptive SCL decoding algorithm are the received vector yN
1 , the code

block length N , the information set A, the frozen bit vector uAc and the list
size L. The output of the algorithm is the free bit vector ûA .

At the beginning of the algorithm, the SC decoder calculates a free bit
candidate vector. If the CRC of that vector is true, the algorithm terminates
with the output of the SC decoder. In case of incorrect CRC vector, the
algorithm calls an SCL algorithm with the list L. At this time, the SCL
algorithm calculates L hard decision candidate vectors. If one of them has
a valid CRC, the algorithm terminates with that output. If none of them has
a valid CRC, the algorithm terminates with the most probable hard decision
candidate vector [24].

Algorithm 3: CRC-Aided Successive Cancellation List Decoding
Input: received codeword, yN

1

Input: code block length, N
Input: information set, A
Input: frozen bit vector, uAc

Input: maximum list size, L
Output: estimated information bits, ûA

1 begin
2 j = false, // valid CRC vector of SC variable
3 k = false, // valid CRC vector of SCL variable
4 ûA = Sucessive Cancellation Decoding (yN

1 , N,A, uAc)
5 j = Cyclic Redundancy Check Decoding (ûA)
6 if j is true then
7 return ûA

8 else
9 ûl,A =

Sucessive Cancellation List Decoding (yN
1 , N,A, uAc ,L)

10 for l = 1 : L do
11 k = Cyclic Redundancy Check Decoding (ûl,A)
12 if k is true then
13 ûA = ûτ,A

14 return ûA

15 end
16 end
17 ûA = ûτ,A

18 return ûA

19 end
20 end
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The CRC polynomial project [25] depends on the maximum total length
N of the block to be designed considering data and CRC. According to [26],
where d is the degree of the generator polynomial, the maximum total length
of the block is given by 2d−1. The CRC-8 is to be used for N ≤ 128 and the
CRC-16 for is suggested N ≤ 32768.

2.8
Belief Propagation Decoding

The BP decoder is a message passing decoder with an iterative processing
over the factor graph of any polar codes [89]. The factor graph is based on
corresponding polarization matrix GN , composed of n stages, each one with
N/2 processing elements (PEs), and (n + 1)N nodes. Two types of LLRs are
transmitted over the factor graph: the left-to-right message R(t)

i,j and the right-
to-left message L(t)

i,j , where i and j denotes the jth node at the ith stage whereas
t denotes the tth iteration.

In the LLR domain, the input LLRs for BP decoding of polar codes are
initialized as:

L
(0)
n+1,j = ln Pr(xj = 0|yj)

Pr(xj = 1|yj)
= 2yj

σ2 , (2-25.1)

R
(0)
1,j =

0 if j ∈ A,

+∞ if j ∈ Ac,
(2-25.2)

where xj and yj denote the jth bit of modulated and received vector, respec-
tively.

The forward and backward propagation of the LLRs over the PEs, shown
in Figure 2.3, is based on the following iterative updating rules:

L
(t)
i,j = g(L(t−1)

i+1,j , L
(t−1)
i+1,j+N/2i +R

(t)
i,j+N/2i),

L
(t)
i,j+N/2i = g(L(t−1)

i+1,j , R
(t)
i,j ) + L

(t−1)
i+1,j+N/2i ,

R
(t)
i+1,j = g(R(t)

i,j , L
(t−1)
i+1,j+N/2i +R

(t)
i,j+N/2i),

R
(t)
i+1,j+N/2i = g(L(t−1)

i+1,j +R
(t)
i,j ) +R

(t)
i,j+N/2i ,

(2-26)

where g(a, b) is referred to as the operator:

g(a, b) = ln 1 + ea+b

ea + eb
,

g(a, b) = 0.9375 · sign(a) · sign(b) · min(|a|, |b|).
(2-27)

When the maximum number of iterations (Tmax) is reached, the infor-
mation bit ûj and the transmitted codeword xj are estimated based on their
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R
(t)
i,j

R
(t)
i+1,j

R
(t)
i,j+N/2i

L
(t)
i,j+N/2i

L
(t)
i+1,j+N/2i

R
(t)
i+1,j+N/2i

L
(t)
i+1,j

L
(t)
i,j

Figure 2.3: Processing element update.

LLRs using the following hard decision criteria:

ûj =

0, if LTmax
1,j +RTmax

1,j > 0,

1, otherwise,
(2-28.1)

x̂j =

0, if LTmax
n+1,j +RTmax

n+1,j > 0,

1, otherwise.
(2-28.2)

A pseudo-code of the BP decoding algorithm can be seen in Algorithm
4.
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Algorithm 4: Belief Propagation Decoding Algorithm
Input: maximum loop, Tmax

Input: received codeword, y
Input: code block length, N
Input: matrix generate, GN

Output: estimated codework, x̂
1 begin
2 j = 1
3 while j < Tmax do
4 update the message L
5 update the message R
6 if x̂GT = 0 then
7 return x̂
8 else
9 increment j by one

10 end
11 if j > Tmax then
12 return x̂
13 end
14 end

2.8.1
LDPC-like decoder for polar codes

The parity check matrix H of polar codes can be constructed from the
corresponding generating matrix GN [27]. The conventional factor graph of
the BP decoder is converted to the bipartite Tanner graph in a similar way to
LDPC codes. Then a pruning process is applied to make the graph sparse [27].
Sparse means that the number of zeros in the parity check matrix H is much
higher than the number of ones. The rows of H are called check nodes (C) and
the columns of H are called variable nodes (V), which are usually represented
graphically by a Tanner graph [28]. Figure 2.4 shows a Tanner graph and its
parity check matrix H.

The LDPC-like decoder for polar codes is based on the Sum-Product
Algorithm (SPA), which is a message-passing decoder with iterative processing
over the factor graph, in which the LLRs about the coded bits are exchanged
along the edges of the Tanner graph. First, each V gets its corresponding LLR
in the received vector, which we denote here the V’s intrinsic LLR. Each V
represents a bit in the codeword. In the beginning, Vs send their LLRs to their
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H =

V1 V2 V3 V4 V5 V6 V7

C1

C2

C3

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0

0 0 0

0 0 0

V1

V2

V3

V4

V5

V6

V7

C1

C2

C3

Figure 2.4: Tanner graph and parity check matrix H.

connected Cs. Each C processes all the messages sent from its connected Vs,
and finally predicts a value for each V. Each V then gets all these suggested
values from its connected Cs, adds them all together and also to its intrinsic
LLR, and obtains a more precise LLR. This concludes one iteration. If the
stopping criterion is not met, each V computes and sends its so-far computed
LLR (with little change) to each C and the iterations continue, until the
stopping criterion is met. As the algorithm proceeds, the computed LLR for
each V gets closer to a fixed point. This process is repeated until a codeword
is found or the maximum number of iterations is reached. The key observation
is that the processing at the Cs and Vs depends only on locally available
information, which allows for an efficient and parallelizable decoding process.
The BP update consists of applying the following equations.

In terms of notation, if the cth C is connected to the vth V, the message
from that C to that V is shown as Λc→v, and the message in the opposite
direction is λv→c. At the beginning of the algorithm, the messages are initialized
as follows:

Λc→v = 0 (2-29)
and

λ′
v→c = y, (2-30)

where λ′
v→c is the initial condition. Each iteration of the algorithm executes

the following three steps: C update, V update and stopping criterion.
For the C update, all the Cs produce their messages to all their connected

Vs. The message from cth C to the vth V can be computed with

Λc→v = 2 · tanh−1

 V∏
k=1,v ̸=v′

tanh

(
λv→c

2

) . (2-31)

The notation v′ ̸= v in (2-31) denotes that to compute the message to a certain
V, the message from all the other connected Vs is taken into account, except
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for the message that has come from that V.
The V update, all the Vs produce their messages to all their connected

Cs. The message from vth V to the cth C is computed according to

λv→c = λ′
v→c +

C∑
k=1

Λc→v. (2-32)

Until the stopping criterion, at each iteration, a more precise estimate of
the transmitted codeword is expected to be achieved. The obtained x̂ at the
end of each iteration is determined as

x̂ =

1, λv→c ≤ 0,

0, λv→c > 0.
(2-33)

If the stopping criterion is not reached, λ′
v→c is updated

λ′
v→c = λv→c (2-34)

and we have a new C update and V update.
If the stopping criterion is reached, but i < V , then i = i + 1 and λ′

v→c

is updated with a new codeword

λ′
v→c = y (2-35)

and a new cycle of steps begins.
A pseudo-code of the LDPC-like decoder can be seen in Algorithm 5.
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Algorithm 5: LDPC-Like decoder of polar codes
Input: maximum loop, Tmax

Input: received codeword, y
Input: sparse matrix of GN , H
Input: number of Cs, C
Input: number of Vs, V
Output: estimated codework, x̂

1 begin
2 T = 0; Finished = 0
3 for i = 1:C do
4 for j = 1:V do
5 λ′(i,j)v→c = y(j) ∗H(i,j)
6 end
7 end
8 repeat
9 for i = 1:C do

10 for j = 1:V do
11 Λ(i,j)v→c = 2 · tanh−1

(∏V
k=1,k ̸=j tanh

(
λ′(i,k)v→c

2

))
12 end
13 end
14 for j = 1:V do
15 λv→c = λ′

v→c +∑N
n=1 Λc→v

16 x̂(j) =

1, λ(i,j)v→c ≤ 0

0, λ(i,j)v→c > 0,
17 end
18 for i = 1:C do
19 for j = 1:V do
20 λ′(i,j)v→c = λ(i,j)v→c

21 end
22 end
23 until T = Tmax or x̂HT = 0;
24 return x̂
25 end

2.9
Polar codes construction

The aim of the polar codes construction is to determine the sets A and
Ac according to the capacity of the individual channels [1] [29]. Since polar
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codes are channel specific codes, the code construction may differ from channel
to channel. Channel parameters such as σ for AWGN and ϵ for BEC are inputs
to a code construction method. In general, the recursive formula for calculating
top and bottom channels is (2-11) and (2-12).

For the BEC channel W , the construction for polar codes with N = 8,
K = 4, which can be written PC(8,4), and with erasure probability ϵ = 0.3 is
shown in Figure 2.5, according to Algorithm 6.
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Figure 2.5: Construction PC(8,4) for BEC with ϵ=0.3.

Initially, the reliability of the smallest channel, W (1)
1 set as ϵ = Z0 = 0.3.

After that the reliability of the first channel, W (1)
2 is calculated as Z(W (1)

2 ) =
2Z(W (1)

1 )−Z(W (1)
1 )2, where Z(W (i)

n ) is the erasure probability of the ith length
n channel starting from top. At the same time, the second channel can be
calculated as Z(W (2)

2 ) = Z(W (1)
1 )2. The polar codes is designed by selecting

the |A| channel to transmit information bits such that Z(W (i)
N ) ≤ Z(W (j)

N ),
with i ∈ A and j ∈ Ac.

At the end of stage n (in this case n = 3), the erasure probability of all
length n channels appears. At this point, the channels which have the lowest
k erasure probabilities are set as free and the others are set as frozen. The
algorithm has n stages and performs the calculations. Here is the numerical
example the polarization stages:
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Algorithm 6: Polar codes Construction Algorithm for the BEC
Channel

Input: code length, N
Input: information bits number, K
Input: erasure probability, ϵ
Output: F = {0, 1, . . . , N − 1} with |F| = N

1 begin
2 n = log2N
3 Z ∈ RN , Z(0) = ϵ
4 for i = 1 to n do
5 d = 2i

6 for j = 1 to d
2 − 1 do

7 Z(d/2 + j) = 2Z(j − 1) − Z(j − 1)2

8 Z(j) = Z(j − 1)2

9 end
10 end
11 return F = Sorts Z indices in ascending order

12 end

– stage 1:
Z(W (1)

2 ) = 2(Z0) − (Z0)2 = 2(0.3) − (0.3)2 = 0.51 and
Z(W (2)

2 ) = (Z0)2 = (0.5)2 = 0.09.

– stage 2:
Z(W (1)

4 ) = 2Z(W (1)
2 ) − Z(W (1)

2 )2 = 0.76,
Z(W (2)

4 ) = 2Z(W (2)
2 ) − Z(W (2)

2 )2 = 0.172,
Z(W (3)

4 ) = Z(W (1)
2 )2 = 0.265 and

Z(W (4)
4 ) = Z(W (2)

2 )2 = 0.008.

– stage 3, by induction:
Z(W (1)

4 ) = 0.942,
Z(W (2)

4 ) = 0.577,
Z(W (3)

4 ) = 0.453,
Z(W (4)

4 ) = 0.068,
Z(W (5)

4 ) = 0.314,
Z(W (6)

4 ) = 0.03,
Z(W (7)

4 ) = 0.016 and
Z(W(8)

4 ) = 0.00001.

The channels W (1)
4 ,W

(2)
4 ,W

(3)
4 ,W

(4)
4 ,W

(5)
4 ,W

(6)
4 ,W

(7)
4 ,W

(8)
4 ) can be writ-

ten with (W0,W1,W2,W3,W4,W5,W6,W7). We define the polarization vector
as

b ≜
[
Z(W0);Z(W1); . . . ;Z(WN−1)

]T
. (2-36)
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An example for stage 3 we have b = [0.942, 0.577, 0.453, 0.068, 0.314, 0.03,
0.016, 0.00001]T . For K=4, A = [1, 2, 3, 5] and Ac = [4, 6, 7, 8].

The factor graph representation of an 8-bit encoder is shown in Figure
2.6, where ⊕ symbol represents the binary XOR operation. Note that the
channel quality determines which channels will be allocated data and which
ones will be frozen. Figure 2.6 is a graphic representation of the operation
performed by equation (2-16).
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Figure 2.6: Encoding procedure for PC(8,4) for BEC with ϵ = 0.3.

As a result, the following equations are obtained for codeword x:

x1 = u1 ⊕ u2 ⊕ u3 ⊕ u4 ⊕ u5 ⊕ u6 ⊕ u7 ⊕ u8,

x2 = u5 ⊕ u6 ⊕ u7 ⊕ u8,

x3 = u3 ⊕ u4 ⊕ u7 ⊕ u8,

x4 = u7 ⊕ u8,

x5 = u2 ⊕ u4 ⊕ u6 ⊕ u8,

x6 = u6 ⊕ u8,

x7 = u4 ⊕ u8,

x8 = u8. (2-37)

The free bits can be observed at the output of a polar encoder using
non-systematic encoding of polar codes.

2.10
State-of-the-Art

Polar codes are the latest breakthrough in coding theory, as they are
the first capacity achieving channel codes with low-complexity encoding and
decoding algorithms. Recent research have shown the possibility of applying
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polar codes and the polarization phenomenon in various signal processing
and communication problems [3]. Since polar codes were invented less than
15 years, there is still a lot more work to be done to bring them to their
full potential in terms of performance and complexity. Although the above
mentioned aspects of polar codes are very attractive, the issue of code design
and the computational complexity of decoding need improvement.

Application of genetic algorithms and reinforcement learning in the
construction of polar codes [99] allow for more efficient design because they
take into account the joint optimization of the decoder type and channel type.
The results obtained for the BP decoder and the AWGN channel are superior
to previous techniques. These optimization techniques are flexible and can be
used in a wide range of scenarios by matching decoder types and channel types.

The SC decoder can obtain good performance with low complexity
O(NlogN), but requires a larger block length N , while SCL decoding perform
well with higher complexity O(LNlogN). Most researchers focus on provid-
ing better error correction performance via using all possible computational
resources, such as high frequency multi-core CPU and GPU [24]. With the
proposed improvements in BP [92] decoding, its performance was comparable
to that of the SCL decoder, with the advantage of allowing parallel decoding
and with the complexity of O(N). Recently, with the possibility of using SPA
for decoding polar codes [27], new possibilities are open to research, among
them the joint decoding of LDPC and polar codes.

2.11
Chapter Summary

In this chapter the fundamental concepts of polar codes have been
described. A system model has been introduced and some key theoretical
aspects of channel polarization have been demonstrated. We have also covered
the encoding procedure of polar codes, the successive cancellation decoding
scheme and its variants, and the belief propagation decoding scheme and its
variants. Then the construction of polar codes has been introduced and the
state-of-the-art in polar codes has been briefly reviewed.



3
Rate-Compatible Polar Codes Based on Non-Uniform Chan-
nel Polarization

3.1
Chapter Overview

This chapter we demonstrate the use of non-uniform channel polarization
(NUC) theory in the construction of polar codes of arbitrary length [84]. We
present a generalization of the polarization theory for non-uniform channels
and we present the technique of construction by Non-Uniform Polarization
based on the Gaussian Approximation (NUPGA). In this scenario, the main
aspects of the channel polarization theory are maintained, namely, the conser-
vation of the associated channel capacity and the induction to the polarized
channel [1].

3.2
Introduction and Literature Review

In [1] it has been observed that the polar codes construction, in its
standard form, has the limitation in code length as a power of two, i.e., N = 2n,
however, code length flexibility is required for practical applications. There
are several construction techniques applied in the standard polar codes model
proposed by Arıkan [1] considering the SC decoder. Among the main polar
codes construction techniques are: the Bhattacharyya parameter [1], density
evolution (DE) [30],[14] and [29], Gaussian approximation of density evolution
[15] and the polarization weight (PW) [31]. To estimate the channel reliability,
the study in [1] proposed two methods, the evolution of the Bhattacharyya
parameter and Monte Carlo (MC) simulations. In the MC method, the estimate
of the channel reliability is obtained by simulations that consider the channel
type and the decoder type. So, for each simulation loop an encoding and
decoding step is necessary, which increases the cost of the method. In the
DE method, we need to compute the probability density function (PDF) of
the log-likelihood-ratio of each channel first and then choose the channels that
are most likely to be correct. The polar codes construction by the DE method
is complex due to the convolution functions, and its precision depends on
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the degree of complexity of the implementation of the convolution functions.
Similar to the MC method, the DE method has high computational cost. The
work in [29] proposes upper and lower bounds to simplify the DE method
for estimating the channel reliability using two approximation methods. For
AWGN channels, the study in [15] proposed the GA method, which is much less
complex than DE and has good precision for short code lengths. With lower
complexity and with performance similar to GA, PW [31] is a construction
method that implements the partial order theory (PO) [33]. Remark that
in polar codes construction, the estimate of the channel reliability depends
on the channel type [1]. PO is based on the observation that the channel
orderings are degraded according to the binary expansion of their indexes. It
is worth noting that PO is universal and independent of the type of channel.
PO provides us with quality information for all channels. The use of PO
simplifies the polar codes construction. Both in [34] and in [35] they show a
comparative study of the polar codes construction, their algorithm complexity
and their performance. The scenario used is the AWGN channel and SC and
SCL decoders for various rates and codewords. A performance study on the
AWGN channel of the GA method in polar codes construction can be found
at [36] and [37]. In [34], good design of polar codes was verified with several
construction methods, with SC decoding and for various scenarios varying both
the code length and the code rate. Polar codes can also be constructed and
adapted to a specific decoder, for example, construction of polar codes for SCL
decoding [38] and BP decoding [39][40]. In [41] the authors propose a genetic
algorithm framework that jointly optimizes the polar codes construction and
rate with a specific decoder.

Polar codes are limited to code lengths given by N = 2n, with n > 1.
We can group the polar codes construction of variable length in several
techniques, the main ones being: arbitrary kernels techniques, multi-kernel
techniques (MK), puncturing techniques, shortening techniques and extension
techniques are chosen to obtain a length of 2n−1 < M < 2n. Polarization
matrices of various sizes, for example 3x3, 5x5 and 7x7, have been used to
construct polar codes of any length. Bose–Chaudhuri–Hocquenghem (BCH)
kernel matrices proposed in [42] and the code decompositions proposed in [43]
both have restrictions on the size of the kernel matrices. Square polarizing
kernels larger than two have been proposed in [44], [45] and [46], while a polar
codes construction with mixed kernel sizes has been proposed in [47][48]. By
considering different polarization kernels of alternate dimensions, MK improves
block length flexibility. Although the general coding and decoding structure
follows the same structure of standard polar codes, there is an increased
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complexity with the generalization. The polar codes construction using the
Reed-Muller (RM) rule [49][50][51] can improve the performance of the error
rate.

The main shortening and puncturing techniques can be found in [32], [52]
- [62]. Generally, puncturing or shortening causes a loss of performance because
when the number of bits punctured or shortened increases the code length
decreases, degrading the performance. In [52] a study on the main puncturing
and shortening techniques is carried out, including the column weights (CW)
and the reversal quasi-uniform puncturing scheme (RQUP). Recalling that
one of the main limitations of polar codes construction is concerned with the
length of the code, given by N = 2n, that is, powers of two. In the flexible
length construction, a shortening or a puncturing design technique is chosen
to obtain a length of 2n−1 < M < 2n. Puncturing techniques are applied in
scenarios where the decoding is BP. We find in [53] - [54] the main studies on
punctured polar codes. Among the techniques used we can mention the reduced
generator matrix, exponent connection, minimum distance, stop tree drilling
and schemes applied to hybrid automatic repeat request (HARQ). Several of
these can be found at [55] - [56]. In [57] and [32] we have a performance analysis
of puncturing codes based on the DE construction technique. The shortening
techniques, in turn, are applied to the construction of polar codes with SC
and SCL decoding. As in the scheme we have adopted, the decoder is SC or
SCL, it is a fact that the shortened bits are known. So, in these shortened
bit positions, an LLR is defined as infinite. An efficient shortening method is
reported in [58], where the shortened bits set is optimized simultaneously with
the frozen bits set. In [59] a shortening method is presented that produces
good results and its technique is based on using CW to reduce the size of the
generating matrix. The main technique for reducing the generating matrix used
in the shortened polar codes was proposed by [60] and is known as RQUP. The
polarization-driven (PD) shortening technique has been presented in [61] based
on the reduction of the generator matrix along with a strategy for the choice
of bits shortened according to the channel polarization indices associated with
the line index of the generator matrix. Recently, the PW algorithm has been
used in a puncturing and shortening technique as reported in [62].

Moreover, it has the potential for Internet of Things (IoT) applications
in HARQ schemes [63] [64] [65]. In the HARQ mechanism [66], the original
message is retransmitted by sending some specifically constructed codewords.
In many cases the message is extended with bits of additional redundancy,
maintaining the original sequence of the information bits. For HARQ schemes
it was proposed that an arbitrary number of incremental coded bits can
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be generated by extending the polarization matrix such that multiple re-
transmissions are aggregated to produce a longer polar codes with extra coding
gain. In terms of complexity, it is similar to the standard polar codes, both in
the encoder and in the decoder. Nevertheless, there is a significant increase in
complexity when designing flexible-length polar codes by concatenated codes
[67], [68] and by asymmetric kernel construction [69]. In both cases the polar
codes construction is specific to each kernel dimension without generalization
gains. In [70] a chained polar sub-code technique is presented for effective
polar codes construction. The author in [66] proposes an optimized polarizing
matrix extension method. In turn, [72] proposed that an arbitrary number of
incremental coded bits, generated by extending the polarization matrix such
that multiple re-transmissions are aggregated to produce a longer polar codes
with extra coding gain. The author in [71] proposes to extend the polar codes
in order to maximize the throughput of the system of through choice a finite
set of linear combinations of message bits. In [73] the author proposes three
alternatives for polar codes extension, based on a matrix union arrangement
and re-polarization by the method of Tal-Vardy [29], with gains in terms of
coding and decoding complexity.

In the works of [103] and [104] methods are proposed to generalize the
channel polarization in scenarios of parallel transmission or when the channel
parameter is unknown. In [103], a construction technique for multichannel
polar codes has been reported, including a scheme for modulation and bit
interleaving, resulting in rate-matching compatibility. The scheme proposed
in [104] deals with scenarios with parallel channels and random channel
parameters. In uniform polarization, the same value of the Bhattacharyya
parameter is given for all channels according to the Arıkan construction [1]. In
terms of construction, its is equivalent to the use of the same LLR defined for all
channels. In the proposed NUPGA technique, we assign different LLR values
for the channel with the guarantee of the validity of the channel polarization
principle. Thefore, it is possible to construct polar codes of arbitrary length
while maintaining their rate-compatibility.

Then, we present an algorithm for PC shortening and also an algorithm
for PC extension, both based on the NUPGA technique. The NUPGA-based
algorithms jointly implement the technique for shortened or extended channels
with the re-polarization of the channels. We also present a generalization of
the construction algorithm, which is used for both polarization of the initial
channel and re-polarization of the shortened PC, and a simplified construction
technique for extended polar codes. The existing techniques are compared with
the proposed NUPGA technique in various simulations exploring different
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combinations of code length and code rate. A key feature of the proposed
designs is that the encoder and decoder structures are the same as that of the
original polar codes [1] and require the same complexity.

3.3
Fundamentals of polar codes construction

The key idea behind the construction of polar codes is to find the best
channels for transmitting bits of information. Based on the channel polarization
phenomenon, we observed that after implementing a linear transformation on
the W channel inputs, the effective channels seen by some of the bits are
better than the original W channel and others get worse. In other words, these
channels are polarized as the code length N increases and tends towards a
perfect channel (capacity 1) or completely noisy (capacity 0). These polarized
channels are well conditioned for transmission: the perfect channels to send
the information bits and we set to zero the bits sent by the other channels.

For the construction of arbitrary-length polar codes, a generalization of
channel polarization is necessary for the definition of non-uniform polarization,
maintaining the primary results of the channel polarization theory. First, we
will generalize channel types to see if full capacity is maintained. Then, we will
verify if the channel polarization theory is valid for non-uniform channels.

3.3.1
Channel capacity

In Figure 3.1 we show a B-DMC channel, designated by the symbol W ,
with input U and output Y .

WU Y

Figure 3.1: The channel W .

The input symbol on B-DMC channel is considered a discrete random
variable generated by U . Similarly, the symbol at the output of the channel
is modeled by another discrete random variable Y . Then, a set of B-DMC
channels from Figure 3.1 can be shown as in Figure 3.2a. The Bhattacharyya
parameter is Z(W ) for all B-DMC channels. Consider the transmission of
N different symbols [u1u2 · · ·uN ] through the channel in a serial manner.
These symbols that are transmitted serially, in our modeling are considered
independent and identically distributed (i.i.d.) random variables. Without loss
of generality, we consider that the transmission of each symbol is through
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each channel separately, as in Figure 3.2a, where U = [U1 U2 · · · UN ] and
Y = [Y1 Y2 · · · YN ]. Therefore, the deduction of the system’s capacity will
be the same as if we use other channels, that is, non-uniform channels, as
suggested in Figure 3.2b.

WU1 Y1

WU2 Y2

WUN YN

W1
U1 Y1

W2
U2 Y2

WN
UN YN

(a) (b)

Figure 3.2: (a) Uniform B-DMC and (b) non-uniform B-DMC.

Now, the Bhattacharyya parameter is different for all B-DMC channels.
The mutual information for Figure 3.2a and Figure 3.2b are shown below.

The mutual information of the uniform channel is given by

I(U; Y) = I(U1; Y) + I(U2; Y|U1) + I(U3; Y|U1, U2)

+ · · · + I(UN ; Y|U1, U2, · · · , UN−1).
(3-1)

We consider U1 and Y1, Y2, · · · , YN independent from each other, so we have:

I(U1; Y) = I(U1;Y1),

I(U2; Y|U1) = I(U2;Y2),

I(U3; Y|U1, U2) = I(U3;Y3),

I(UN ; Y|U1, U2, · · · , UN−1) = I(UN ;YN).

Then, (3-1) can be written as

I(U; Y) = I(U1;Y1) + I(U2;Y2) + I(U3;Y3) + · · · + I(UN ;YN), (3-2)

and let the capacity be C = maxI(U; Y), then we have

maxI(U; Y) = maxI(U1;Y1) + maxI(U2;Y2)

+ · · · + maxI(UN ;YN),

maxI(U; Y) = NC.

(3-3)

This implies the following inequalities:
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I(U1; Y) ̸= I(U1;Y1),

I(U2; Y|U1) ̸= I(U2;Y2),

I(U3; Y|U1, U2) ̸= I(U3;Y3),

I(UN ; Y|U1, U2, · · · , UN−1) ̸= I(UN ;YN).

That is, (3-2) cannot be simplified as in (3-3). In addition, it is necessary to
ensure that

I(U1; Y) < I(U3; Y|U1, U2) ≤ I(U2; Y|U1)

< · · · < I(UN ; Y|U1, U2, · · · , UN−1),
(3-4)

which means the individual capacities increase in an orderly manner but
the total capacity remains constant, i.e., the total capacity of the channels
is maintained, regardless of whether the channels are equal or not, that is,
uniform or non-uniform with different Bhattacharyya parameters. Then, for
uniform channels, according to (3-3), and for non-uniform channels, with the
inequality of (3-4), the capacity of the channels is conserved, and we show that
non-uniform polarization schemes achieve symmetric capacity:

maxI(U; Y) =
N∑

i=1
Ci = NC. (3-5)

Therefore, we can devise methods to construct polar codes that take into
account different Bhattacharyya parameters. Then we verify the convergence of
the polarization theory [1] for NUC. The channel capacity, channel polarization
and polarization convergence will be further studied in the next sections. Then,
we show that all results remain valid for the case of generalized channels.

3.3.2
Uniform construction

The channel polarization can be represented by a graphical representa-
tion called the construction tree [1], Figure 3.3. We can see that a unique
value of W is used in the construction, it is actually a simplification for the
parameter Z(W ).

On the BEC channel, for example, being (W (i)
N ,W

(i)
N ) → (W (2i−1)

2N ,W
(2i)
2N )

produces two B-DMC:

(W (i)
N ,W

(i)
N ) → (W (2i−1)

2N ,W
(2i)
2N ),

Z(W (2i)
2N ) ≤ 2Z(W (i)

N ) − Z(W (i)
N )2,

Z(W (2i−1)
2N ) ≤ Z(W (i)

N )2,

Z(W (2i−1)
2N ) ≤ Z(W (2i)

2N ),

(3-6)
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Figure 3.3: The channel construction.

according to [1], we have

I(W (2i)
2N ) = I(U1;Y1, Y2),

I(W (2i−1)
2N ) = I(U2;Y1, Y2|U1),

(3-7)

where U1 and U2 are iid. From the chain rule, it follows that

I(W (2i)
2N ) + I(W (2i−1)

2N ) = I(U1;Y1, Y2) + I(U2;Y1, Y2|U1),

= 2I(W (i)
N ),

(3-8)

and

I(W (2i)
2N ) ≥ I(W (i)

N ), (3-9)

which results in
I(W (2i)

2N ) ≥ I(W (2i−1)
2N ). (3-10)

For the case of the BEC channel [1]

Z(W (2i−1)
2N ) = 2Z(W (i)

N ) − Z(W (i)
N )2, (3-11)

Z(W (2i)
2N ) = Z(W (i)

N )2. (3-12)
Where reliability and cumulative rate must satisfy [1]

N∑
i=1

I(W (i)
N ) = NI(W ), (3-13)

N∑
i=1

Z(W (i)
N ) ≤ NZ(W ). (3-14)
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In uniform channel polarization there is always a set of B-DMCs that
reaches capacity when N → ∞ and arbitrarily small δ such that limN→∞ δ ≈ 0

lim
N→∞

∑N
i=1 I(W (i)

N )
N

= I ∈ (1 − δ, 1] or

lim
N→∞

∑N
i=1 I(W (i)

N )
N

= (1 − I) ∈ [0, δ),
(3-15)

where the values of I converge to 0 or to 1.

3.4
Non-uniform Construction

In this section, we show a generalization of the equations presented in
Section 3.3, we will see that channel polarization can also be applied to NUC.

We now have two channels W , which are independent, and we will
consider them to be non-uniform, so W(i) : X(i) → Y(i), as shown in Figure
3.4, where we rewrite (2-3) as

W (yN
1 |xN

1 ) =
N∏

i=1
W(i)(yi|xi), (3-16)

with W(i)(y|x) ̸= W(j)(y|x) if i ̸= j.

W(1)

W(2)

u1

u2

x1

x2

y1

y2

Figure 3.4: The NUC channel W2.

The symmetric capacity (2-4) and the Z(W ) parameter (2-5) [1] for any
W(i), are rewritten as

I(W(i)) =
∑
y∈Y

∑
x∈X

1
2W(i)(y|x) log W(i)(y|x)

1
2W(i)(y|0) + 1

2W(i)(y|1) , (3-17)

Z(W(i)) =
∑

yi∈Y

√
W(i)(yi|0)W(i)(yi|1), (3-18)

and
log 2

1 + Z(W(i))
≤ I(W(i)) ≤

√
1 + Z(W(i))2. (3-19)

For W2 we rewrite (2-13) and (2-14) as

W
(1)
2 (y2

1|u1) =
∑
u2

1
2W(1)(y1|u1 ⊕ u2)W(2)(y2|u2), (3-20)
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W
(2)
2 (y2

1, u1|u2) = 1
2W(1)(y1|u1 ⊕ u2)W(2)(y2|u2). (3-21)

Using the BEC channel again as an example, for a comparison with
Section 3.3.2, Figure 3.5 show alternative polarization tree and for the case of
the parameter Z we have:

Z(W (2)
2 ) =

∑
y2

1 ,u1

√
W

(2)
2 (y2

1, u1|u2 = 0)W (2)
2 (y2

1, u1|u2 = 1),

=
∑

y2
1 ,u1

1
2
√
W(1)(y1|u1)W(2)(y2|0)

·
√
W(1)(y1|u1)W(2)(y2|1),

=
∑

y2,u1

√
W(2)(y2|0)W(2)(y2|1)

·
∑

y1,u1

1
2
√
W(1)(y1|u1)W(1)(y1|u1),

= Z(W(2))Z(W(1)).

(3-22)

And (3-11) and (3-12):

Z(W (1)
2 ) ≤ Z(W(1)) + Z(W(2)) − Z(W(1))Z(W(2)), (3-23)

Z(W (2)
2 ) ≤ Z(W(1))Z(W(2)), (3-24)

Z(W (2)
2 ) ≤ Z(W (1)

2 ). (3-25)
So (3-13) and (3-14) are equivalent to

N∑
i=1

I(W (i)
N ) =

N∑
i=1

I(W(i)), (3-26)

N∑
i=1

Z(W (i)
N ) ≤

N∑
i=1

Z(W(i)). (3-27)

We can show that (3-8) can be obtained by performing the following
operations:

I(W (1)
2 ) = I(Y1, Y2|U1),

I(W (2)
2 ) = I(Y1, Y2|U1;U2),

I(W (1)
2 ) + I(W (2)

2 ) = I(Y1, Y2|U1) + I(Y1, Y2|U1;U2),

= I(W1) + I(W2).

So, for any set of B-DMC, we can rewrite (3-15) for the non-uniform polariza-
tion channel:
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Figure 3.5: Alternative polarization tree.

lim
N→∞

∑N
1 I(W(i))
N

= I ∈ (1 − δ, 1] or

lim
N→∞

∑N
1 I(W(i))
N

= (1 − I) ∈ [0, δ).
(3-28)

where the values of I converge to 0 or to 1, which is a novel result related to
the established result for uniform channel polarization in (3-15).

3.5
NUPGA Design Algorithms

In this section, we detail the NUPGA method and the implementation
of the non-uniform construction algorithms. First, consider the block diagram
of the polar coding system shown in Figure 3.6. Unlike the system originally
shown in Figure 2.1, we include in Figure 3.6 the code shortening or extension
(arbitrary length) step.

1xK 1xM 1xK1xM

u x
′ y û

Encoder Channel Decoder
1xN

x
Arbitrary

length

Figure 3.6: System model with shortening or extension step.
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3.5.1
NUPGA-based shortening

The PD [61] is a starting point to define the channels that will initially
be shortened. Shortening techniques reduce the length of the codeword from
N to M , that is, 2n−1 < M < 2n. The number of bits of information is
represented by K. The symbols N and M represent, respectively, the code
lengths of the standard polar codes and the shortened polar codes. Note that
K < M < N . The indexes set of the shortened bits is represented by the
symbol P , also called the shortening pattern. The cardinality of the shortened
bits is represented by |P | = N −M . Thus, for shortened polar codes, the code
rate is represented by R = K/M . Note that the decoder knows the shortened
bits P . When decoding, the corresponding LLRs are set to infinity. Consider
that the vector P contains the channels obtained by the PD. In the first step,
the codeword is generated by setting the set P set to zero. In the next step, the
length of the codeword is reduced by P . We remark that non-universality [1] is
one of the main characteristics of polar codes. With code shortening, we have
changes in the bit channels reliability, which deteriorates performance when
compared to the original code. In this regard, the study in [61] indicates that
the order of channel polarization does not change after shortening.

In AWGN channels, the LLRs of each sub-channel, namely L(i)
N , the chan-

nel polarization can be estimated with the recursive GA algorithm proposed
by [15] E(L(2i−1)

N ) = ϕ−1(1 − (1 − ϕ(E(L(i)
N/2)))2),

E(L(2i)
N ) = 2E(L(i)

N/2),
(3-29)

with E[·] being the expected value.

ϕ(x) =

exp(−0.4527x(0.86) + 0.0218) if 0 < x ≤ 10,√
π
x
(1 − 10

7x
) exp(−x

4 ) if x > 10.
(3-30)

In NUPGA, the GA equation in (3-29) is generalized, making it possible
to treat arbitrary lengths of code. This results in the following proposed
recursions:E(L(2i−1)

N ) = ϕ−1(1 − (1 − ϕ(E(L(i)
(1))))(1 − ϕ(E(L(i)

(2))))),

E(L(2i)
N ) = E(L(i)

(1))E(L(i)
(2)).

(3-31)

In Algorithm 7 we have the description of the proposed NUPGA shortening
algorithm.
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Algorithm 7: Proposed NUPGA Shortening Algorithm
Input: code block length, N
Input: info block length, K
Input: shortened set, P
Input: design-SNR, EdB = (REb/No) in dB
Output: result vector, F

1 begin
2 S = 10EdB/10

3 n = log2N

4 L ∈ RN initialize [E(L(i)
1 )]N1 = 4S

5 Upgrade with shortening vector [E(L(i)
1 )]N1 with P

6 for i = 1 : n+ 1 do
7 d = 2(i−2)

8 for k = 1 : 2(i−1) : n do
9 for b = 0 : d− 1 do

10 if E(L(i−1)
k+b ) = 0 or E(L(i−1)

k+b+d) = 0 then
11 E(L(i)

k+b) = E(L(i−1)
k+b )

12 E(L(i)
k+b+d) = E(L(i−1)

k+b+d)
13 end
14 E(L(i)

k+b) =
ϕ−1(1 − (1 − ϕ(E(L(i−1)

k+b )))(1 − ϕ(E(L(i−1)
k+b+d))))

15 E(L(i)
k+b+d) = E(L(i−1)

k+b )E(L(i−1)
k+b+d)

16 end
17 end
18 end
19 F = Find indices of smallest elements (E[L], K)
20 return F

21 end

3.5.2
NUPGA-based extension

A simple polar codes extension scheme can be implemented as suggested
in Figure 3.7 [73]. The key idea is to extend the code word without changing
the sequence of the information bits. An additional level of polarization is
performed in channel vector PM

1 and the information bits uK
1 . The connection

between the additional channels PM
1 and channels uK

K−|P | is carried out by
the linear polarization sequence of uK

1 . The correct choice of the connection
sequence allows the positions of the information bits to be maintained. It
is expected that the addition of the extension does not deteriorate the
performance of the code. On the contrary, the extension should improve the
performance of the resulting code. In the extension scheme the complexity
is O((N + M)log(N + M)), for N = 2n, is down than the puncturing and
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shortening scheme which is O((2n+1)log(2n+1)). This scheme is efficient for
kernels with low dimension (N < 512) and for extension of |P | < 50% of
N . Using the proposed NUPGA technique, we can consider all additional bit
channels PM

1 frozen and as bits output from polarized channels uK
K−|P |, uniform

and limited to the length of the extension. For the encoder we have the same
definition, that is, PM

1 frozen. In the decoder, we have

ûK
1 = fext(LLR((uK

1 ) + LLR(uK
K−|P |)), (3-32)

in the same order.

Arikan Kernel

N x N
Nu

K

1

Mp
M

1
u
K

K−|P |

Figure 3.7: Polar codes extension.

Note that according to (3-26), we have
N∑

i=1
I(W (i)

N ) +
M∑

i=1
I(W (i)

M ) =
N∑

i=1
I(W(i)) +

M∑
i=1

I(W(i)),

this only occurs in the following two cases: either W (i)
N and W

(i)
M are noisy

channels and both of the I(·) are equal to 0, or W (i)
N and W (i)

M are both perfect
channel such that the two I(·) are equal to 1. Using NUPGA, when W

(i)
N is

perfect and W
(i)
M is useless, the two I(·) are 1 and 0, respectively. In other

words, if the extended bit channel W (i)
M is a noisy channel and excluding the

case that both W (i)
N and W (i)

M are perfect channels, the re-polarization improves
the reliability of the shortened channels. With regards to (3-27), we have

N∑
i=1

Z(W (i)
N ) +

M∑
i=1

Z(W (i)
M ) ≤

N∑
i=1

Z(W(i)) +
M∑

i=1
Z(W(i)),

and with the use of NUPGA, we have
M∑

i=1
Z(W (i)

M ) ≤
N∑

i=1
Z(W (i)

N )

and then M∑
i=1

Z(W(i)) ≤
N∑

i=1
Z(W(i)),

which ensures that the extended channels will all be frozen channels. With
the proposed NUPGA extension scheme, it increases the message through the
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addition of bits, maintains the positions of the information bits and can be
used in IoT applications with HARQ.

The NUPGA Extension Algorithm is based on the implementation of the
equation (2-29). This method is similar to the extension of the polarization
matrix proposed in [72] and [73]. Note that the construction method for polar
codes extension allows us to maintain the same encoder and decoder for code
length. In the proposed NUPGA extension algorithm, the original codeword
of the channels initially designed is first extended by adding new bits. Thus, it
is possible to increase the code length by gradually adding new bits, making
it possible to build codewords of any length. The information bit channels are
polarized according to the reliability of the bit channel calculated from the
new extended channels.

Extension is a useful technique in HARQ transmissions that is used to
improve the performance in noisy channels, allowing detection adjustments and
synchronization. For this, the extension must allow the increment of bits in the
message maintaining the original position of the information bits. In practice,
there is an increase in redundancy bits. The performance gain in relation to
the original message length is low. However, in addition to its low complexity,
it has better performance than the shortening technique IoT scenarios

The main idea of the proposed NUPGA extension algorithm is to gener-
ate the new bit channels as frozen bits and make the associated information
bits more reliable than before. The extension length is N ′ = (N +M) and the
new rate is K/N ′ which can still be decoded efficiently. Therefore, extended
channels are obtained with the proposed NUPGA extension algorithm. The
details of the NUPGA extension algorithm are shown in Algorithm 8.

3.6
Simulation Results

The performance of the NUPGA-based shortening and extension algo-
rithms is assessed in this section against competing approaches such as CW
[59], RQUP [60] and PD [61]. For performance analysis we compared the Bit
Error Rate (BER) and Frame Error Rate (FER). We adopt Binary Phase shift
keying (BPSK) signaling over the AWGN channel for the evaluation. In the
simulations, SC and SCL decoders were considered with randomly generated
codewords and different code rates. In Figure 3.8 we compare NUPGA for
shortening with [34] using an SC decoder, where we show that the perfor-
mance of the shortened code is inferior to that of the standard code. Being
Eb/N0 the energy per bit to noise power spectral density ratio, is a normalized
signal-to-noise ratio (SNR) measure, Eb is the signal energy associated with
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Algorithm 8: Proposed NUPGA Extension Algorithm
Input: code block length, N
Input: info block length, K
Input: shortened set, P
Input: extension length, ∆M
Input: design-SNR, EdB = (REb/No) in dB
Output: resulting vector, F ∈ {0, 1, . . . , N + ∆M − 1}

1 begin
2 S = 10EdB/10

3 n = log2N

4 Initialize [E(L(i)
1 )]N1 = 4S and [E(L(i)

1 )]∆M
N = 0

5 Upgrade with vector [E(L(i)
1 )]N1 with P

6 for i = 1 : n+ 1 do
7 d = 2(i−2)

8 for k = 1 : 2(i−1) : n do
9 for b = 0 : d− 1 do

10 if E(L(i−1)
k+b ) = 0 or E(L(i−1)

k+b+d) = 0 then
11 E(L(i)

k+b) = E(L(i−1)
k+b )

12 E(L(i)
k+b+d) = E(L(i−1)

k+b+d)
13 end
14 E(L(i)

k+b) =
ϕ−1(1 − (1 − ϕ(E(L(i−1)

k+b )))(1 − ϕ(E(L(i−1)
k+b+d))))

15 E(L(i)
k+b+d) = E(L(i−1)

k+b )E(L(i−1)
k+b+d)

16 end
17 end
18 end
19 F = Find indices of smallest elements (E[L], K)
20 return F

21 end

each user data bit and N0 is the noise spectral density. A similar pattern can be
seen in Figure 3.9 with the SCL decoder [18] and list size L = 16. Figure 3.10
shows the performance over AWGN of NUPGA for shortening with CA-SLC
[18] decoding aided by CRC codes with size 24 and L = 16. In Figure 3.12 we
compare the performance of the proposed NUPGA extension algorithm with
the PD and NUPGA shortening algorithms with SCL and L = 16.

In the first example, in Figure 3.8, we show the standard polar codes [34]
called the mother code (MC). In the simulation we use MC with N = 512 and
rate R = 1/2; M = 320 with R = 1/2. We compare them with CW [59], RQUP
[60] and PD [61] in addition to the proposed NUPGA shortening techniques.
In Figure 3.9, we show the performance for M = 400 with R = 1/2, with CA-
SCL decoding with L = 16. And in Figure 3.10, the performance for: M = 400,
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Figure 3.8: Performance of polar codes with N = 512 with R = 1/2 and
M = 320 with R = 1/2.

R = 1/4, AWGN, CA-SCL, L = 16 and CRC with length 24. In Figure 3.11, we
compare the performance of the shortened polar codes M = 280 and K = 128,
the proposed NUPGA extension technique with three other curves: with MC
[34] of length N = 256, the PD [61] algorithm and the NUPGA shortening
under CA-SCL with L = 16 and CRC with length 24. The results show that
the NUPAG extension technique outperforms the NUPGA shortening and the
PD algorithms using list decoding with CRC.

We notice in all simulations that the proposed NUPGA technique has
gains in performance in the scenarios studied. As shown in Figure 3.10, we
can see that for low rates under list decoding, the gain tends to be greater. In
Figure 3.8 we observe that the performance gain of NUPGA is of the order of
0.5 dB as compared to the approach of CW [59].
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Figure 3.9: PD versus NUPGA: M = 400, K = 200 and CA-SCL with L = 16.
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Figure 3.10: Performance of PD and NUPGA shortening algorithms both with
M = 400 and K = 50 using CA-SCL with L = 16 and CRC = 24.

In Figure 3.9, we verify that the gain obtained by NUPGA is less than
0.1dB. In Figure 3.10 we notice that the gain is up to 1.2dB, which indicates
that the NUPGA is advantageous for low rates. In Figure 3.11, we observe
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that the NUPGA extension algorithm achieves a performance improvement
over that obtained by the NUPGA shortening algorithm, which is around 0.1
dB. We can see that according to the curves a modest incremental extension
has good BER performance, maintaining the same FER performance as the
original code [34].
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Figure 3.11: Performance of NUPGA extension with PD and NUPGA short-
ening, decoder CA-SCL with L = 16 and CRC with length 24.

In Figure 3.12, we can observe application of the NUPGA extension for
code N = 64 with K = 32, and N = 128 with K = 64 [63] [64]. Note that
the K value is kept constant and the N value is extended. For the first case,
we have the 4-bit extension for N = 64, that is, M = (4, 8, 12). In the second
case, we have the 8-bit extension for N = 128, that is, M = (8, 16, 32). We
can see that for both cases we have small gains in BER, which can be used in
HARQ transmission [63][64][65].

3.7
Chapter Summary

Within this chapter it has been described a technique for polar codes
construction for arbitrary code length, called NUPGA. NUPGA is designed
for a scenario where the transmission is through an AWGN channel and
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Figure 3.12: Performance of NUPGA extension for scenarios [63] [65].

under successive cancellation decoding. As by default, the construction of
the polar codes is limited to the length of the code proportional to the
power of two. We propose a generalization of the polarization theory [1]
to define non-uniform channels and with this approach we can construction
polar codes with arbitrary length. With NUPGA, we repolarized the projected
synthetic channels, choosing more efficiently the positions of the information
bits. In addition, we present a generalization of the GA for the polarization
and repolarization processes and an extension technique for polar codes. The
construction of the polar codes based on NUPGA presents better performance
than the existing techniques as demonstrated in the simulations of this
chapter.



4
Polar Codes Based on Piecewise Gaussian Approximation

4.1
Chapter Overview

In this chapter, we present the construction of polar codes based on
Piecewise Gaussian Approximation (PGA) techniques. The PGA approach is
first optimized and then compared to the Gaussian approximation construc-
tion method, showing performance gains for medium blocks and high precision
for long blocks, in scenarios with successive cancellation decoding and additive
white Gaussian noise channel. Based on the PGA, we develop two approxi-
mations based on multi-segmented polynomials that are easy to implement.
We present the Approximate PGA (APGA) that is optimized for medium
blocks and provides a performance improvement without increasing complex-
ity. Furthermore, we develop the Simplified PGA (SPGA) as an alternative to
the Gaussian approximation construction method, which is optimized for long
blocks and achieves high construction accuracy.

4.2
Introduction and Literature Review

The work of Chung [74] introduced Gaussian Approximation construc-
tion, applying in LDPC code construction and [15] was the first to use it in
the construction of polar codes. Gaussian approximation construction method
was originally described in integral form, known as Exact GA (EGA). Due to
the complex integration, EGA has a high computational cost associated with
the numerical solution, which increase exponentially with the code length,
consequently, with the polarization levels. As an alternative, Chung [74] pro-
posed the Approximate GA (AGA), which is an approximation composed of
two-segment function. We note that this alternative is implemented by tran-
scendental functions, maintaining a high computational complexity in its use.
The author in [75] also proposed an alternative to numerical integration, ap-
proximating GA by a three-segment function. Trifonov also proposed in [76]
a multi-segment polynomial approximation, without the use of transcendental
and inverse functions. The AGA performance for short and medium blocks for
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the AWGN channel is similar to the Tal and Vardy method, but it fails for
long blocks due to the approximation error around zero.

For long blocks, polar codes construction with EGA is expensive due to
numerical integration, in addition to the errors associated with the numerical
integration solution, and AGA construction [74] is imprecise due to the approx-
imation error around zero. Furthermore, both require inverse, transcendental
functions and composed of complex recursive functions. Some attempts at im-
proved approximations with better performance than AGA were proposed in
[77] - [79]. The work of Fang [77] analyzed the first and second derivatives
of EGA and developed a simplified multi-segment polynomial approximation
without using transcendental functions and without the need to calculate an
inverse function. Dai [78] introduced the concepts of polarization violation set,
the polarization reversal set and a new metric named cumulative-logarithmic
error, which results in an algorithm that uses transcendental and inverse func-
tions. Ochiai et al [79] analyzed the behavior of EGA in the logarithmic domain
and proposed another approximation based on a logarithmic function (tran-
scendental function) and that employs an algebraic expression for the inverse
function.

Given the computational complexity of EGA related to the complex inte-
gration, the intrinsic imprecision of the AGA associated to the approximation
error around zero, and that the approximations proposed by [77] - [79] employ
transcendental functions or require function inversion for polar codes construc-
tion, i.e., both the original GA method and the previous approximations have
numerical integration and function inversion, we proposed the approximation
function that replaces the numerical integration and the inverse function with
a set of piecewise polynomial functions, resulting in an improved approxima-
tion and further computational simplicity. Then, we develop in this work two
improved approximations for GA based on Piecewise Gaussian Approxima-
tion, PGA. In particular, we develop high-precision approximations using only
multi-segment polynomial functions, which replace the need for numerical in-
tegration, function inversion and transcendental functions. In [80] we reported
the preliminary results. Specifically, We have expanded the work in [80] by in-
cluding the application of PGA and extended design techniques to medium and
large blocks, with theoretical analysis and extra simulation results of various
application scenarios. In particular, we devise a novel strategy for a piecewise
approximation method for polar codes construction, resulting in improved per-
formance for medium block lengths. Similar to the original GA function, PGA
is used in integral form. Then, we propose an approximation called Approxi-
mate PGA, APGA, through a new criterion of the approximation inspired by a
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detailed analysis of the behavior of the PGA function. APGA is a simplified al-
ternative multi-segment polynomial approximation, which is computationally
more convenient for construction of polar codes with medium blocks. By draw-
ing inspiration from the analysis, we devise an approximation for long blocks,
called Simplified PGA, SPGA, also in the form of a multi-segment polynomial
function. The proposed method can be generalized to extremely long or ex-
tremely short lengths and is able to adapt to any channel condition. Moreover,
we show that the difference in accuracy between the approximation methods
can be obtained by the Number of Different Positions (NDP), initially intro-
duced by Kern [81], and we derive an index that measures the general quality
of the proposed approximation, called Accumulative Design Error (ADE). The
rate-compatible polar codes design that uses GA in its construction, as re-
ported in [61], [82], [83], [84], can have a significant impact on its performance
when consider the APGA and SPGA constructions.

4.3
Gaussian Approximation

The set Ac is obtained by polar codes construction. The construction
depends on several parameters, the main ones being: the length of the codeword
N , the number of the information bits K, which channel will be used for
transmission, the signal-to-noise ratio target, or design-SNR, and the decoding
approach. All construction methods covered in this paper will consider the
AWGN channel and the SC decoder, mainly due to the large number of articles
with results of the polar codes construction with GA and SC decoding for
AWGN channel, which allows for the comparison of polar codes construction
methods.

In the GA construction, the LLR, namely L
(i)
N , is used as a Gaussian

distribution function with a mean equal to half of the variance. Therefore, the
mean of the LLRs is a sufficient statistic for their iterative update. Rewriting
(3-30) of GA [74], we have

E
(
L

(2i−1)
N

)
= ϕ−1

(
1 −

(
1 − ϕ

(
E
(
L

(i)
N/2

)))2
)
, (4-1)

E
(
L

(2i)
N

)
= 2E

(
L

(i)
N/2

)
, (4-2)

with
L

(0)
1 = 2

σ2 . (4-3)

The quantity L(i)
N denotes the LLR of the channel W (i)

N , σ2 and E[·] are
the variance and the mean, respectively. In practice, in order to construct polar
codes, we have E[L(i)

N ] = L
(i)
N . The function ϕ(x) is defined as:
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ϕ(x) =


1 − 1√

4πx

∫
R

tanh
(

u
2

)
e

−(x−u)2
4x du, if x > 0,

1, if x = 0,
(4-4)

where due to the integral function, EGA [77].
However, we have a complex integral function. The computational com-

plexity will inevitably increase as the code length and polarization level in-
creases. That is, the GA approach above has a numerical computation prob-
lem. The function ϕ(x) can arbitrarily approach zero as x becomes very large.
For example [79], for x around 1000, a possible value in long code length con-
struction, ϕ(x) can assume values lower than 10−100. We can solve the function
ϕ(x) and ϕ−1(x) with the bisection method [80]. However, as x becomes large,
ϕ(x) becomes very smaller, which generates numerical inaccuracy, and conse-
quently, generates an error in the code construction.

The author in [74] also proposed a simplification of ϕ(x) by a two-segment
approximation function described by

ϕ(x)AGA ≈

e
−0.4527x(0.86)+0.0218, if 0 < x ≤ 10,√

π
x

(
1 − 10

7x

)
e− x

4 , if x > 10,
(4-5)

which is the so-called AGA [77]. For codes with long block lengths, AGA
induces performance losses due to the approximation error caused by the
difference between ϕ(x) and ϕ(x)AGA for x = 0, that is, the AGA approach
above has a numerical computation problem.

ϕ(0)AGA = e0.0218 > ϕ(0) = 1. (4-6)

The zero approximation error of ϕ(0)AGA show in (4-6).
A detailed analysis of the approximation error of (4-5) and its effects

on large block lengths can be found in [78] and [79]. Additionally, the AGA
algorithm implements the calculation of transcendental, inverse and complex
recursive functions, which can be avoided.

The computational complexity of the EGA construction is given by
O(Nm), where N is the length of the code and m is the number of itera-
tions to calculate the numerical solution of the integration and the function
inversion, both from (4-1). The larger the value of m, the more accurate the
numerical solution of integration and function inversion will be. The proposed
approximations reduce the computational complexity of constructing the polar
codes to O(N), similar to the computational complexity in [1]. Note that the
cost is associated to the design phase of the polar codes. Once the codes are
designed the operation cost is the same for all designs.
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4.4
Piecewise Gaussian Approximation

It is known that EGA was originally proposed to design LDPC codes [74]
and when applied in the construction of polar codes [15] it generates codes with
good performance. However, it is not known if EGA (4-4) can be improved for
the construction of polar codes. From (4-4), for the purpose of analysis we
define the function:

ψ(x, u) = tanh
(
u

2

) 1√
4πx

e
−(u−x)2

4x , (4-7)

where we notice that the compound function is the product of a Gaussian
function

g(x, u) = 1√
4πx

e
−(u−x)2

4x ,

with a hyperbolic tangent function

tanh
(
u

2

)
,

which we will call the Modified Gaussian (MG) function. An example of
tanh(u

2 ) and g(x, u) is shown in Figure 4.1, for x ≈ 0.08.
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Figure 4.1: Example of tanh and Gaussian function.

The tanh(u
2 ) is an odd and zero-centered function, i.e., tanh(u

2 ) ⊂ [−1, 1],
with tanh(u

2 ) approaches -1 for the interval u
2 ∈ (− inf,−4) and tanh(u

2 )
approaches +1 for the interval u

2 ∈ (+4, inf). In Figure 4.2 we can notice
the compound function ψ(x, u) (4-7), and its behavior for several values of x
(mean), varying u, since tanh(u

2 ) does not depend on x, only on the factor u
as noted in (4-7). Each curve represents a g(x, u) function with x ranging from
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0 to 14. Note that tanh(u
2 ) for u < 1 has greater importance than g(x, u), for

small values of x and for x approaching 0. Moreover, with the increase in x, the
behavior tends to be of a g(x, u) function, i.e, the Gaussian function becomes
more dominant.
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Figure 4.2: Function ψ in (4-7), with increment of x (mean) tends to the
behavior of g(x, u), ie, Gaussian.

As explained in [74], to maintain the accuracy of EGA, it is important to
preserve the symmetry condition [85], expressed as F (x) = F (−x)e−x, where
F (x) is the density of an LLR message. For g(x, u) function this condition
can only be met by the mean. Observing ψ(x, u), we have that the symmetry
condition is preserved independently of the tanh(u

2 ) function.
Thus, to improve the performance of the GA construction for polar codes,

we present a piecewise approximation for the function ϕ in (4-4) and a new
function is proposed to replace the function tanh(u

2 ). In this approximation,
we use an exponential function with the following terms: a · eb·x + c · ed·x.

The proposed piecewise (ϕp) function optimized for polar codes is

ϕp(x) =


1 − 1√

4πx

∫
R
f
(

u
2

)
e

−(u−x)2
4x du, x > 0,

1, x = 0,
(4-8)

with

f(x) =


a · eb·x + c · ed·x, x ≥ −3.1 and x ≤ 3.1,

+1, x > +3.1,

−1, x < −3.1.

(4-9)
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The parameters a, b, c, d and cutoff at x = ±3.1 was obtained by
exhaustive search for minimum FER in a PC(512,128), PC(1024,512) and
PC(2048,1024) constructed with (4-8) and (4-9), with design-SNR = (0, 1, 2, 3),
Eb/N0 = (0, 1, 2, 3, 4) and 5 · 105 iterations. Initially, the odd function f(x) is
defined as f(x) ⊂ [−1, 1], x ∈ R, limx→−∞ f(x) = −1, limx→+∞ f(x) = +1
and f(0) = 0, according to

min
f(x)

(FER). (4-10)

Generalization is possible because the function obtained in (4-10) has the
same initial format as tanh, which is the starting point for the optimization.
The parameters a, b, c and d are continuously adjusted until a performance
superior to the EGA is obtained. During the exhaustive search, the function
f(x) was tested with various formats, some of these formats are known
functions. Some of these functions are represented in Figure 4.3.
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Figure 4.3: Some f(x) functions tested while exhaustive search in (4-10). For
x < 0, consider −x2, −x4, −x6, −log(−x/3 + 1) and exp(−x/7) − 1.

The optimized parameters are a = 1.9e+07, b = 8.4e−09, c = −1.8e+07
and d = −8.5e− 09.

In order to represent the PGA construction, we have updated equation
(4-1) as

E
(
L

(2i−1)
N

)
= ϕ−1

p

(
1 −

(
1 − ϕp

(
E
(
L

(i)
N/2

)))2
)
. (4-11)
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Using the same format and limits proposed by [75], using Root Mean
Square Error (RMSE), we develop an approximation to the proposed function
ϕp in (4-8) given by

ϕp(x) ≈


e−0.0484x2−0.3258x, 0 ≤ x < 0.867861,

e−0.4777x(0.8512)+0.1094, 0.867861 ≤ x < 10,√
π
x

(
1 − 1.509

x

)
e− x

3.936 , x ≥ 10.

(4-12)

The values of x are chosen to improve the approximation given by (4-5) around
x = 0, where ϕ(0)AGA > 1, (4-6). Thus, this approximation improves accuracy,
but it is still constituted by transcendental functions.

In Algorithm 9 we have the description of the proposed PGA construction
algorithm with ϕp in (4-1). For the calculation of the function ϕ−1

p , inverse
function of (4-4), by the bisection method, an approach optimized is presented
in Algorithm 10.

Algorithm 9: PGA construction
Input: code length, N
Input: information bits, K
Input: design-SNR EdB = (REb/No) in dB
Output: F ∈ {0, 1, . . . , N − 1} with |F | = N

1 begin
2 S = 10EdB/10;
3 n = log2N ;
4 W ∈ RN ,W (0) = 4S;
5 for i = 1 to n do
6 d = 2i ;
7 for j = 1 to d

2 − 1 do
8 W (j) = ϕ−1

p (1 − (1 − ϕp(W (j − 1)))2);
9 W (d/2 + j) = 2W (j − 1);

10 end
11 end
12 F = Sorts W indices in ascending order;
13 end
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Algorithm 10: ϕ−1
p function

Input: value input, y
Output: value output, x

1 begin
2 if y = 0 then
3 x = 0;
4 return;
5 end
6 aux = 1; base = ϕp(aux); iteration-times = 20;
7 if y ≤ base then
8 while y < base do
9 aux = aux*0.1; base = ϕp(aux);

10 end
11 anchor1 = aux;
12 anchor2 = aux*10;
13 for i = 1 to iteration-times do
14 x = (anchor1+anchor2)/2; aux = ϕp(x);
15 if y <= aux then
16 anchor2 = x;
17 else
18 anchor1 = x;
19 end
20 end
21 else
22 while y >= base do
23 aux = aux + 10; base = ϕp(aux);
24 end
25 anchor1 = aux - 10;
26 anchor2 = aux;
27 for i = 1 to iteration-times do
28 x = (anchor1+anchor2)/2; aux = ϕp(x);
29 if y <= aux then
30 anchor2 = x;
31 else
32 anchor1 = x;
33 end
34 end
35 end
36 end
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In Figure 4.4, we can see the functions in (4-1) with the ϕ for EGA in
(4-4), and the the functions in (4-11) with the ϕp for PGA in (4-8). In the
next section we will see the performance improvement due to this difference
between the EGA and PGA functions.
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Figure 4.4: Comparison of EGA and PGA with input mean LLR.

4.5
Proposed PGA and Design Techniques

In this section, we present a detailed study of PGA by investigating the
behavior of ψ(x, u) in (4-7). We identify the key points and the statistical
distribution of the results. Based on the statistics and in order to approximate
PGA, we eliminate the transcendental functions and the inverse function.
The approximation is generated with polynomial functions and we propose
APGA for polar codes construction. Using a similar strategy, we propose an
approximation for long blocks, called SPGA. We remark that APGA is an
approximation of PGA, which uses the function ϕp(x) in (4-8) and is optimized
for medium blocks, whereas SPGA is an approximation of EGA, which uses
the functions ϕ(x) in (4-4) and has been optimized for long blocks.
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4.5.1
Modified Gaussian analysis

In a more detailed analysis of the ψ(x, u) function in (4-7), we can notice
in Figure 4.5b that from x > 20, that is, for the mean greater than 20, the
behavior of ψ(x, u) is Gaussian, i.e.,

{x > 20 and u ∈ (− inf,+ inf) | ψ(x, u) ≈ g(x, u)}.

It means that from that point on the ψ(x, u) can be well approximated by a
polynomial function of degree 1, i.e.,

{x > 20 |
∫
R

ψ(x, u)du ≈ 1}.

Next, we observe that in ψ(x, u) from x ∈ [6, 20], the maximum
point is identical to that of g(x, u), as reproduced in Figure 4.5a, i.e, {x ∈
[6, 20] and u ∈ (− inf,+ inf) | max(ψ(x, u)) = max(g(x, u))}. Here we have
one more key point at 6 and an important interval of study for the mean
between 6 and 20.
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Figure 4.5: We can observe that from x=6 the ϕ(x, u) and g(x, u) already have
the same maximum value, as observed in a), and are completely equal in b),
for x=20.

As observed in Figure 4.2, for x < 1 the tanh(u
2 ) is more important than
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g(x, u). This behavior can be better seen in Figure 4.6, where for each figure
the scale was reduced by 10−5.
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Figure 4.6: Equation ψ (4-7) behavior around zero, for each sub-figure the scale
was reduced by 10−5.

According to our analysis, we observe that points 1, 6 and 20 are of
fundamental importance for understanding the behavior of the ϕ function, for
they mark the points at which ϕ approaches until it equals g(x, u).

4.5.2
Statistical analysis of the PGA function.

Once the key points in the previous section are obtained, we need to
perform a statistical analysis of PGA, investigating the distribution of the
LLRs obtained by (4-11). For the design of the simplified approximation, we
must make sure that we will have a good accuracy in the regions with the
highest concentration of LLRs.

Let us then examine the statistical concentration of LLRs, considering
intervals that include points 1, 6 and 20 as limits. See in Figure 4.7 all LLRs
generated by PGA for polar codes with lengths N = 256, 512, 1024, 2048. Note
that there is a concentration in the range [0, 1]. Looking in more detail the
concentration of LLRs in the interval [0, 1], it is observed that there is always
a greater concentration around zero for LLRs → 0. This is because for LLR



Chapter 4. Polar Codes Based on Piecewise Gaussian Approximation 73

< 1, the PGA generates new LLRs closer and closer to zero because it uses a
squared term in (4-11). This implies a greater resolution of the approximation
in this interval.
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Figure 4.7: LLR statistical distribution for PGA construction.

As a result of this analysis, we suggest one more key point, with a value
of 0.2, to be used in the intervals for the simplified approximation.

4.5.3
Approximate PGA for medium blocks

With the parameter obtained from the analysis of the behavior of the
function ψ and the statistical distribution of the LLRs of PGA, we propose to
approximate the PGA (4-11) with a piecewise polynomials form given by

E[L(2i−1)
N ] = A(E[L(i)

N/2]), (4-13)

E[L(2i)
N ] = 2E[L(i)

N/2], (4-14)
with

A(x) =
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0.323x2, x ⩽ 0.2,

−0.1x3 + 0.43x2 − 0.039x− 0.005, 0.2 < x ⩽ 1,

−0.003x3 + 0.063x2 + 0.432x− 0.2, 1 < x ⩽ 6,

−0.0002x3 + 0.012x2 + 0.777x− 1.023, 6 < x ⩽ 20,

0.9803x− 2.109, x > 20,

(4-15)

which is denoted as APGA. This approximation was obtained by minimum
squared error curve-fitting. This operation involves only summations and
multiplications, and avoids any transcendental functions. In Figure 4.8a we
can notice the accuracy of APGA in relation to PGA.

4.5.4
Simplified PGA for long blocks

Using the same approximation strategy and analysis as in the previous
subsection, we propose the SPGA design technique for polar codes with long
blocks. Similar to the approximations obtained previously, our objective is to
obtain a simplified polynomial multi-segment function, using for this the same
limits of (4-15). The proposed function has been designed by minimum squared
error curve-fitting, with only addition and multiplication operations, without
any transcendental functions. The simplified approximation is given by

E[L(2i−1)
N ] = S(E[L(i)

N/2]), (4-16)

E[L(2i)
N ] = 2E[L(i)

N/2], (4-17)
with

S(x) =

−0.256x3 + 0.461x2 + 0.002x, x ⩽ 0.2,

−0.064x3 + 0.294x2 + 0.05x− 0.004, 0.2 < x ⩽ 1,

−0.005x3 + 0.092x2 + 0.316x− 0.133, 1 < x ⩽ 6,

0.002x2 + 0.908x− 1.588, 6 < x ⩽ 20,

0.995x− 2.459, x > 20,

(4-18)

which is denoted as SPGA.
The EGA and PGA functions are distinct functions, as shown in Figure

4.4, and two approximation functions, APGA for PGA and SPGA for EGA,
are shown in Figure 4.8a and Figure 4.8b, respectively.
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Figure 4.8: a) Accuracy of the APGA approximation to the PGA, and b)
Accuracy of the SPGA approximation to the EGA.

4.5.5
General algorithm for APGA and SPGA

Here, we present a general construction algorithm that can be used for
both APGA and SPGA. In particular, note that lines 8 and 9 of Algorithm
11 represent, respectively, the use of (4-15) and (4-18). We can observe the
mathematical simplification obtained when compared with (4-1), (4-5) and
(4-12), that is, without the need to calculate an inverse function and without
transcendental functions.

Recall that the objective of the proposed APGA and SPGA methods
is to recursively calculate the reliability of each channel and all of them can
be implemented with just a few calculations, which may involve non-linear
functions. The overall complexity is proportional to the length of the codeword
N .

4.5.6
Accumulative Design Error

The number of different positions, NDP [81], is a measure of the disper-
sion in polar codes construction. We used NDP to evaluate of accuracy when
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Algorithm 11: General algorithm for APGA and SPGA
Input: code length, N
Input: information bits, K
Input: design-SNR, EdB = (REb/No) in dB
Output: F = {0, 1, . . . , N − 1} with |F| = N

1 begin
2 S = 10EdB/10

3 n = log2N
4 W ∈ RN ,W (0) = 4S
5 for i = 1 to n do
6 d = 2i

7 for j = 1 to d
2 − 1 do

8 W (d/2 + j) = A(W (j − 1)); for APGA (4-15) or
9 W (d/2 + j) = S(W (j − 1)); for SPGA (4-18)

10 W (j) = 2W (j − 1)
11 end
12 end
13 return F = Sorts W indices in ascending order

14 end

comparing APGA and PGA; and also to evaluate the accuracy when compar-
ing SPGA to EGA. According to [81], we define as reference the set of frozen
bits of PGA and EGA, called the reference set of frozen bits (Aref

c ). We use
it as a reference to compare the sets of frozen bits (Ac) the all construction
methods. The number of different positions between Ac and Aref

c is defined by

|Ac \ Aref
c | ≜ |{x ∈ Ac : x /∈ Aref

c }|. (4-19)
We can use NDP as an indication of the quality of the approximation for

given n. The smaller the NDP measure, the smaller the number of different
frozen positions between Ac and Aref

c , which can lead to better FER for Ac,
closer to the FER with the ideal positions Aref

c . This approach is more effective
for measuring the quality of approximations because we effectively compare the
polar codes construction design.

We then define a mathematical expression for the channel difference with
a unified index to compare the approximation methods for long blocks, which
we call Accumulative Design Error ADE and whose main property is to account
for the NDP. We define ADE as

ADE(n) =
n∑

i=1
X i, (4-20)

where n = log2 N and X is the NDP for n. We have that the set Ac has
different values for each approximation method. We can say that there is an
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optimal polynomial multi-segment approximation of (4-1), such that

lim
n→∞

ADE(n) = 0,

but the computational cost is prohibitive. However, we can consider that there
is a two sub-optimal polynomial approximation, which is feasible and has low
computational cost, called pa and pb, where we get Aa

c and Ab
c, respectively,

such that
n∑

i=1
|Aa

c \ Aref
c |(i) <

n∑
i=1

|Ab
c \ Aref

c |(i) or

n∑
i=1

NDPa(i) <
n∑

i=1
NDPb(i) or

n∑
i=1

X i
a <

n∑
i=1

X i
b. (4-21)

The proof is given in Appendix A.

4.6
Numerical results

In this section, we evaluate the proposed APGA and SPGA construc-
tion techniques and compare them against existing approaches for several sce-
narios. In particular, we assess the performance of the proposed construction
techniques for medium and long blocks. We follow the terminology in terms of
block lengths adopted by related work on polar codes for the code construction
scenario, as noted in [77], [78] and [79]. In subsection A, “Designs for medium
blocks”, the comparison is made for block lengths up to 2048 bits, as can be
seen in Table 4.1 and in Figures 4.9, 4.10 and 4.11. In subsection B, “Designs
for long blocks”, we compare the methods for blocks with lengths greater than
4096 bits. In Tables 4.2 and 4.3, and NPD comparisons are made for blocks
from 2048 bits to 131072 bits. Additionally, in Figure 4.12 we compare the FER
performance for blocks for n = 12, n = 14 and n = 16, which is equivalent to
long blocks with length of 4096 bits, 16384 bits and 65536 bits, respectively. In
the following, we illustrate the results of MC simulations, with the AFF3CT
toolbox [86]. We simulated for BPSK, AWGN, SC and 1dB design-SNR mod-
ulation. The simulation loops adopt as stopping criterion the counting of 200
frame errors. The exact GA can be calculated with extremely high accuracy
through careful numerical integration.
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4.6.1
Designs for medium blocks

In Table 4.1 we have the NDP between APGA and PGA, for R =
(1/2, 1/3, 2/3). The observed values are due to the application of APGA in
the construction of polar codes. Note that NDP has an increasing trend as N
increases.

Table 4.1: NDP between APGA and PGA.

R 128 256 512 1024 2048
1/2 0 0 0 2 8
1/3 0 0 0 2 6
2/3 0 0 2 2 6

In Figure 4.9 we have the performance between PGA and EGA. For
N ≥ 128, the FER graph shows an increasing PGA gain with increasing N ,
being 0.25 dB for N = 2048.
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Figure 4.9: FER performance between EGA and PGA, N = 2n, n =
(7, 8, 9, 10, 11) and R = 1/2.

The performance between PGA and EGA is shown in Figure 4.10 for
various block lengths. We remark the FER gain for N ≥ 256, reaching 0.15dB
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for N = 2048. Note also that at N = 128 there is no difference in PGA and
EGA performance.
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Figure 4.10: FER performance between EGA and PGA, N = 2n, n =
(7, 8, 9, 10, 11) and R = 1/3.

Now, we compare PGA and EGA, withR = 2/3 and various block lengths
in Figure 4.11. Note an FER gain of N ≥ 512 from PGA, reaching 0.25dB for
N = 2048. According to the Table 4.1, the ADE between PGA and EGA for
N = 128 is zero, that is, the code construction project is the identically. The
same can be observed for N = 256.

Note that in Figure 4.10 the FER for PGA and EGA at N = 128 is the
same, that is, for polar codes with N = 128 and R = 1/3 the set A obtained
by the PGA method is the same set A obtained by the EGA method. The
same can be seen in Figure 4.11 for N = 128 and for N = 256, both with
R = 2/3, the PGA for N = 128 is the same as EGA for N = 128 and the PGA
for N = 256 is the same as EGA for N = 256.

We can observe that in the scenario of medium blocks, with PGA we
observe a continuous improvement in the performance of FER when compared
to EGA.
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Figure 4.11: FER performance between EGA and PGA, N = 2n, n =
(7, 8, 9, 10, 11) and R = 2/3.

4.6.2
Designs for Long Blocks

An important aspect to be considered in the simulation for long blocks
is the difficulty to observe in figures the difference in FER performance.
Performance comparison by NDP can be used as a construction quality
parameter. However, we observe that small NDP, that is, very small percentage
differences of construction, are hardly observable in terms of FER curves,
despite representing a better approximation. Another important aspect in
comparing the approximation methods is the RMSE. It can be used effectively
when the intervals used for approximation are equal, which is not the case in
our analysis.

We present in the tables below the NDP difference between the construc-
tion of the SPGA and the constructions proposed by Trifonov (RGA) [76], Fang
(SGA) [77], Dai (AGA-4) [78] and Ochiai (LGA) [79]; for R = (1/2, 1/3, 2/3).
We included in the comparison the approximation RGA due to its polynomial
format, which meets the simplification requirements objective of this study.
The approximation SGA follows the same strategy. This difference in chan-
nels, i.e., NDP, represents the quality of constructions in relation to the EGA.
The most accurate construction achieves the smallest NDP, i.e, minus the dif-
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ference for the reference set of frozen bits (Aref
c ). Initially, in Table 4.2, we

have NDP for R = 1/2. Observe that SPGA has lower NDP with the increase
of N . This means that the SPGA approximation is more accurate than the
others in this scenario.

Table 4.2: NDP for EGA with R = 1/2.

N RGA SGA AGA-4 LGA SPGA
2048 2 4 2 2 0
4096 6 10 2 2 0
8192 16 18 2 2 4
16384 30 46 10 8 10
32768 68 90 12 16 16
65536 158 176 42 42 34
131072 342 332 78 84 60

In Table 4.3, for R = 2/3, the fairest comparison is between SPGA, RGA
and SGA, which are polynomial approximations. Among them, the SPGA
remains with a lower NDP, that is, more accurate than the others. In turn, the
design techniques AGA-4 and LGA have the smallest NDP, but it should be
remarked that they are approximations of greater complexity which include
transcendental functions.

Table 4.3: NDP for EGA with R = 2/3.

N RGA SGA AGA-4 LGA SPGA
2048 6 0 0 0 0
4096 24 6 4 4 2
8192 54 18 4 4 6
16384 132 32 8 8 10
32768 386 96 22 24 28
65536 766 396 34 32 106
131072 1840 428 78 80 336

For R = 1/3, as can be seen in Table 4.4, SPGA remains with the
lowest NDP, which suggests that it is the most accurate approximation in this
scenario. We can see the SPGA has the lowest NDP in the three scenarios,
that is, for R = (1/2, 1/3, 2/3), and this characteristic is maintained with the
increment of N . We can conclude that it is the most accurate approximation
of EGA.
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In fact, we can prove that the proposed approximations are better as
evidenced by the ADE, which also indicates better performance. For example,
for EGA in Table 4.4 we have NPD for EGA of the methods RGA, SGA, AGA-
4, LGA and SPGA. According to (4-20), the ADE account for the NDP for
each n. In other words, comparing with EGA, for each method, the difference
of channels in the code project is calculated by n, and finally we total these
differences. In this way, we can compare all construction methods in relation
to EGA, and the smaller the ADE, the better the approximation for EGA. So,
we have

ADESPGA(17) =
17∑

n=1
Xn,

= X11 +X12 +X13 +X14

+X15 +X16 +X17,

= 0 + 4 + 0 + 10 + 14 + 32 + 44,

= 104.

It can be noted that ADESPGA(17) has the lowest value among the
methods in all analyzed scenarios, so

ADESPGA(17) < ADESGA(17) < ADERGA(17). (4-22)

Table 4.4: NDP for EGA with R = 1/3.

N RGA SGA AGA-4 LGA SPGA
2048 6 4 2 2 0
4096 4 2 2 4 4
8192 10 10 10 8 0
16384 26 14 8 10 10
32768 48 26 18 12 14
65536 96 46 34 32 32
131072 192 118 72 66 44

In Figure 4.12 we have the FER performance of the code construction
alternatives observed in Table 4.4, for R = 1/3. As the AGA-4 and LGA
approximations have performance comparable to EGA, however they are more
complex approximations with transcendental functions. We remark that the
approximation AGA [74] is not shown here because it would result in much
worse performance than the others.
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Figure 4.12: FER comparison between EGA, RCA [70], SGA [77], AGA-4 [78],
LGA [79] and SPGA, N = 2n, n = (12, 14, 16) and R = 1/3.

It can be seen that the proposed SPGA method has better performance
as compared to other code construction methods. This is because the SPGA
method was optimized with the aid of the analysis of ψ in (4-7). All other
methods work almost equally well, with very close approximations to EGA.
We can observe the similarity of performance between the approximations,
despite the SPGA being the best approximation in the scenario considered.

In Figure 4.13 we compare the proposed PGA, GA and the methods for
long blocks proposed by Fang [77], Dai [78] and Ochiai [79]. The results show
that the methods for long blocks proposed by Fang [77], Dai [78] and Ochiai
[79] have the same FER performance as GA.
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Figure 4.13: FER performance between GA, PGA, Fang [77], Dai [78] and
Ochiai [79] for R = 1/2.

4.7
Chapter Summary

In this chapter we have presented a novel method for polar codes con-
struction, called PGA, which is suitable for medium and long blocks. We have
also presented APGA based on an analysis of the behavior of the PGA func-
tion, the identification of its key points and the analysis of the statistical dis-
tribution of their LLRs. Using the same analysis criterion, we have developed
SPGA for long blocks, in the form of a multi-segment function. Moreover, we
have introduced ADE as a figure of merit for comparison of designs because it
effectively measures the difference in polar codes construction methods. The
effectiveness of the APGA and SPGA approaches has been investigated by
comparing them with other design techniques with the same order of com-
plexity through simulations and analytical arguments using the ADE of the
analyzed approximation techniques.



5
Adaptive Reweighted Sparse Belief Propagation Decoding

5.1
Chapter Overview

In this chapter, we present an adaptive reweighted sparse belief propaga-
tion (AR-SBP) decoder for polar codes. The technique is inspired by decoders
that employ the sum-product algorithm for low-density parity-check codes.
In particular, the adaptive decoding strategy introduces reweighting of the
exchanged LLRs in order to refine the message passing, improving the per-
formance of the decoder and reducing the number of required iterations. An
analysis of the convergence is carried out along with a study of their complex-
ity. Numerical examples show that the proposed AR-SBP decoding technique
outperforms existing decoding algorithms for a reduced number of iterations,
enabling low-latency applications.

5.2
Introduction and Literature Review

Increasing polar codes decoding speed is an important area of research
motivated by the performance requirements of 5G wireless networks [2]. The
first decoder proposed for polar codes was the SC decoder [1], which can
achieve good error-correcting capability with low complexity. However, the SC
decoder is characterized by serial decoding, which is an error-prone decoding
strategy. Because of this, these SC decoders often have low performance for
applications that require high-speed real-time decoding with low latency. The
SCL decoding [18] was proposed to improve the error-correction performance of
SC, since it stores the most likely codewords in a list, reducing error probability
and improving the performance. Moreover, SCL can be further enhanced by
concatenating a cyclic redundancy check code [18]. As reported in the study
in [9], [87] and [88]; CRC-aided successive cancellation list decoding attains
promising error-correction performance. One major disadvantage of SC and
SCL decoding is a long decoding latency due to their serial decoding nature.
Furthermore, these decoding techniques also do not provide soft-in/soft-out
information and thus are not suitable for iterative decoding and detection



Chapter 5. Adaptive Reweighted Sparse Belief Propagation Decoding 86

applications.
The BP decoder is an alternative to the problems mentioned above. The

BP decoder was introduced for polar codes in [89], because of its particular
advantage with respect to parallelism, high throughput and low latency.
Nevertheless, BP decoding requires a large number of iterations to achieve
good performance. A way to improve the performance is to employ BP list
decoding [90], which operates when the factor graph of the standard polar
codes fails to produce the correct decoding result and the permuted version of
the standard graph may yield improved estimates. To improve the convergence
of the BP decoder, a reweighting technique based on Euclidean distance was
presented in [91], in addition to developing a Q-Learning algorithm to ensure
an optimized BP decoding performance. In turn, the author in [92] proposed
a polar codes design rule that optimizes the convergence of BP decoding and
employs puncturing and extension techniques.

BP decoding is performed over a factor graph that corresponds to
the GN generator matrix [89], which is dense with many short cycles [93].
Cammerer [27] introduced an alternative called LDPC-like polar codes decoder,
which is an application of SPA for the decoding of polar codes. It employs
a pruning technique that transforms the dense BP decoding into a sparse
BP decoding, and uses systematic coding to maximize performance. However,
its performance is still worse than the standard BP and gets worse for long
blocks. Ebada [94] proposed a performance improvement in terms of BER and
FER with the polar codes construction optimized for LDPC-like decoding by
genetic algorithms. The performance obtained is comparable to SCL but has
even better performance for long blocks. Chen [95] proposed a polar decoding
method based on both the Layered BP and the modified Node-Wise Residual
BP (NW-RBP) scheduling strategies. The performance obtained is comparable
to SCL even for long blocks.

In this chapter, we present the adaptive reweighting sparse BP decoder
for polar codes. The AR-SBP decoder is simple to implement and is based
on the LDPC-like decoding. The proposed reweighting can reduce the number
of iterations without increasing the complexity of the decoder. Therefore, the
proposed reweighting algorithm allows the reduction of the average number
of iterations. Other decoders, in turn, require more complex implementations
and do not have a fast convergence. For example, the NW-RBP decoder needs
a low number of iterations but it is necessary to implement a step of searching
and classification of the residues [95].
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5.3
Dense G matrix

The original BP decoder employs factor graph representations of the
generator matrix G, where subsequent iterations are conducted on the polar
codes encoding factor graph [89]. The original polar BP decoder was covered in
Section 2.8. The original polar BP decoder factor graph of a PC(8,4), shown in
Figure 5.1 and described in [94, Fig. 1], consists of n stages, where each stage
contains two types of nodes, v and c.
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Figure 5.1: Original BP decoder factor graph for a PC(8,4) with Ac =
{4, 6, 7, 8} and corresponding dense factor graph non-sparse H.

Instead of a fully parallel message update, the nodes are updated stage-
by-stage. A single full decoding iteration, thus, describes the consecutive
activation of stage 1 to n (forward) and from n to 1 (backward). Traditionally,
BP decoding is terminated when reaching a pre-defined maximum number of
iterations or achieving a specific pre-defined stopping criterion.

The parity-check matrix H of a polar codes with generator matrix G can
be constructed from the columns of G with indices in Ac, where Ac denotes
the set of frozen indices. The resulting matrix H is a highly dense parity-check
matrix with a maximum check node degree of N . Consequently, this leads to
a decoding failure if sum-product decoding algorithms are performed on this
dense H [27].
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5.4
Transforming a dense G matrix in a sparse H matrix

The author in [27] proposes that polar codes can be interpreted as LDPC
codes with an underlying sparse Tanner graph. This is illustrated in Figure
5.2, BP original factor graph on the left, dense G, and its corresponding
bipartite factor graph, i.e., sparse H, on the right. With the pruning techniques
proposed in [27], the size of the bipartite graph can be significantly reduced and
made practical to use. This means that any polar codes can be decoded using
conventional LDPC decoders based on the SPA. This has the great advantage
of reusing the existing hardware implementations of LDPC decoders, in
addition to making use of the available systematic LDPC analysis and design
tools; and enjoying all complexity, memory requirements and latency being
significantly reduced.
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Figure 5.2: Dense vesus sparse Tanner graphs for a PC(8,4).

As depicted in [27] and [94], the log2(N) + 1 sets of variable nodes V and
log2(N) sets of check nodes C in BP original factor graph can be re-grouped
into a bipartite graph consisting of only two sets: Vs and Cs. Applying some
basic pruning, the graph can be significantly reduced with an approximate
reduction factor of 80%. For more details on the pruning of the originally large
bipartite graph, refer to [27]. A graphic example of the pruning process can be
seen in Figure 5.3, and described in [27, Fig. 4].
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Figure 5.3: Example pruning of the PC(8, 4) graph with Ac = 4, 6, 7, 8.

Note that the pruning method is very efficient in reducing the graph.

5.5
Proposed adaptive reweighted sparse BP algorithm

In this section, we present an adaptive reweighting technique for BP
decoders. The adaptive reweighting method is based on the distance between
the λv→c at the iteration T and whether their signals have changed over each
iteration. Note that in Figure 5.4, the reweighting factor, ρ ∈ (0, 1], is applied
in V and must guarantee the convergence of the decoding algorithm to a
fixed point λv→c [96]. When ρ = 1, we have the message passing BP decoding
algorithm for polar codes. As we can see in (2-32), the LLR update is applied
to V nodes. Therefore, the reweighting process consists of assessing how LLRs
evolve in terms of signal and modulus over time in the V updates of messages.
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As the node updates depend on the signal and modulus operators, it is
undeniable the importance of these operators on the reweighting process as
well. Thus, based on (2-32), we introduce three reweighting factors, ρ, β, and
∆; which will adaptively modify how the LLRs are updated, as can be seen
below.

Rewriting (2-32) and including a reweighting implementation, we have

λv→c = ρ ∗
(
λ′

v→c +
N∑

n=1
Λc→v

)
, (5-1)

where ρ is the associated edge weight, and

ρ = 1 − β ·
[

||λv→c| − |∑N
n=1 Λc→v||

(|λv→c| + |∑N
n=1 Λc→v|)

]
· ∆, (5-2)

where ∆ is correction factor of the adjustment direction, or increment or
decrement, with

∆ = sign(λv→c +
N∑

n=1,v ̸=v′
Λc→v). (5-3)

The β parameter suggests the general correction factor. We initially consider
β equal to 1.

The V updates can be summarized in signal and modulus successive
operations, the reweighting is based on the distance between the LLRs of
|λv→c| and |λ′

v→c|, and whether the signals have changed over the iterations.
Note that when |λv→c| and |λ′

v→c| are close to each other, ρ is approximately
equal to 1. Consequently, the V update is similar to (2-31). Besides that, as
these values deviate, the greater the reweighting and the signal deviations are
considered by ∆.

Furthermore, it is worth noting that, in this implementation, β is a
general factor for all processing elements, whose simulations have shown that
it must belong to the range (0,1]. Thus, an open problem is how to set up the
best β for a specific input. In a similar reweighting scenario for standard BP
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[89], the authors in [91] configure the best β with the Q-learning algorithm
development.

A high-level description of the AR-SBP algorithm is illustrated in Algo-
rithm 12. The algorithm takes the received y, the code block length N, the
maximum number of iterations Tmax, and calculates the estimated codeword
x̂ as an output vector.
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Algorithm 12: Adaptative Reweighted sparse BP decoder
Input: maximum loop, Tmax

Input: sparse matrix of GN , H
Input: number of Cs, C
Input: number of Vs, V
Output: estimated codework, x̂

1 begin
2 T = 0; Finished = 0
3 for i = 1:C do
4 for j = 1:V do
5 λ′(i,j)v→c = y(j) ∗H(i,j)
6 end
7 end
8 repeat
9 for i = 1:C do

10 for j = 1:V do
11 Λ(i,j)v→n = 2 · tanh−1

(∏V
k=1,k ̸=j tanh

(
λ′(i,k)v→c

2

))
12 end
13 end
14 for j = 1:V do
15 for i = 1:C do
16 ∆(i,j) = sign

(
λ(i,j)v→c +∑C

k=1 Λ(k, j)c→v

)
17 ρ(i,j) = 1 − β

[
||λ′(i,j)v→c|−|

∑N

n=1 Λ(i,j)c→v ||
(|λ′(i,j)v→c|+|

∑N

n=1 Λ(i,j)c→v |)

]
∆(i,j)

18 end
19 λv→c = ρ ∗

(
λ′

v→c +∑N
n=1 Λc→v

)
20 x̂(j) =

1, λ(i,j)v→c ≤ 0

0, λ(i,j)v→c > 0,
21 end
22 for i = 1:C do
23 for j = 1:V do
24 λ′(i,j)v→c = ρ(i,j) · λ(i,j)v→c

25 end
26 end
27 until T = Tmax or x̂HT = 0;
28 return x̂
29 end
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5.6
Convergence analysis

The proposed AR-SBP algorithm is an iterative algorithm in which
graph nodes exchange statistical information through a sequence of message
passing updates. For the graph model, updates can be derived as a form of
parallel dynamic programming and are guaranteed to converge and calculate
the correct marginal distributions at each node. In the standard BP algorithm,
messages are adjusted by weights based on edges determined by the graph
structure, in which all weights are unitary. For adequate choices of these
weights, it is known that the proposed AR-SBP algorithm converge [96].
Moreover, it has the added benefit of being convex and, consequently, that
message passing updates tend to be more stable [97].

According to [96], the convergence of the AR-SBP algorithm can be
guaranteed by any of the following explicit conditions: row sum condition and
column sum condition, among others. That is, there is always a choice of edge
weights for which the associated AR-SBP algorithm converges.

For the row sum condition, we have

max
(v→c)

 ∑
u∈V \c

ρu + (1 − ρV )
λn

v→c < 1. (5-4)

The author in [96] considers all λv→c normalized (λn
v→c), i.e. ∑V λn

v→c = 1.
Soon, all λn

v→c < 1. The term ρV = ∑V ρ, so we have

1 −
∑

u∈V \c

ρu −
V∑
ρ = 1 − ρc < 1,

and since ρc < 1, and eq. (5-4) is answered.
For the column sum condition, we have

max
(v→c)

{
ρC

(∑
u∈C

Λu→c

)
+ (1 − ρC)Λv→c

}
< 1, (5-5)

where ρC are reweighting parameters associated with check nodes that are set
to ρC = 1. Let us now consider all λv→c normalized (λn

v→c), i.e., ∑V λn
v→c = 1.

According to eq. (2-31) then all Λv→c < 1 and equation (5-5) holds.
In turn, the ρ reweighting parameter has an adaptive characteristic

depending on the absolute values of the analyzed LLR. We notice that
its value tends to γ with the evolution of the iterations since (||λn→m| −
|∑N

n=1,n ̸=n′ Λm→n||) tends to zero. Therefore, we have
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lim
T →∞

ρ = lim
T →∞

(
γ −

[
||λv→c| − |∑N

n=1,v ̸=v′ Λc→nv||
(|λv→c| + |∑N

n=1,v ̸=v′ Λc→nv|)

]
· ∆
)
,

= γ,

(5-6)

with γ set to 1. The ρ factor tends to accelerate convergence with its value
decreasing with each iteration. Note further that ρ does not increase the
complexity of the BP decoder, which remains O(2Tmax) [98].

5.7
Simulations

In this section, we present simulation results to evaluate the performance
of the AR-SBP decoding algorithm introduced in Section 5.5. The proposed
AR-SBP decoder is applied to polar codes to obtain faster convergence, which
we show with a detailed analysis of the average iterations. In addition, we will
also show a comparative analysis of the proposed AR-SBP decoder with other
competing decoders.

In Table 5.1 we have the average number of iterations for PC(128,64),
PC(256,128), PC(512,128); for the BP, NW-RBP and the proposed AR-SBP
decoders. We can notice that the AR-SBP decoder presents lower average
number of iterations than the sparse BP decoder, and close to the NW-RBP
decoding algorithm. The AR-SBP decoding algorithm has a convergence close
to that of the NW-RBP decoder whereas the AR-SBP decoder is much more
efficient from a computational viewpoint than the NW-RBP decoder, which
requires the implementation of a step of searching and classification.

Table 5.1: Average number of iteration, Tmax=20.

N Eb/N0(dB) 1 1.5 2 2.5 3 3.5 4

128
BP 20.00 20.00 20.00 20.00 18.00 17.05 15.23

AR-SBP 19.11 14.22 12.05 9.97 8.71 7.83 7.31
NW-RBP 19.09 12.18 10.59 9.37 8.41 7.71 7.25

256
BP 20.00 20.00 20.00 19.00 17.13 16.25 13.46

AR-SBP 19.32 15.35 12.15 10.11 9.13 8.15 7.33
NW-RBP 19.21 12.85 11.05 9.83 8.75 8.1 7.29

512
BP 20.00 20.00 20.00 18.31 16.74 15.81 12.92

AR-SBP 19.48 15.53 12.01 10.11 9.23 8.15 7.25
NW-RBP 19.47 13.21 11.32 10.13 8.55 8.12 7.35

In Figure 5.5 we can see the percentage of reduction of the number of
iterations from Tmax=20. A reduction in the order of 60% is observed for Eb/N0

> 3dB.
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Figure 5.5: The percent of iteration reduction, Tmax=20.

In Table 5.2 we can see the influence of the rate R on the average number
of iterations. We notice that the average number of iterations decreases with
the reduction of the rate R, because of the increase in coding redundancy.

Table 5.2: Influence of the rate R on the average number of iterations,
Tmax=20.

Eb/N0(dB) 1 1.5 2 2.5 3 3.5 4
R=1/4 19.17 14.89 11.47 9.53 8.68 7.75 7.02
R=1/2 19.32 15.35 12.15 10.11 9.13 8.15 8.15
R=3/4 19.50 16.09 13.09 10.82 9.60 8.50 8.50

Moreover, the influence on the average number of iterations of the limit
imposed by the maximum number of iterations, which can be seen in Table
5.3. We note that the average number of iterations for the two curves converges
from Eb/N0 = 2dB. For Eb/N0 < 2dB, the BER performance for Tmax =15
has a significant deterioration.
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Table 5.3: Influence on the average number of iterations on the limit imposed
by the maximum number of iterations.

Eb/N0(dB) 0.5 1 1.5 2 2.5 3 3.5 4
Tmax=15 15 15 14.89 12.15 10.11 9.13 8.15 8.15
Tmax=20 20 19.32 15.35 12.15 10.11 9.13 8.15 8.15

We illustrate this convergence in Figure 5.6. Note that Tmax=15 is a
performance limiter for low Eb/N0.
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Figure 5.6: Comparison of iterations between limited Tmax=15 and Tmax=20.

In Figure 5.7 we can see the PC(256,128) BER performance with
Eb/N0 = 2dB, for BP, NW-RBP and AR-SBP decoders. We can see that
AR-SBP is superior to BP and very close to the performance of NW-RBP. In
this scenario, from the sixth iteration, the decoders AR-SBP and NW-RBP
are equivalent.
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Figure 5.7: Comparison of iterations between sparse BP, AR-SBP and NW-
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In Figure 5.8 we can compare the performance of the BP decoder [89]
with the AR-SBP decoder for R = 1/2, considering three Tmax options for BP:
20, 40 and 60. For the AR-SBP we consider Tmax=20. In this simulation, the
channel is AWGN and the polar codes was construction with the GA algorithm
[74] and the design-SNR set to 1dB. We observed that the performance of the
AR-SBP decoder is superior to the BP decoder for a lower Tmax. The low
performance of the BP is due to the excess of short cycles. Moreover, we
observed that the AR-SBP decoder has a high success rate in decoding with a
low number of iterations.
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Figure 5.8: Comparison of performance by Tmax between BP and AR-SBP.

In the next figures we have a comparative analysis of the performance of
the polar codes N = 256 for several rates R and for the BP, SCL and AR-SBP
decoders. For the BP [89] decoder we use Tmax =60. For the SCL decoder [29]
we use the list size L=128, this value of L being very close to the maximum
likelihood (L=256 for N = 256). In addition, for the AR-SBP decoder we use
Tmax =20. The channel is AWGN, the design-SNR is set to 1dB and the polar
codes construction method is GA [74]. Note that for N =256 the polar codes
construction optimization for the BP decoder by genetic algorithm generates
the same Ac as the GA polar codes construction method [41]. As for the
complexity of the decoding algorithm [98] we have for the BP the complexity
is O(2TmaxlogN), for the SCL the complexity is O(LNlogN) and for the AR-
SBP the complexity is O(2Tmax), being the AR-SBP the least complex.

Figure 5.9 shows the performance for R = 2/3. In this simulation, we
observed that the performance of the AR-SBP decoder is better than the BP
decoder, but inferior to the SCL. Compared to BP the performance of AR-SBP
is better due to the elimination of short cycles. For high rates, because of the
excess of short cycles we have the low performance in the BP decoders [27].
On the other hand, the SCL decoder presented the best performance at high
rates. Even with a reduced Ac set, that is, fewer bits for error correction, the
size of the list L allows one to increase the percentage of successful decoding.
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Figure 5.9: Polar codes performance for N = 256 and R = 2/3, between BP,
AR-SBP and SCL, for Tmax=60, Tmax=20 and L=128, respectively.

Figure 5.10 shows the performance for R = 1/2. In this simulation we
noticed that the performance of the AR-SBP decoder is better than that of
the BP decoder and comparable to that of the SCL decoder. The BP decoder
presents low performance due to a large number of short cycles when compared
to the AR-SBP decoder. As for the SCL decoder, even considering the size of
the list, its performance is similar to AR-SBP. At this rate the set Ac is large
enough to guarantee a high rate of successful AR-SBP decoded codewords.
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Figure 5.10: Polar codes performance for N = 256 and R = 1/2, between BP,
AR-SBP and SCL, for Tmax=60, Tmax=20 and L=128, respectively.

Figure 5.11 shows the performance for R = 1/3. At this rate, the Ac set
is larger, that is, more bits for decoding error correction. In this simulation we
noticed that the performance of the AR-SBP decoder is better than the BP
decoder and still comparable to the SCL decoder. At low rates the success of
AR-SBP decoding increases considerably. This fact is not observed in the BP
decoder, which continues to be penalized by its short cycles when compared
to the AR-SBP decoder. As for the SCL decoder, adding the low rate to the
list size, which is the best scenario for high decoding performance, we observe
that it is only slightly superior to AR-SBP. This fact implies that the AR-SBP
is an excellent alternative for scenarios with codes of low rates if we consider
its low computational complexity.

In general, when we compare the performance of polar codes for different
rates, we observe that BP decoding always has the worst performance. The
proposed AR-SBP decoder, in low and medium R rate, has similar performance
to the SCL decoder whereas it is much less complex than the SCL decoder.
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Figure 5.11: Polar codes performance for N = 256 and R = 1/3, between BP,
AR-SBP and SCL, for Tmax=60, Tmax=20 and L=128, respectively.

5.8
Chapter Summary

In this chapter we have presented the AR-SBP decoder for polar codes
that seeks to converge with a reduced number of iterations. More specifically,
from our experience, adaptive reweighting is ideal for minimizing the conver-
gence time of successful decoding. The proposed AR-SBP algorithm meets the
convergence criterion and the numerical results illustrate the performance of
the proposed AR-SBP technique, which are promising in relation to existing
approaches, without increasing complexity. Therefore, the AR-SBP algorithm,
based on message passing with adaptive reweighting provides reduced decoding
latency and can handle schemes that perform iterative decoding and detection
procedures. Finally, the results of simulations have shown that the perfor-
mance of the proposed AR-SBP decoder for polar codes is better than the
BP decoder, and closely approaches the SCL decoder. Numerical results il-
lustrate the performance of the proposed AR-SBP technique against existing
approaches.



6
Conclusions and Future Work

In this chapter, we draw the concluding remarks of this thesis and discuss
potential future work.

6.1
Conclusions

Within the technological scope proposed for 5G systems and that might
be considered for future systems, there is a clear need for flexibility in code
lengths to meet all the potential scenarios. Therefore, several techniques for
the construction of polar codes with arbitrary length have been studied, which
have good performance and implementation complexity trade-off. However,
other aspects of polar coded systems still need to be improved. One focus of
attention is the search for more efficient techniques for polar codes construction
with long blocks, where some improvements in the GA technique have been
proposed. Another research focus is on improving the performance of BP
decoders. In fact, due to its parallel processing feature, the performance gain
and computational advantages of BP-type decoders as compared to the SC
decoder are clearly evident. Thus, this thesis has presented and discussed novel
construction polar codes for arbitrary length, efficient approximation of GA
for medium and long blocks, and improvements in message passing decoding
using BP-type algorithms.

In Chapter 2, the technical background of this thesis is provided. Firstly,
fundamental concepts of polar codes are presented, which includes the polariza-
tion phenomenon, encoding and decoding methods. It then describes in further
detail the encoding method, the SC decoding method, the SCL method, the
CRC-aided SCL decoding and the BP decoding methods for polar codes.

Chapter 3 addresses the design and implementation of a polar codes con-
struction technique named NUPGA for arbitrary code lengths, which is specific
for systems with the SC decoder and for AWGN channels. NUPGA consists
of the consideration that the capacity of synthetic channels in the polarization
process is non-uniform. The NUPGA technique makes use of the non-uniform
polarization obtained by shortening and re-polarizing the synthetic channels
to obtain an improved code construction. NUPGA is also useful for design-
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ing extended polar codes. It has been also shown that non-uniform polariza-
tion achieves the capacity of B-DMC channels. Furthermore, from the results
of simulations, it can be seen that the NUPGA designs demonstrate better
BER/FER performance for several code construction scenarios. The design of
extended polar codes also demonstrates better performance than shortened
polar codes in the proposed scenarios.

In Chapter 4 we have presented the construction of polar codes based on
PGA techniques. Specifically, we developed two approaches with the advantage
of being based on multi-segmented polynomials and of easy implementation.
We designed APGA which is optimized for medium blocks and SPGA as an
alternative to GA which is optimized for long blocks. Simulation results have
shown that the APGA and SPGA construction techniques are very efficient
approximations of GA, with notable performance improvement for medium
blocks, in addition to less complexity than competing approaches. The effec-
tiveness of the APGA and SPGA approaches was investigated by comparing
them with other design techniques with the same order of complexity.

In Chapter 5, we have introduced the AR-SBP decoder for polar codes.
The proposed adaptive decoding strategy of AR-SBP introduces the reweight-
ing of swapped LLRs to refine message passing, improving decoder performance
and reducing the number of iterations required. More specifically, in our in-
vestigation, we have verified that adaptive weighting is ideal for minimizing
the convergence time of successful decoding. The proposed AR-SBP algorithm
meets the convergence criterion and the numerical results illustrate that the
performance of AR-SBP is promising in relation to existing approaches, with-
out increasing complexity.

6.2
Future Work

1. As discussed in Chapters 3 and 4, the starting point is the construc-
tion technique based on the Gaussian approximation, both to generate
flexibility in code construction with arbitrary length, and in the efficient
search for approximations for medium and long lengths. However, recent
works investigate more efficient code constructions using search algo-
rithms, exhaustively or optimized by genetic algorithms, with promising
preliminary results. A framework that considers polar code construction
together with the decoding strategy and the channel would be interest-
ing.

2. Another approach for the design of polar codes that would be promising
for future research is the design of polar codes for block fading channels,
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which should consider the outage probability rather than the capacity as
reported for LDPC codes [101], [102].

3. As discussed in Chapter 5, we showed that the LDPC-like decoders for
polar codes can be optimized. Furthermore, the entire legacy of LDPC
research should be considered as a source of inspiration of decoding
techniques for polar codes in search of performance improvement. Among
the important implications is the reuse of hardware. Furthermore, a new
topic of investigation is suggested: universal decoding, and additional
topics like new extension, puncturing and shortening techniques should
be investigated, because they are heavily dependent on the type of
decoder.
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A
Proof of equation (4-21)

According to the Weierstrass Approximation Theorem [100], suppose that
f : [a, b] → R is a continuous real-valued function defined on the real interval
[a,b]. For every ε > 0, there exists a polynomial p such that for all x ∈ [a, b],
we have

|f(x) − p(x)| < ε.

Given the continuous and increasing function f(x), being that xi < xi+1

implies f(xi) < f(xi+1), by simplifying (4-1), we have

f (x) = ϕ−1
(
1 − (1 − ϕ (x))2

)
. (A-1)

Now, consider two polynomial approximations pa(x) and pb(x), such that

|f(xi) − pa(xi)| < εa, (A-2)
and

|f(xi) − pb(xi)| < εb, (A-3)
with xi ∈ [a, b] and approximation errors εa and εb. Additionally, for the
inequality below

|f(xi) − pa(xn)| > εa, (A-4)
for ∀xn ∈ [a, b], ∀xi ∈ [a, b] and xi ̸= xn; and

|f(xi) − pb(xn)| > εa, (A-5)

for ∀xn ∈ [a, b] and ∀xi ∈ [a, b], including xi = xn, we have that f(x) is strictly
increasing, so we have the guarantee that

εa < εb. (A-6)

This result can be generalized as ∀pj(xn) and approximation errors εj,
with j ∈ N, so

|f(xi) − pj(xn)| < εj, (A-7)
and

|f(xi) − pj(xn)| > εa, for ∀j, (A-8)
then

εa < εj, for ∀j, (A-9)
and if

|f(xi) − pj(xn)| > εj+1, for ∀j, (A-10)
then
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εa < εj < εj+1 < · · · < εj+n. (A-11)
So, we have to give the sets

F = {f(x1), f(x2), . . . , f(xn)},

Pa = {pa(x1), pa(x2), . . . , pa(xn)},

Pb = {pb(x1), pb(x2), . . . , pb(xn)},

with xi ∈ [a, b], i ∈ [1, ..., n] and conditions given in (A-7), (A-8), (A-9) and
(A-10), then we have

|f(xi) − pa(xi)| < εa < |f(xi) − pb(xi)|,

|f(xi) − pa(xi)| < εa < εb.

Using these results, we have for the approximations RGA, SGA, SPGA:

|fEGA(xi) − pSPGA(xn)| < ε1,

|fEGA(xi) − pRGA(xn)| < ε2,

|fEGA(xi) − pSGA(xn)| < ε3.

and condition in (A-10)

|fEGA(xi) − pSPGA(xn)| > ε1,

|fEGA(xi) − pRGA(xn)| > ε1,

|fEGA(xi) − pSGA(xn)| > ε1.

|fEGA(xi) − pRGA(xn)| > ε2,

|fEGA(xi) − pSGA(xn)| > ε2.

then, (A-11),
ε1 < ε2 < ε3. (A-12)

Equation (A-12) determines the improved approximation of pSPGA over
pRGA and pSGA. We know that Aref

c is obtained from fEGA, the Aa
c is obtained

from pSPGA, the Ab
c is obtained from pRGA and the Ac

c is obtained from pSGA.
According to (4-19) and the result in (A-12) we can consider that

|Aa
c \ Aref

c | < τ, (A-13)

|Ab
c \ Aref

c | < τ, (A-14)
and

|Ac
c \ Aref

c | < τ, (A-15)
with τ > 0 and τ ∈ N for a given n. Subtracting (A-13) from (A-14) and
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(A-15), we have

|Aa
c \ Aref

c | < |Ab
c \ Aref

c | < |Ac
c \ Aref

c |, (A-16)

and for every set n, we have
n∑

i=1
|Aa

c \ Aref
c | <

n∑
i=1

|Ab
c \ Aref

c | <
n∑

i=1
|Ac

c \ Aref
c |. (A-17)

Therefore, the above expression can be rewritten as equation (4-21), i.e.,
n∑

i=1
X i

a <
n∑

i=1
X i

b <
n∑

i=1
X i

c. (A-18)

In fact, the inequality in (A-18) will always hold under the conditions
established in (A-12). Therefore, we can verify in Table A.1 the RMSE among
the polynomial approximation alternatives for the interval x ∈ [0,20].

Table A.1: RMSE between RGA, SGA, SPGA and EGA.

RMSE RGA SGA SPGA
EGA 0.036 0.0338 0.0215

We can observe that SPGA has the smallest RMSE which implies the
best ADE and, therefore, the best performance.
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