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Abstract

Danaee, Alireza; de Lamare, Rodrigo C. (Advisor); Nascimento,
Vítor H. (Co-Advisor). Signal Processing Algorithms for
Energy-Efficient Distributed Learning. Rio de Janeiro, 2022.
113p. PhD Dissertation – Departament of Electrical Engineering,
Pontifícia Universidade Católica do Rio de Janeiro.
Internet of Things (IoT) networks include smart devices that contain

many sensors that allow them to interact with the physical world, collecting
and processing streaming data in real time. The total energy-consumption
and cost of these sensors affect the energy-consumption and the cost of IoT
devices. The type of sensor determines the accuracy of the analog interface
and the resolution of the analog-to-digital converters (ADCs). The ADC
resolution requirement has a trade-off between sensing performance and
energy consumption since the energy consumption of ADCs strongly depends
on the number of bits used to represent digital samples.
In this thesis, we present an energy-efficient distributed learning framework
using coarsely quantized signals for IoT networks. In particular, we develop
a distributed quantization-aware least-mean square (DQA-LMS) and a dis-
tributed quantization-aware recursive least-squares (DQA-RLS) algorithms
that can learn parameters in an energy-efficient fashion using signals quanti-
zed with few bits while requiring a low computational cost. Moreover, we
develop a bias compensation strategy to further improve the performance
of the proposed algorithms. We then carry out a statistical analysis of the
proposed algorithms along with a computational complexity evaluation of the
proposed and existing techniques. Numerical results assess the distributed
quantization-aware algorithms against existing techniques for distributed
parameter estimation where IoT devices operate in a peer-to-peer mode.
We also introduce an energy-efficient federated learning framework using
coarsely quantized signals for IoT networks, where IoT devices exchange
their estimates with a server. We then develop the quantization-aware
federated averaging LMS (QA-FedAvg-LMS) algorithm to perform parameter
estimation at the clients and servers. Furthermore, we devise a bias
compensation strategy for QA-FedAvg-LMS, carry out its statistical analysis,
and assess its performance against existing techniques with numerical results.

Keywords
adaptive algorithms coarse quantization distributed learning federa-

ted learning energy-efficient signal processing



Resumo

Danaee, Alireza; de Lamare, Rodrigo C.; Nascimento, Vítor H..
Técnicas de Processamento de Sinais para Aprendizagem
Distribuída com Eficiência Energética. Rio de Janeiro, 2022.
113p. Tese de Doutorado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.
As redes da Internet das Coisas (IdC) incluem dispositivos inteligentes

que contêm muitos sensores que permitem interagir com o mundo físico,
coletando e processando dados de streaming em tempo real. O consumo
total de energia e o custo desses sensores afetam o consumo de energia
e o custo dos dispositivos IdC. O tipo de sensor determina a precisão da
interface analógica e a resolução dos conversores analógico-digital (ADCs). A
resolução dos ADCs tem um compromisso entre a precisão de inferência e o
consumo de energia, uma vez que o consumo de energia dos ADCs depende
do número de bits usados para representar amostras digitais.
Nesta tese, apresentamos um esquema de aprendizado distribuído com efici-
ência energética usando sinais quantizados para redes da IdC. Em particular,
desenvolvemos algoritmos de gradiente estocástico com reconhecimento de
quantização distribuído (DQA-LMS) e de mínimos quadrados recursivos com
reconhecimento de quantização distribuído (DQA-RLS) que podem aprender
parâmetros de maneira eficiente em energia usando sinais quantizados com
poucos bits, exigindo um baixo custo computacional. Além disso, desenvol-
vemos uma estratégia de compensação de viés para melhorar ainda mais o
desempenho dos algoritmos propostos. Uma análise estatística dos algoritmos
propostos juntamente com uma avaliação da complexidade computacional
das técnicas propostas e existentes é realizada. Os resultados numéricos
avaliam os algoritmos com reconhecimento de quantização distribuída em
relação às técnicas existentes para uma tarefa de estimação de parâmetros
em que os dispositivos IdC operam em um modo ponto a ponto.
Também apresentamos um esquema de aprendizado federativo com eficiência
energética usando sinais quantizados para redes de IdC. Desenvolvemos o
algoritmo federated averaging LMS (QA-FedAvg-LMS) com reconhecimento
de quantização para redes IdC estruturadas por configuração de aprendizado
federativo em que os dispositivos IdC trocam suas estimativas com um
servidor. Uma estratégia de compensação de viés para QA-FedAvg-LMS é
proposta junto com sua análise estatística e a avaliação de desempenho em
relação às técnicas existentes com resultados numéricos.

Palavras-chave



algoritmos adaptativos quantização severamente aprendizagem dis-
tribuída aprendizado federativo processamento de sinais com eficiência
energética
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1
Introduction

This chapter presents the research background and the motivations of

this thesis. The main contributions and the structure of this thesis are then

provided to readers to access the current state of the art. Moreover, some basic

notations used throughout the thesis are introduced. The last section makes a

list of publications during the period of development of this thesis.

1.1
Motivation and Prior Works

Distributed signal processing algorithms are of great relevance for

statistical inference in wireless networks and applications such as wireless

sensor networks (WSNs) [1, 2], the Internet of Things (IoT) [3, 4], distributed

optimization [5, 6, 7] and smart grid implementations [8, 9]. In fact, distributed

signal processing techniques deal with the extraction of information from data

collected at nodes that are distributed over a geographical area. In this context,

for each node a set of neighbor nodes collect and process their local information,

and then transmit their estimates to a specific node. Upon reception of the

possibly noisy estimates, each specific node combines the collected information

together with its local estimate to generate improved estimates.

The goal of federated learning [10,11] is to learn a global statistical model

from data stored at tens to millions of devices subject to storing the data

locally at devices and only communicating the intermediate updates generated

by devices to the server. In this context, IoT networks include smart devices

such as mobile phones, smart watches, and autonomous vehicles which are

generating new data every day [12]. Federated learning offers IoT networks

local data storage at devices and transfers network computation to the devices
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due to the growing computational capability of these devices. This can mitigate

concerns over transmitting private information.

Prior work on distributed signal processing techniques has studied

protocols for exchanging information [13,14,15], adaptive learning algorithms

[16], the exploitation of sparse measurements [17, 18], topology adaptation

[19, 20], and robust techniques against interference and noise [21, 22]. Even

though there have been many studies that evaluated the need for data exchange

and signaling among nodes as well as their computational complexity, prior

work on energy-efficient techniques is rather limited.

In this context, energy-efficient signal processing techniques have gained

a great deal of interest in the last decade or so due to their ability to save

energy and promote sustainable development of electronic systems and devices.

Electronic devices often exhibit a power consumption that is strongly dependent

on the analog-to-digital converters (ADCs) and the number of bits used to

represent digital samples [23]. This is of central importance to devices that

are battery-operated and to wireless networks that must keep the power

consumption to a low level for sustainability reasons. In particular, prior

work on energy efficiency has reported many contributions in signal processing

for communications and electronic systems that operate with coarsely quantized

signals [24, 25,26,27].

Among the methods to reduce the energy consumption of networks are:

i) compression of the communication data between neighbor nodes and ii)

coarse quantization with ADCs of signals measured by sensors. Communication-

efficiency techniques enable IoT devices to reduce their energy consumption

with data transmission and reduce the communication bandwidth, and have

been reported in adaptive networks [28,29,30] and federated learning [11,31].

On the other hand, IoT devices contain many sensors that allow them to

interact with the physical world, collecting and processing streaming data

in real time [32, 33]. They integrate various sensors such as temperature,
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humidity, accelerometer, gyroscope, magnetometer, altimeter, heart rate, light,

microphone, camera, battery monitor, infrared proximity, gas, ultraviolet,

capacitive sensors. The total energy-consumption and cost of these sensors

affect the energy-consumption and the cost of IoT devices. The type of sensor

determines the accuracy of the analog interface and the resolution of the ADC.

The ADC resolution requirement varies greatly with the sensing application,

ranging from 6 to 16 bits (see [34] Table 1), and has a trade-off between sensing

performance and energy consumption since the energy consumption of ADCs

strongly depends on the number of bits used to represent digital samples [23].

This emphasizes the importance of energy-efficient techniques that deal with

the coarse quantization of measurement data to enable IoT devices to work

with the low energy-consumption sensors.

1.2
Contributions

The objective of this thesis is to develop energy-efficient signal processing

techniques for distributed adaptive learning and federated learning with

application to IoT networks using coarsely quantized signals. In particular, our

contributions can be summarized as:

- We develop distributed quantization-aware least-mean square (DQA-LMS)

and distributed quantization-aware recursive least-squares (DQA-RLS)

algorithms that can learn parameters in an energy-efficient fashion using

signals quantized with few bits while requiring a low computational

cost. Moreover, we develop closed-form and adaptive bias compensation

strategies to further improve the performance of the proposed algorithms.

We then carry out a statistical analysis of the proposed algorithms along

with a computational complexity evaluation of the proposed and existing

techniques. Numerical results compare the distributed quantization-

aware algorithms against existing techniques for a distributed parameter

estimation task where IoT devices operate in a peer-to-peer mode.
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- We also develop an energy-efficient federated learning framework using

coarsely quantized measured data for IoT networks. In particular, we

present a quantization-aware Federated Averaging Least Mean Square

(QA-FedAvg-LMS) algorithm that can learn parameters in an energy-

efficient fashion using measurements quantized with few bits, and devise

a bias compensation strategy to further improve the performance of the

proposed QA-FedAvg-LMS algorithm. We carry out a statistical analysis

of the proposed QA-FedAvg-LMS algorithm. Simulations compare the

QA-FedAvg-LMS algorithm against existing techniques for a parameter

estimation task in a scenario where IoT devices operate with federated

learning.

1.3
Outline

The rest of this thesis is organized as follows:

- Chapter 2 gives technical background on this thesis. In the first section,

basic concepts of adaptive distributed networks are presented, which

includes the model of the network, the structure of nodes, and the

communication strategy among nodes and the energy consumption of

ADCs in the adaptive distributed networks is demonstrated with an

example. In Section 2, the model of federated learning for IoT networks

is presented, where the nodes are orchestrated by a server. The concept

of signal decomposition, which allows to deal with nonlinearities like the

distortion generated by ADCs is presented in Section 3. The design of

ADCs in the network is also detailed in section 3.

- Chapter 3 presents the distributed quantization-aware LMS (DQA-LMS)

algorithm. In the first section, the derivation of DQA-LMS is presented.

The mean performance analysis, the bias compensation term, the adaptive

bias compensation strategy and the mean square performance analysis of

DQA-LMS are given in Sections 2 to 5. In Section 6, the computational
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complexity is evaluated. In Section 7, the results of simulations are shown

and discussed.

- Chapter 4 presents the distributed quantization-aware RLS (DQA-RLS)

algorithm. In the first section, the derivation of the DQA-RLS algorithm

is detailed. In Section 2, the definitions and assumptions that are used

for the performance analysis of the RLS-type algorithms are presented.

The mean performance analysis, the bias compensation term, and the

mean square performance analysis of DQA-RLS are given in Sections 3

to 5. In Section 6, the computational complexity is evaluated. In Section

7, the results of simulations are shown and discussed.

- Chapter 5 presents the quantization-aware Federated Averaging Least

Mean Square (QA-FedAvg-LMS) algorithm. In the first section, the deriva-

tion of QA-FedAvg-LMS algorithm is detailed. The mean performance

analysis, the bias compensation term, and the mean square performance

analysis of QA-FedAvg-LMS are given in Sections 2 to 4. In Section 5,

the computational complexity is computed. In Section 6, the results of

simulations are shown and discussed.

- Chapter 6 presents the conclusions of this thesis and discusses the obtained

results, future directions and research opportunities.

1.4
Notation

Throughout this thesis, we use the following notation:

- We show scalars, vectors and matrices with lowercase, boldface lowercase

and boldface uppercase letters, respectively.

- The transpose of a vector a and a matrix A is denoted by aT and AT ,

respectively.

- The complex conjugate of a scalar a, the complex conjugate transpose

of vector a, and the complex conjugate transpose (Hermitian transpose)
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of a matrix A are shown by a∗, a∗, and A∗, respectively, i.e., for real

numbers x and y, and the imaginary unit i, we have

a = x + iy, a∗ = x− iy

a = [a1, a2, . . . , an], a∗ = [a∗
1, a∗

2, . . . , a∗
n]T

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

... ... . . . ...

an1 an2 · · · ann


, A∗ =



a∗
11 a∗

21 · · · a∗
n1

a∗
12 a∗

22 · · · a∗
n2

... ... . . . ...

a∗
1n a∗

2n · · · a∗
nn



(1-1)

- Tr(A) denotes the trace of a matrix A. A⊗B represents the Kronecker

product of two matrices A and B.

- vec(A) represents the vectorization operation of A, i.e., for A given by

(1-1)

vec(A) =



a11

a21

...

an1

a12

...

ann



. (1-2)

- ∥a∥ is the Euclidean norm of a vector a.
∥∥∥a∥∥∥2

Z
= a∗Za is the Z-Weighted

Euclidean norm of a column vector a.
∥∥∥b∥∥∥2

Z
= bZb∗ denotes the Z-

Weighted Euclidean norm of a row vector b.

- col{...} stacks its arguments column-wise as follows:

col{a, b, c} =


a

b

c

 , col{a, b, c} =


a

b

c

 , col{A, B, C} =


A

B

C

 . (1-3)
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- diag(A) creates a row vector with the diagonal entries of A, i.e., for A

given by (1-1)
diag(A) = [a11, a22, . . . , ann] (1-4)

- diag{...} creates a diagonal matrix with the elements of a vector or the

diagonal elements of a matrix, i,e., for a and A given by (1-1)

diag{a} =



a1 0 · · · 0

0 a2 · · · 0
... ... . . . ...

0 0 · · · an


, diag{A} =



a11 0 · · · 0

0 a22 · · · 0
... ... . . . ...

0 0 · · · ann


. (1-5)

- nondiag{A} replaces the diagonal elements of A with zero, i.e.,

nondiag{A} = A− diag{A}.

- blockdiag{...} creates a block diagonal matrix such that the main-diagonal

blocks are the entries inside {...}.

- IM denotes the M ×M identity matrix. The all-one and all-zero M × 1

column vectors are shown by 1M and 0M , respectively.

- x ∼ CN (m, Rx) denotes that x is a complex Gaussian signal with mean

m and covariance matrix Rx whereas x ∼ N (m, Rx) denotes a real

Gaussian signal x with mean m and covariance matrix Rx.

- E[.] denotes the expectation operator.

- ρ(A) represents the spectral radius of a given square matrix A, that is,

the maximum of the absolute values of its eigenvalues.

- We use the mathematical accents (diacritical marks) as follows: x̂ is an

estimate of a scalar x. x denotes the quantized version of a scalar x. These

accents are used in the same way for vectors and matrices.

- Q(.) denotes the quantization operator, i.e., x = Q(x) that is performed

element-wise.
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2
Distributed Learning and Problem Statement

In this section, we present the fundamentals of distributed and federated

learning and state the fundamental problem that we are interested in this thesis

using simple mathematical models with the help of linear algebra tools. We

start this exposition by detailing the signal model of the proposed distributed

network with low-resolution ADCs. Then, we describe two common structures

for IoT networks, i.e., adaptive distributed networks and federated learning.

In adaptive networks, nodes are connected within their neighborhood and

cooperate with neighbors to complete a task whereas in federated learning

setup, nodes are connected to a server and complete a task with the supervision

of the server. Furthermore, we also state the problem and review the signal

decomposition of coarsely quantized signals performed by Bussgang’s theorem,

which is central to signal processing with low-resolution ADCs. We then show

the design of ADCs in such networks.

2.1
Adaptive Distributed Networks

Adaptive networks are connected networks with N agents as illustrated

in Figure 2.1. In a connected network, there always exists at least one path

connecting any two agents: the agents may be connected directly by an edge if

they are neighbors, or they may be connected by a path that passes through

other intermediate agents.

- A network of size N is generally represented by a graph containing N

vertices, which we call nodes or agents, and a set of edges connecting the

vertices to each other. An edge that connects a vertex to itself is called a

self-loop and vertices connected by edges are called neighbors.
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Figure 2.1: A distributed adaptive network

- The scalar alk will be used by agent k to scale data it receives from agent

l. The weight alk is non-negative.

- The neighborhood of an agent k is denoted by Nk and it consists of all

agents that are connected to agent k by an edge, in addition to agent k

itself.

- In general, any two neighboring agents k and l have the ability to share

information over the edge connecting them. Whether this exchange of

information occurs, and whether it is uni-directional, bi-directional, or

non-existent, will depend on the values of the weighting scalars akl, alk

assigned to the edge.

- We assume the graph is undirected so that if agent k is a neighbor of

agent l, then agent l is also a neighbor of agent k. Any two neighbors can

share information both ways over the edge connecting them.

We associate with each agent a twice-differentiable individual cost function,

denoted by jk(w) to estimate an M×1 unknown vector wo ∈ CM . This function

jk(w) is sometimes called the utility function in applications involving resource

management issues and the risk function in machine learning applications.
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The goal of the network of agents is still to seek the unique minimizer of the

aggregate cost function, j(w) as follows:

wo ≜ min
w∈CM

j(w) = 1
N

N∑
k=1

jk(wk), (2-1)

and the local objective functions are given by:

jk(w) = 1
nk

nk∑
i=1

ℓ(wk; xk(i), dk(i)), (2-2)

where ℓ(wk; xk(i), dk(i)) quantifies the loss of the model parameter wk on data

sample {xk(i), dk(i)}. The presented model considers a desired signal dk(i), at

each time i described by the model:

dk(i) = w∗
oxk(i) + vk(i), k = 1, 2, . . . , N, (2-3)

where vk(i) represents Gaussian noise with zero mean and variance σ2
vk

at each

agent k that is uncorrelated with xk(i).

To solve (2-1), distributed algorithms that are based on gradient-descent

methods [35, 36, 37, 38] are effective and easy to implement. Two prominent

variants of distributed algorithms are the consensus strategy [13, 39, 40] and

the diffusion strategy [41, 42, 43]. We adopt the diffusion strategy because it

has been shown to be a more effective scheme than other previously reported

schemes [44]. The diffusion strategy is listed in Algorithm 1 where each agent

k, first computes its local gradient and updates the intermediate estimated

parameter hk(i) as follows:

hk(i) = wk(i− 1)− µk∇jk

(
wk(i− 1)

)
, (2-4)

and in the next step, executes weighted averaging for the received intermediate

updates hl(i) from its neighbors l ∈ Nk as follows:

wk(i) =
∑

l∈Nk

alkhl(i). (2-5)

The combination coefficients {alk}N
l=1,k=1 are non-negative and satisfy
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Algorithm 1: Diffusion strategy for distributed learning at node k

input : Initial values wk(−1) ∈ RM , combination matrix A, and
step-size µk

output : wk(i)

1 for i = 0, 1, 2, . . . do

2 hk(i) = wk(i− 1)− µk∇jk

(
wk(i− 1)

)
3 wk(i) = ∑

l∈Nk

alkhl(i)

end for

alk


= 0, l /∈ Nk

≥ 0, l ∈ Nk

, alk = akl,
∑

l∈Nk

alk = 1, (2-6)

which implies that the combination matrix A = [alk] ∈ RN×N is a symmetric

and doubly-stochastic matrix, i.e.,

A = AT and A1N = 1N . (2-7)

One example of doubly-stochastic combination coefficients is to use the

Metropolis rule [41] as follows:

alk =



1
max{nk,nl}

, l ∈ Nk \ {k}

1− ∑
m∈Nk\{k}

amk , l = k

0 , l /∈ Nk

. (2-8)

We consider the mean-square error (MSE) as the local objective function

(2-2) given by:

jk(wk(i− 1)) = E
[∥∥∥ek(i)

∥∥∥2
]
≜ E

[∥∥∥dk(i)− d̂k(i)
∥∥∥2
]

= E
[∥∥∥dk(i)−w∗

k(i− 1)xk(i)
∥∥∥2
]
,

(2-9)

where
d̂k(i) = w∗

k(i− 1)xk(i) (2-10)
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is the output of the adaptive filter and ek(i) = dk(i) −w∗
k(i − 1)xk(i) is the

estimation error (Figure 2.1). The gradient of (2-9) with respect to w∗
k(i− 1) is

∇jk(wk(i− 1)) = −E[xk(i)e∗
k(i)]. Replacing an instantaneous approximation of

it into (2-4), we arrive at the distributed least-mean square (DLMS) algorithm

at agent k as follows:

hk(i) = wk(i− 1) + µkxk(i)e∗
k(i) (2-11a)

wk(i) =
∑

l∈Nk

alkhl(i). (2-11b)

In order to ensure convergence of wk(i) in the mean, the step-size of the DLMS

algorithm must be chosen such that [42]

0 < µk <
2

λmax(Rxk
) , (2-12)

where λmax is the largest eigenvalue of Rxk
, and Rxk

∈ CM×M is the covariance

matrix of xk. Note that for LMS-type algorithms [36,37,38], if the eigenvalue

spread (λmax/λmin) of the covariance matrix of the input is large, it is appropriate

to choose the step-size much smaller than its upper bound [45]. Therefore, the

convergence rate of LMS-type algorithms varies substantially with the statistics

of the input signal xk(i). If xk(i) is a white noise, the convergence rate is high.

On the other hand, if the correlation between successive samples of xk(i) is

high, LMS-type algorithms converge slowly.

The recursive least-squares (RLS) algorithms are known to pursue fast

convergence even when the eigenvalue spread of the covariance matrix of the

input is large. The RLS algorithm can be derived in different ways. For the

adaptive networks, let us consider a network of N nodes distributed over an

area as in Figure 2.1. At time i, we globally collect the input regressors into a

matrix Xi and the desired signal into vector di as follows:

Xi = blockdiag{x1(i), . . . , xN(i)} (MN ×N)

di = col{d1(i), . . . , dN(i)} (N × 1).
(2-13)
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Now we collect these data from time 0 to time i as follows:

X i = blockdiag{Xi, . . . , X0} (MN(i + 1)×N(i + 1)),

di = col{di, . . . , d0}T (1×N(i + 1)).
(2-14)

Note that for the globally collected quantities we denote time by a subscript,

whereas for node-wise quantities we denote time by parenthesis. Then we

estimate the M × 1 vector wo by solving the weighted regularized least-squares

problem given by [15]:

min
w

[∥∥∥w− w̌
∥∥∥2

Πi

+
∥∥∥di −w∗X i

∥∥∥2

Σi

]
, (2-15)

where w̌ is a given column vector, Πi > 0 is an M ×M positive-definite matrix

that incorporates a regularization term ∥w − w̌∥2
Πi

into the least-squares

problem, and Σi > 0 is an N(i + 1) × N(i + 1) Hermitian positive-definite

matrix that incorporates weighting into the least-squares problem. We give

more details on these vectors and matrices later in Section 4.1. The solution to

(2-15) is given by diffusion RLS (DRLS) [15] as follows:

Pk(i) = 1
λ

Pk(i− 1)− Pk(i− 1)xk(i)x∗
k(i)Pk(i− 1)

λ + x∗
k(i)Pk(i− 1)xk(i)

 (2-16a)

hk(i) = wk(i− 1) + Pk(i)xk(i)e∗
k(i) (2-16b)

wk(i) =
∑

l∈Nk

alkhl(i), (2-16c)

where ek(i) = dk(i) − w∗
k(i − 1)xk(i) is the estimation error, 0 ≪ λ < 1 is

known as the forgetting factor, Pk(−1) = Π−1, and Π = δ−1IM . Although

DRLS algorithm converges very quickly when the eigenvalue spread of the

covariance matrix of the input is large, it has a considerable increase in the

computational cost when compared to the DLMS algorithm. We compare

our proposed DQA-LMS and DQA-RLS algorithms that are based on the

DLMS and DRLS, respectively, in Section 4.7, and discuss the use case of each

algorithm.
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2.1.1
Adaptive IoT Networks

 

Figure 2.2: An IoT device k with quantized measurements

We consider an IoT network consisting of N nodes or agents which run

distributed signal processing techniques to perform the desired tasks, as depicted

in Figure 2.1. We consider xk(t) and dk(t) as the (band-limited before sampling)

analog input and output of the unknown system wo at node k. Let xk(i) and

dk(i) denote the high-precision sampled (or so-called full resolution) versions of

xk(t) and dk(t), and xk(i) and dk(i) denote the coarsely quantized versions of

xk(i) and dk(i), respectively. Note that we denote the continuous time (analog)

data with (t) whereas we use (i) for discrete-time data.

As shown in Figure 2.2, because the measurement data at each node

and the unknown system are analog and each agent processes the local data

{dk(i), xk(i)} digitally, we need two ADCs in each agent. Specifically, a

digital signal is acquired from the observation of an analog signal and the

use of an ADC with b bits, which employs a scalar quantizer with the set

of thresholds Tb = {−∞ = τ0, τ1, . . . , τ2b−1, τ2b = ∞} and the set of labels

Lb = {l0, l1, . . . , l2b−1}. We summarize the key features of the proposed adaptive

IoT network given in Figure 2.1 as follows:

- The proposed adaptive network consists of N nodes which run distributed

signal processing techniques to perform a desired task.
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- Each node has two ADCs to quantize the received signals, i.e., the input

regressors and the desired signals, and process them digitally. Moreover,

in the proposed bias compensation section, we discuss one special case

where each node has one ADC to quantize both the input regressors and

the desired signals.

- The fixed thresholds and labels of ADCs are calculated with the Lloyd-

Max algorithm [46, 47] for a Gaussian signal with zero-mean and unit

variance. Although there are practical methods for the inputs to the ADCs

to approach the unit variance such as automatic gain control (AGC), we

show in the numerical results that inputs with different variances do not

degrade the performance of the proposed algorithms that are based on

fixed thresholds and labels.

One concern is that as the number of agents increases, the energy consumption

might grow substantially when using high-resolution ADCs for each agent. This

motivates us to quantize signals using few bits. Therefore, the problem we are

interested in solving in this work is how to design energy-efficient distributed

learning algorithms that can cost-effectively operate with coarsely quantized

signals.

2.1.2
An Example of Energy Saving by Coarse Quantization

In order to assess the power savings by low-resolution quantization,

we consider a network with N IoT devices in which each device uses two

ADCs. The power consumption of each ADC in millimeter wave systems is

PADC(b) = cB2b [48], where B is the bandwidth (related to the sampling rate),

b is the number of quantization bits of the ADC, and c is the power consumption

per conversion step. Therefore, the total power consumption of the ADCs in

the network is
PADC,T (b) = 2NcB2b (watts). (2-17)
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Figure 2.3 shows an example of the total power consumption of ADCs in a

narrowband IoT (NB-IoT) network consisting of 20 devices with bandwidth

B = 200 kHz [49] and considering the power consumption per conversion step

of each ADC, c = 494 fJ, as in [50].

Figure 2.3: Power consumption of the ADCs in an adaptive IoT network.

2.2
Federated Learning for IoT Networks

Figure 2.4: A federated IoT network

Figure 2.4 shows the architecture of an IoT network consisting of N IoT

edge devices orchestrated by a server under federated learning strategy. Each

device k, k = 1, . . . , N , has access to local training data Dk including nk = |Dk|

data samples. The data sample i is represented by Dk(i) = {xk(i), dk(i)} where

xk(i) ∈ CM and dk(i) are the ith input data vector and the associated output
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response at device k, respectively. The goal of the learning task of the network

is typically determined by the optimization problem:

wo ≜ min
w∈RM

j(w) =
N∑

k=1
akjk(w), (2-18)

where j(w) is the global objective function, jk(w) is the local objective function,

ak ≥ 0 denote weights and ∑
k ak = 1. It is common to set ak = 1

N
in

homogeneous networks to give an equal weight to every device k. The local

objective function is given by:

jk(w) = 1
nk

nk∑
i=1

ℓ(w; xk(i), dk(i)), (2-19)

where ℓ(w; xk(i), dk(i)) quantifies the loss of the model parameter w on the

data samples {xk(i), dk(i)}. One solution of (2-18) can be obtained by applying

iterative methods such as stochastic gradient descent techniques to (2-19) as

follows:
wk(i) = w(i− 1)− µ∇jk(w(i− 1)), (2-20)

where µ is the step size, and the server receives the updated parameter wk(i)

from devices and sends the following updated global parameter to N devices:

w(i) = 1
N

N∑
k=1

wk(i). (2-21)

The server update (2-21) and local update (2-20) are key steps of FedAvg [10].

The data collected at IoT devices are described by the model:

dk(i) = w∗
oxk(i) + vk(i), k = 1, . . . , N, and i = 1, . . . , nk, (2-22)

where vk(i) represents Gaussian noise with zero mean and variance σ2
vk

at each

device k, that is uncorrelated with xk(i). We consider the MSE as the local

objective function (2-19) to estimate w(i) as defined by:

jk(w(i− 1)) = E
[∥∥∥ek(i)

∥∥∥2
]
≜ E

[∥∥∥dk(i)− d̂k(i)
∥∥∥2
]

= E
[∥∥∥dk(i)−w∗(i− 1)xk(i)

∥∥∥2
]
,

(2-23)
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where d̂k(i) = w∗(i − 1)xk(i) is the output of the estimated parameters and

ek(i) = dk(i)−w∗(i− 1)xk(i) is the estimation error. The gradient of (2-23)

with respect to w∗(i − 1) is ∇jk(w(i − 1)) = −xk(i)e∗
k(i). Replacing it into

(2-20), we arrive at the Federated Averaging-LMS (FedAvg-LMS) algorithm as

follows:

wk(i) = w(i− 1) + µxk(i)(dk(i)−w∗(i− 1)xk(i))∗ (2-24a)

w(i) = 1
N

N∑
k=1

wk(i), (2-24b)

which has been used in adaptive federated learning tasks [51,52].

As shown in Fig. 2.4, each IoT device uses sensors and hence the

measurement data are analog and should be converted to digital data for

processing, as illustrated in Fig. 2.2. The average ADC resolution for different

types of sensors in IoT devices varies from 5 to 16 bits (see Table. 1 in [34]). One

concern is that the cost and power consumption of ADCs increase exponentially

with the number of quantization bits [23] for each device. This motivates us

to quantize the measurement data with few bits to support the low-cost and

low-power consumption features of IoT sensors.

2.3
Signal Decomposition with Coarse Quantization

In order to provide a clear exposition, we include here a short overview

of Bussgang’s theorem, which allows one to deal with nonlinearities like the

distortion generated by ADCs.

Teorema 2.1 Given two Gaussian signals, the cross-correlation function

taken after a signal has undergone nonlinear amplitude distortion is identical

(except for a scaling factor) to the cross-correlation function taken before the

distortion [53,54]. Specifically, according to Bussgang’s theorem, for a pair of

zero-mean jointly complex Gaussian random variables x(i) ∼ CN (0, σ2
x(i)) and

x(n) ∼ CN (0, σ2
x(n)), and for the output xQ(i) of some scalar-valued nonlinear
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function xQ(i) = f
(
x(i)

)
, where f(·) : C → C, it holds that

ExQ(n),x(i)
[
xQ(n)x∗(i)

]
= g(n)Ex(n),x(i)

[
x(n)x∗(i)

]
(2-25)

in which

g(n) = 1
σ2

x(n)
Ex(n)

[
f
(
x(n)

)
x∗(n)

]
. (2-26)

Let us consider now that the previously mentioned nonlinear function

f(·) can be applied element-wise to a zero-mean complex Gaussian random

vector x(i) =
[
x(1), x(2), . . . , x(M)

]
∼ CN (0, Rx), where Rx ∈ CM×M is the

covariance matrix of x resulting in a vector xQ, i.e.,

xQ = f
(
x
)
. (2-27)

It follows from (2-25) that

RxQx = GRx (2-28)

where

G = diag
{
g1, g2, . . . , gM

}
(2-29)

represents a diagonal M ×M matrix whose mth diagonal entry is computed

as in (2-26). Bussgang’s theorem can be used to decompose the output of a

nonlinear device as a linear function of the input x plus a distortion q ∈ CM

that is uncorrelated (but not independent) with the input as [53]

xQ = Gx + q (2-30)

The referred uncorrelation can be viewed as follows:
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E
[
qx∗

]
= E

[(
xQ −Gx

)
x∗
]

= RxQx −GRx = 0M×M (2-31)

where we made use of (2-28).

2.3.1
Signal Decomposition for IoT Networks

To use this result in the distributed adaptive network in Fig. 2.1,

let xk = Qb(xk) denote the b-bit quantized output of an ADC at node

k, described by a set of 2b + 1 thresholds Tb = {τ0, τ1, ..., τ2b}, such that

−∞ = τ0 < τ1 < ... < τ2b = ∞, and the set of 2b labels Lb = {l0, l1, ..., l2b−1}

where lp ∈ (τp, τp+1], for p ∈ [0, 2b−1] [24]. Let us assume that xk ∼ CN (0, Rxk
)

where Rxk
∈ CM×M is the covariance matrix of xk. We have thus a relation

between xk and xk in the form of (2-27), with the quantization function Qb(·)

playing the part of the scalar-valued nonlinear function f(·) in (2-27). We now

use (2-30) to derive a model for the quantized vector xk, which we later use to

derive our quantization-aware algorithms. Employing Bussgang’s theorem, xk

can be decomposed as

xk = Gkxk + qk, (2-32)

where the distortion qk is uncorrelated with xk, and Gk ∈ RM×M is a diagonal

matrix given by [24]

Gk = diag(Rxk
)− 1

2

2b−1∑
j=0

lj√
π

[
exp

(
− τ 2

j diag(Rxk
)−1

)

− exp
(
− τ 2

j+1diag(Rxk
)−1

)]
,

(2-33)

where the index b indicates the number of bits (ADC resolution). For the

particular case that Rxk
= E[xkx∗

k] = σ2
xk

IM , the matrix Gk becomes gkIM and

gk is given by
gk = 1√

σ2
xk

2b−1∑
j=0

lj√
π

(
e

−
τ2

j

σ2
xk − e

−
τ2

j+1
σ2

xk

)
. (2-34)
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Note that, as a simplifying approximation, we also apply this signal decompo-

sition to the quantized desired signal, dk, which is the output of the second

ADC in the system. To compute Gk, three parameters are needed, namely

the set of thresholds Tb, the set of labels Lb and the covariance matrix of the

input signal Rxk
. The thresholds and labels are designed for the ADCs and are

available at the nodes. However, the nodes have access to Rxk
instead of Rxk

.

To overcome this, we can estimate the variance of the distortion qk, i.e., σ̂2
qk

(since the variance of the distortion is not accessible in practice, we estimate

it) and the covariance matrix of the input signal, R̂xk
= Rxk

+ σ̂2
qk

IM . In the

next section, we show how to design the ADCs and estimate the variance of

the distortion.

2.3.2
ADC Design

In this section, we show how to compute the thresholds and labels to design

the ADCs. To minimize the MSE between xk and xk, we need to characterize

the probability density function (PDF) of xk to find the optimal quantization

labels. Because choosing these labels based on such PDF is ineffective in practice

(since the PDFs are difficult to estimate), we assume the regressor xk(i) is

Gaussian, then adapt the approach in [24] and compute the thresholds and

labels as follows:

1. We generate an auxiliary Gaussian random variable, xaux, with unit

variance and then use the Lloyd-Max algorithm [46, 47] to find a set

of thresholds Tb = {τ1, . . . , τ2b−1} and labels Lb = {l0, . . . , l2b−1} that

minimize the MSE between the unquantized and the quantized signals.

2. We wrap up the set of thresholds Tb by adding τ0 = −∞ and τ2b = ∞,

i.e., Tb = {−∞ = τ0, τ1, . . . , τ2b−1, τ2b =∞}.

3. We quantize xaux using Tb and Lb, generate the quantized signal xaux, and

estimate the variance of the quantization noise, σ2
qk

with the subtraction
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of the variance of the quantized auxiliary signal from the variance of the

auxiliary signal [24]
σ̂2

qk
= σ2

xaux
− σ2

xaux
. (2-35)

4. We define the estimate of the covariance matrix of the quantization noise

as follows:
R̂qk

= σ̂2
qk

IM . (2-36)

Note that steps 1 and 2 design the thresholds and labels of the ADCs, and

steps 3 and 4 are useful to estimate Rxk
.

2.4
Chapter Summary

This chapter has reviewed the technical background of adaptive IoT

networks in order to introduce two methods of learning in IoT networks, i.e.,

distributed learning, where the agents operate in a peer-to-peer mode, and

federated learning, where the agents work in a client-server mode. Furthermore,

two key distributed adaptive algorithms for adaptive IoT networks were

presented. The signal and system model used in distributed learning were

described in detail, and the need for the saving energy by using low-resolution

ADCs in these networks was identified. Subsequently, a signal decomposition

method was introduced which is a fundamental tool in energy-efficient signal

processing with low-resolution ADCs. Moreover, a design method of ADCs for

IoT networks was detailed.
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Distributed Quantization-Aware LMS Algorithm

In this chapter, we present the derivation of the proposed DQA-LMS

algorithm and a statistical analysis of the proposed DQA-LMS algorithm. In

addition, we devise a bias compensation strategy, investigate the computational

complexity of the proposed and existing algorithms, and assess the estimation

performance of the DQA-LMS algorithm for a parameter estimation setup with

numerical results.

3.1
Derivation of DQA-LMS

Let us consider xk(t) and dk(t) as the analog input and output of the

unknown system wo at node k (Fig. 2.1). Let xk(i) and dk(i) denote the high-

precision sampled versions of xk(t) and dk(t), and xk(i) and dk(i) denote the

coarsely quantized versions of xk(i) and dk(i), respectively.

We show next that a learning algorithm based directly on (2-10) is

biased for estimating wo, and show how to correct for this bias. To this end,

let βk(i) be the bias compensation term to be chosen shortly, and define

d̂k(i) = βk(i)w∗
k(i− 1)xk(i) to construct an MSE cost function as follows:

Jk(wk(i)) = E[|ek(i)|2] = E[|dk(i)− d̂k(i)|2]

= E[|dk(i)− βk(i)w∗
k(i− 1)xk(i)|2],

(3-1)

which depends only on the received quantized quantities dk(i), xk(i), and

the bias compensation term βk(i). For βk(i) = 1 (as in DLMS (2-9)), the

quantization of dk(i) would result in biased estimates of wo. The gradient of

(3-1) with respect to w∗
k(i− 1) is given by:



Chapter 3. Distributed Quantization-Aware LMS Algorithm 39

∇jk

(
wk(i− 1)

)
= −βk(i)xk(i)

(
dk(i)− βk(i)w∗

k(i− 1)xk(i)
)∗

. (3-2)

Replacing (3-2) in 2-4 and using (2-5), we obtain the DQA-LMS algorithm as

follows:

hk(i) = wk(i− 1) + µkβk(i)xk(i)e∗
k(i) (3-3a)

wk(i) =
∑

l∈Nk

alkhl(i), (3-3b)

where ek(i) = dk(i)−βk(i)w∗
k(i−1)xk(i) is the estimation error. In the following

we show how to optimally choose βk(i) to reduce the bias.

3.2
Mean Performance Analysis

To start the mean performance analysis, we use the following assumption

that is very common in parameter estimation [55,56,57] and adaptive signal

processing [58].

Assumption 1: The input data regressors xk(i) are zero-mean with

covariance matrices Rxk
= E[xk(i)x∗

k(i)] and temporally independent. This

assumption also applies to the additive noise sequences vk(i) with variance σ2
vk

and the quantized regressors xk(i) with covariance matrices Rxk
= E[xk(i)x∗

k(i)].

Moreover, covariance matrices are time-invariant, and xk(i), vk(i) and xk(i)

are assumed spatially independent.

To analyze the performance of DQA-LMS, we use the weight-error vectors

defined as:

w̃k(i) = wo −wk(i), and h̃k(i) = wo − hk(i). (3-4)

Under Assumption 1, if the entries in the input regressors xk(i) are uncorrelated

and with equal variance, we have Rxk
= E[xk(i)x∗

k(i)] ≈ σ2
xk

IM and the matrix

Gxk
reduces to gxk

IM . Let us denote Rqk
= E[qxk

(i)q∗
xk

(i)] ≈ σ̂2
qk

IM where σ̂2
qk

is given by (2-35).
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Using (2-32), we can decompose xk(i) and dk(i) as follows:

xk(i) = gxk
xk(i) + qxk

(i) (3-5a)

dk(i) = gdk
dk(i) + qdk

(i) = gdk
w∗

oxk(i) + pk(i), (3-5b)

where pk(i) = gdk
vk(i) + qdk

(i). Using this decomposition, we write the error

ek(i) as follows:

ek(i) = dk(i)− βk(i)w∗
k(i− 1)xk(i)

= gdk
w∗

oxk(i) + pk(i)− βk(i)w∗
k(i− 1)

(
gxk

xk(i) + qxk
(i)
)
.

(3-6)

Replacing (3-6) into (3-3a) and subtracting from wo yields

h̃k(i) = w̃k(i− 1)− µkβk(i)xk(i)e∗
k(i) = w̃k(i− 1)− µkβk(i)(gxk

xk(i) + qxk
(i))e∗

k(i)

= w̃k(i− 1)− µkβk(i)
(

gxk
gdk

xk(i)x∗
k(i)wo + gxk

xk(i)pk(i)

− g2
xk

βk(i)xk(i)x∗
k(i)wk(i− 1)− gxk

βk(i)xk(i)q∗
xk

(i)wk(i− 1)

+ gdk
qxk

(i)x∗
k(i)wo + qxk

(i)pk(i)

− gxk
βk(i)qxk

(i)x∗
k(i)wk(i− 1)− βk(i)qxk

(i)q∗
xk

(i)wk(i− 1)
)

= w̃k(i− 1)− µkβk(i)
((

gxk
gdk

xk(i)x∗
k(i) + gdk

qxk
(i)x∗

k(i)
)
wo

−
(
g2

xk
βk(i)xk(i)x∗

k(i) + gxk
βk(i)qxk

(i)x∗
k(i) + gxk

βk(i)xk(i)q∗
xk

(i)

+ βk(i)qxk
(i)q∗

xk
(i)
)
wk(i− 1) + gxk

xk(i)pk(i) + qxk
(i)pk(i)

)
.

(3-7)

We take the expectation from both sides of (3-7). Since xk(i), qxk
(i), and

pk(i) are uncorrelated pairwise, the expectations of these cross terms vanish.

Considering this, we obtain



Chapter 3. Distributed Quantization-Aware LMS Algorithm 41

E[h̃k(i)] = E[w̃k(i− 1)]− µk

(
E
[
gxk

gdk
βk(i)xk(i)x∗

k(i)
]
wo

− E
[(

g2
xk

β2
k(i)xk(i)x∗

k(i) + β2
k(i)qxk

(i)q∗
xk

(i)
)
wk(i− 1)

])
= E[w̃k(i− 1)]− µk

(
gxk

gdk
Rxk

wo

−
(
g2

xk
βk(i)Rxk

+ βk(i)Rqk

)
E
[
wk(i− 1)

])
.

(3-8)

In the last line of (3-8), we use a common assumption that states that xk(i)

varies slowly in relation to w̃k(i− 1) [58]. Thus, when they appear inside the

expectations we decouple their expected values. This also applies to qxk
(i) in

relation to w̃k(i− 1).

We show next that a necessary but not sufficient condition to have an

asymptotically unbiased solution in the mean is that

gxk
gdk

βk(i)Rxk
= g2

xk
β2

k(i)Rxk
+ β2

k(i)Rqk
, (3-9)

and we show in the next section that this condition is possible by appropriately

choosing βk(i). Assuming (3-9) and using (3-4), we can write (3-8) as follows:

E[h̃k(i)] =
(
IM − µkgxk

gdk
βk(i)Rxk

)
E[w̃k(i− 1)]. (3-10)

Subtracting wo from both sides of (3-3b) and using (3-10), we obtain

E[w̃k(i)] =
∑

l∈Nk

alkh̃l(i) =
∑

l∈Nk

alk

((
IM − µkgxk

gdk
βk(i)Rxk

)
E[w̃k(i− 1)]

)
.

(3-11)
We define the following matrices:

A = A⊗ IM (MN ×MN)

M = blockdiag{µ1IM , . . . , µNIM} (MN ×MN)

Rx = blockdiag{gx1gd1β1(i)Rx1 , . . . , gxN
gdN

βN(i)RxN
} (MN ×MN)

W̃i = col
{
w̃1(i), . . . , w̃N(i)

}
(MN × 1),

(3-12)
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and write the global form of (3-11) as follows:

E[W̃i] = A
(
IMN −MRx

)
E[W̃i−1]. (3-13)

The necessary and sufficient condition to ensure the mean stability of the

network, i.e., E[W̃i]→ 0 as i→∞ is to have ρ
(
A
(
IMN −MRx

))
< 1. Since

the spectral radius of A is equal to one [41], we must have ρ
(
IMN−MRx

)
< 1.

Therefore, the stability condition for DQA-LMS is given by:

0 < µk <
2

λmax(Rx) , (3-14)

where λmax is the largest eigenvalue of Rx.

3.3
Bias Compensation

From (3-9), we must have

βk(i)IM = gxk
gdk

Rxk

(
g2

xk
Rxk

+ Rqk

)−1
. (3-15)

Therefore, the bias compensation term is expressed by

βk(i) = βk =
gxk

gdk
σ2

xk

g2
xk

σ2
xk

+ σ̂2
qk

. (3-16)

Remark 1: (One ADC for each sensor). To reduce the cost and energy

consumption of sensors, we consider one ADC to quantize the measurement

data {xk(i), dk(i)}. Then gxk
and gdk

can be considered equal and this reduces

the complexity of our algorithm as well.

Remark 2: (Approximation of data variance). Since the devices receive

quantized data and have access to the covariance of the quantized data,

Rxk
= E[xk(i)x∗

k(i)] ≈ σ2
xk

IM , we approximate the variance of high precision

data as follows:
σ̂2

xk
= σ̂2

xk
+ σ̂2

qk
, (3-17)

and the variance of the quantized input is given by:
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Algorithm 2: DQA-LMS algorithm at agent k

input : Initial values wk(−1) ∈ RM , combination matrix A,
step-size µk, σ̂2

xk
(−1) = 0 and 0≪ γ < 1

Generate Tb and Lb, and Compute σ̂2
qk

from (2-35)

output : wk(i)

1 for i = 0, 1, 2, . . . do

2 data: dk(i) and xk(i) = [xk(i), xk(i− 1), . . . , xk(i−M + 1)]T

3 σ̂2
xk

(i) = γσ̂2
xk

(i− 1) + (1− γ)|xk(i)|2

4 σ̂2
xk

= σ̂2
xk

(i) + σ̂2
qk

5 gxk
(i) = 1√

σ̂2
xk

2b−1∑
j=0

lj√
π

(
e

−
τ2

j

σ̂2
xk − e

−
τ2

j+1
σ̂2

xk

)
6 βk(i) = g2

xk
σ̂2

xk

g2
xk

σ̂2
xk

+σ̂2
qk

7 ek(i) = dk(i)− βk(i)w∗
k(i− 1)xk(i)

8 hk(i) = wk(i− 1) + µkβk(i)xk(i)e∗
k(i)

9 wk(i) = ∑
l∈Nk

alkhl(i)

end for

σ̂2
xk

= 1
M

M∑
l=1

(xk(l)−mean{xk})2, (3-18)

where xk(l) are the lth entry of vector xk(i). To reduce the complexity of

computation of σ̂2
xk

, we use the iterative recursion at each time instant i as

follows:
σ̂2

xk
(i) = γσ̂2

xk
(i− 1) + (1− γ)|xk(i)|2, (3-19)

where σ̂2
xk

(−1) = 0 and 0≪ γ < 1. Therefore, at each data sample i, the bias

correction term is given by:

βk =
g2

xk
σ̂2

xk

g2
xk

σ̂2
xk

+ σ̂2
qk

. (3-20)

The DQA-LMS algorithm is summarized in Algorithm 2.
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3.4
Adaptive Bias Compensation

In this section, we propose an adaptive strategy to compute the bias

compensation term βk(i) for "delay line" inputs, which uses an approximation

for Rxk
by the instantaneous values of the input vector xk. A simple approach

to estimate Rxk
is obtained by employing the instantaneous values of xkx∗

k as

follows
R̂xk

(i) = xk(i)x∗
k(i) M ×M (3-21)

and consequently for estimating Rxk
(i)

R̂xk
(i) = xk(i)x∗

k(i) M ×M. (3-22)

Since we do not have access to the instantaneous values of xk(i) and process

xk(i), we use the following estimate

R̂xk
(i) = R̂xk

(i) + σ̂2
qk

IM . (3-23)

Note that we estimate Rxk
online to form the diagonal entries of the matrix

Gk(i) considering (2-33) and since Gk(i) is a diagonal matrix whose entries

are built based on the diagonal entries of the covariance matrix Rxk
, we only

consider the diagonal entries of R̂xk
(i) which can be shown as follows:

R̂xk
(i) =


r̂xk

(i)
. . .

r̂xk
(i−M + 1)

 ,

where r̂xk
(i) = xk(i)x∗

k(i) + σ̂2
qk

. Algorithm 3 summarizes the AdDQA-LMS

algorithm.

3.5
Mean Square Performance Analysis

In this section, we carry out a mean-square performance analysis and

discuss the steady-state behavior of the DQA-LMS algorithm. We first write
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Algorithm 3: AdDQA-LMS algorithm at agent k

input : Initial values wk(−1) ∈ RM , combination matrix A,
step-size µk, βk(−1) = diag{bk(−1), . . . , bk(−M)} = 0M×M

Generate Tb and Lb, and Compute σ̂2
qk

from (2-35)

output : wk(i)

1 for i = 0, 1, 2, . . . do

2 data: dk(i) and xk(i) = [xk(i), xk(i− 1), . . . , xk(i−M + 1)]T

3 r̂xk
(i) = xk(i)x∗

k(i) + σ̂2
qk

4 gk(i) = 1√
r̂xk

(i)

2b−1∑
j=0

lj√
π

(
e

−
τ2

j

r̂xk
(i) − e

−
τ2

j+1
r̂xk

(i)
)

5 bk(i) = gk(i)r̂xk
(i)

gk(i)r̂xk
(i)+σ̂2

qk

6 update βk(i)

7 ek(i) = dk(i)−w∗
k(i− 1)βk(i)xk(i)

8 hk(i) = wk(i− 1) + µkβk(i)xk(i)e∗
k(i)

9 wk(i) = ∑
l∈Nk

alkhl(i)

end for

(3-7) as

h̃k(i) = w̃k(i− 1)− µkβkxk(i)
(
dk(i)− βkw∗

k(i− 1)xk(i)
)∗

= w̃k(i− 1)− µkβkxk(i)d∗
k(i) + µkβ2

kxk(i)x∗
k(i)wk(i− 1)

=
(
IM − µkβ2

kxk(i)x∗
k(i)

)
w̃k(i− 1)− µkβkxk(i)

(
gdk

x∗
k(i)wo + p∗

k(i)
)

+ µkβ2
kxk(i)x∗

k(i)wo

=
(
IM − µkβ2

kxk(i)x∗
k(i)

)
w̃k(i− 1)− µkβkgxk

gdk
xk(i)x∗

k(i)wo︸ ︷︷ ︸
I

− µkβkgdk
qxk

(i)x∗
k(i)wo − µkβkgxk

xk(i)p∗
k(i)− µkβkqxk

(i)p∗
k(i)

+ µkβ2
kg2

xk
xk(i)x∗

k(i)wo + µkβ2
kqxk

(i)q∗
xk

(i)wo︸ ︷︷ ︸
II

.

(3-24)

The choice of βk in (3-20) makes (3-9) approximately true. In order to reduce

the complexity of the model, we assume in the sequel that (3-9) is exactly true,
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so the instantaneous values of terms I and II in (3-24) are equal with different

signs and vanish for sufficiently large i (our simulations in Sec. 3.7 show that

this approximation is reasonable). Then (3-24) simplifies to

h̃k(i) =
(
IM − µkβ2

kxk(i)x∗
k(i)

)
w̃k(i− 1)− µkβkgdk

qxk
(i)x∗

k(i)wo

− µkβkgxk
xk(i)p∗

k(i)− µkβkqxk
(i)p∗

k(i).
(3-25)

Therefore, the weight-error vectors of the combined estimates are given by

w̃k(i) =
∑

l∈Nk

alkh̃l(i) =
∑

l∈Nk

alk

(
IM − µlβ

2
l xl(i)x∗

l (i)
)
w̃l(i− 1)

−
∑

l∈Nk

alkµlβlgdl
qxl

(i)x∗
l (i)wo −

∑
l∈Nk

alkµlβlgxl
xl(i)p∗

l (i)

−
∑

l∈Nk

alkµlβlqxl
(i)p∗

l (i)

(3-26)

Let us now define the following quantities

Rx = blockdiag
{
Rx1 , . . . , RxN

}
(MN ×MN)

B = blockdiag
{
β1IM , . . . , βNIM

}
(MN ×MN)

B = blockdiag
{
β2

1IM , . . . , β2
NIM

}
(MN ×MN)

G = blockdiag
{
gx1IM , . . . , gxN

IM

}
(MN ×MN)

Υi = blockdiag
{
qx1(i)x∗

1(i), . . . , qxN
(i)x∗

N(i)
}

(MN ×MN)

ξi = col
{
x1(i)p∗

1(i), . . . , xN(i)p∗
N(i)

}
(MN × 1)

ζi = col
{
qx1(i)p∗

1(i), . . . , qxN
(i)p∗

N(i)
}

(MN × 1)

η = col
{
gd1wo, . . . , gdN

wo

}
(MN × 1),

and write W̃i in a more compact form as

W̃i = A
(
IMN −MBRx

)
W̃i−1 −AMBΥiη −AMBGξi −AMBζi.

Defining an MN ×MN matrix D as follows:
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D = E
[
A
(
IMN − blockdiag{µ1β

2
1x1(i)x∗

1(i), . . . , µNβ2
NxN(i)x∗

N(i)}
)]

= A
(
IMN −MBRx

) (3-27)

and taking the expectation of W̃iW̃∗
i , we obtain

E
[
W̃iW̃∗

i

]
= E

[
DW̃i−1W̃∗

i−1D∗
]

+ E
[
AMBζiη

∗Υ∗
iBTMTAT

]
+ E

[
AMBζiζ

∗
iBTMTAT

]
+ E

[
AMBGξiξ

∗
iGTBTMTAT

]
+ E

[
AMBGξiη

∗Υ∗
iBTMTAT

]
+ E

[
AMBΥiηζ∗

iBTMTAT
]

+ E
[
AMBΥiηξ∗

iGTBTMTAT
]

+ E
[
AMBζiξ

∗
iGTBTMTAT

]
+ E

[
AMBGξiζ

∗
iBTMTAT

]
+ E

[
AMBΥiηη∗Υ∗

iBTMTAT
]
.

(3-28)

We now use the commutative property of the expectation and vectorization

operations, and the relationship between the vectorization operation and the

Kronecker product, vec(ABC) = (CT ⊗ A) vec(B), to write (3-28) as follows:

vec(Ωi) = (D ⊗D) vec(Ωi−1) + vec(Ξi), (3-29)

where Ωi = E
[
W̃iW̃∗

i

]
and Ξi denotes the summation of the second term to

the last one on the RHS of (3-28). Note that vec(Ωi) is stable if and only if

the spectral radius of (D ⊗D) is strictly smaller than 1. Therefore, we obtain

lim
i→+∞

vec(Ωi) =
(
IM2N2 − (D ⊗D)

)−1
vec(Ξ+∞), (3-30)

and vec(Ξ+∞) is given by
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vec(Ξ+∞) = lim
i→+∞

vec(Ξi) = (A⊗A)

vec
(
MB

(
GE

[
ξiξ

∗
i

]
GT + E

[
Υiηη∗Υ∗

i

]
+ E

[
ζiζ

∗
i

]
+ GE

[
ξiη

∗Υ∗
i

]
+ E

[
Υiηξ∗

i

]
GT + GE

[
ξiζ

∗
i

]
+ E

[
ζiξ

∗
i

]
GT + E

[
Υiηζ∗

i

]
+ E

[
ζiη

∗Υ∗
i

])
BTMT

)

≈ (A⊗A)

vec
(
MB

(
GE

[
ξiξ

∗
i

]
GT + E

[
Υiηη∗Υ∗

i

]
+ E

[
ζiζ

∗
i

])
BTMT

)
,

(3-31)

where under Assumptions 2 and 3, the expectations of the cross-terms vanish

and

E
[
ξiξ

∗
i

]
= diag

{
Rx1σ2

p1 , . . . , RxN
σ2

pN

}
E
[
Υiηη∗Υ∗

i

]
= diag

{
g2

d1Rqx,1
(
w∗

oRx1wo

)
, . . . , g2

dN
Rqx,N

(
w∗

oRxN
wo

)}
E
[
ζiζ

∗
i

]
= diag

{
Rqx,1σ

2
p1 , . . . , Rqx,Nσ2

pN

}
.

(3-32)

The analytical computation of Rxk
, Rqx,k, and σ2

pk
is detailed in Appendix A.

Therefore, the steady-state MSD at node k is given by

MSDk = lim
i→+∞

E[∥w̃k(i)∥2] = vecT
(
Ck ⊗ IM

)
vec(Ω+∞)

= vecT
(
Ck ⊗ IM

)(
IM2N2 − (D ⊗D)

)−1
(A⊗A)

vec
(
MB

(
GE

[
ξiξ

∗
i

]
GT + E

[
Υiηη∗Υ∗

i

]
+ E

[
ζiζ

∗
i

])
BTMT

)
,

(3-33)

where Ck is an N × N matrix with zero entries and a single one on its kth

diagonal entry that selects the part of W̃iW̃∗
i corresponding to the kth node.

It can be seen from (3-29) that, for 0 ≪ µk < 1 and A with the entries alk

subject to (2-6), the eigenvalues of D ⊗D remain in the interval (−1, 1), and

thus DQA-LMS is stable in the mean-square sense and
(
IM2N2 − (D ⊗D)

)
in

(3-33) is nonsingular. The global MSD over all the nodes is given by
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MSDglobal = 1
N

N∑
k=1

MSDk = 1
N

Tr(Ω+∞). (3-34)

Remark 3: (High precision signals, b =∞). Increasing the number of

quantization bits, the diagonal entries of Gxk
approach unity where for high

precision signals (b =∞) with xk = xk, we have Gxk
= IM according to (2-33)

and Rqx,k = 0 according to (3-5a), and consequently βk(i) = IM from (3-20).

For b =∞ we also have qdk
= 0 and gdk

= 1, and since pk(i) = gdk
vk(i) + qdk

(i),

thus σ2
pk

= σ2
vk

. Therefore, for high precision signals, the third and fourth

definitions in (3-32) vanish, and with R = blockdiag{Rx1 , . . . , RxN
}, (3-33)

reduces to

MSDk = vecT
(
Ck ⊗ IM

)
(

IM2N2 −
(
(IMN −MR)⊗ (IMN −MR)(A⊗A)

))−1

(A⊗A) vec
(

diag
{
µ2

1σ
2
v1Rx1 , . . . , µ2

Nσ2
vN

RxN

})
,

(3-35)

which is equal to the theoretical MSD of the standard DLMS. So, as we expected,

the MSD performance of DQA-LMS becomes closer to that of the standard

DLMS with the increase of the resolution of ADCs.

3.6
Computational Complexity

Table 3.1 shows the computational complexity of the DQA-LMS algorithm

in terms of the number of multiplications and additions at node k per time

instant, where nk is the number of neighbor nodes connected to node k. At

each time instant, DQA-LMS performs a few more operations (≈ O(2b)) than

DLMS. Note that we compute gk(i) online since this is more appropriate for

non-stationary input data. However, one can compute Gk offline if an estimate

of Rxk
in (2-33) is available. However, the extra complexity of DQA-LMS allows

the system to work in a more energy-efficient way.
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Table 3.1: Computational complexity of DQA-LMS algorithm per time instant
at agent k

Task +− × ÷ exp

σ̂2
xk

3 3 0 0

gk(i) 2b − 1 2b+1 + 1 2b + 1 2b

βk(i) 1 2 1 0

d̂k(i) M − 1 M + 1 0 0

ek(i) 1 0 0 0

hk(i + 1) M M + 2 0 0

wk(i + 1) nkM nkM 0 0

Total (2 + nk)M + 2b + 3 (2 + nk)M + 2b+1 + 9 2b + 2 2b

Total (DLMS) (2 + nk)M (2 + nk)M + 1 0 0

3.7
Numerical Results

(a) Distributed network (b) Input and noise variances

Figure 3.1: A wireless network with N = 20 nodes.

In this section, we assess the performance of the DLMS [14], DQA-

LMS [59] and AdDQA-LMS [60] algorithms for a parameter estimation problem

in an IoT network with N = 20 nodes. The impulse response of the unknown

system has M = 8 taps, is generated randomly and normalized to one. The

input signals xk(i) at each node are generated by a white Gaussian noise

process with variance σ2
xk

and quantized using the Lloyd-Max quantization

scheme [46, 47] to generate xk(i). The noise samples of each node are drawn
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from a zero mean white Gaussian process with variance σ2
vk

. Fig. 3.1 plots the

network details.

Figure 3.2: MSD curves for DLMS and AdDQA-LMS algorithms.

The simulated mean-square deviation (MSD) learning curves are obtained

by ensemble averaging over 100 independent trials. We choose the same step

sizes for all agents, i.e., µk = 0.05. The combining coefficients alk are computed

by the Metropolis rule (2-8).

The evolution of the ensemble-average learning curves, 1
N
E[∥W̃(i)∥2], for

the ATC diffusion strategy with different numbers of bits is shown in Figure 3.2.

The theoretical MSD of the DLMS with the same step size µ and the Metropolis

rule applied to alk is approximated by µM
N2

∑N
k=1 σ2

vk
[41] and shown by curve 1.

Curve 2 shows the standard DLMS performance assuming full resolution ADCs

to perform system identification. Curves 3, 5 and 7 show the MSD evolution

of the standard DLMS with low resolution signals coarsely quantized with

1, 2 and 3 bits, respectively. Curves 4, 6 and 8 show the MSD performance

of the proposed AdDQA-LMS algorithm that improves the MSD for coarsely

quantized signals. The performance of the proposed AdDQA-LMS algorithm is

closer to the DLMS while it reduces about 90% of the power consumption of
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Figure 3.3: The MSD curves for the DLMS, DQA-LMS, and AdDQA-LMS
algorithms.

Figure 3.4: The steady state MSD curves for the DLMS, DQA-LMS, and
AdDQA-LMS algorithms.
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ADCs in the network (see Figure 2.3).

In the next experiment, the MSD learning curves of the proposed AdDQA-

LMS and DQA-LMS are compared and the learning performance of the

algorithms is shown in Figure 3.3. It can be seen that the AdDQA-LMS

improves the estimation performance of the DQA-LMS while both outperform

the standard DLMS with low resolution signals coarsely quantized. Figure 3.4

shows the node-wise steady state MSD values of the proposed AdDQA-LMS,

DQA-LMS, and standard DLMS, by averaging the MSD values over the last

200 time samples.

To investigate the performance of the DQA-LMS algorithm for the system

identification setup with medium colored input, we use the same setup as in

Figure 3.1 and the input signals xk(i) at each node are generated by passing

a white Gaussian noise process with variance σ2
xk

through a first-order auto-

regressive model with transfer function 1
1−rxk

z−1 where rxk
∈ (0.3, 0.5) are the

correlation coefficients. As we can see in Figure 3.5, the DQA-LMS algorithm

improves the MSD performance as compared to the DLMS algorithm for

coarsely quantized signals with medium colored inputs too.

In the next examples, we generate a network with N = 10 nodes to

evaluate the MSD performance of DLMS and DQA-LMS algorithms for different

signal-to-noise ratios (SNRs) adjusted for the network while nodes are working

under different SNRs, i.e., SNR at node k equals the SNR adjusted to the

network ±20 %. The step-size is set to 0.2 for 1-bit quantization and 0.05 for

other curves. Figure 3.6 plots the network details and the results are shown

in Figures 3.7 and 3.8. In particular, Figure 3.8 compares the simulation

results with those obtained by the analytical expression in (3-34). The results

in Figure 3.8 indicate that the theoretical and simulated results agree well

especially for b = 3 and b = 4 bits, and for low to moderate values of SNR,

confirming the validity of the theoretical development. The node-wise theoretical

and experimental MSD values for different nodes and a moderate SNR are
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Figure 3.5: The MSD curves for the DLMS and DQA-LMS algorithms and
colored inputs.

compared in Figure 3.9. The results shown in Figure 3.9 show that the MSD

theoretical expression in (3-33) can accurately predict the MSD values.

3.8
Chapter Summary

In this chapter, we have proposed an energy-efficient framework for

distributed learning and developed the DQA-LMS algorithm along with bias

compensation strategies for IoT networks. The DQA-LMS algorithm has

comparable computational complexity to the standard DLMS algorithm while

it substantially reduces the power consumption of the sensors in the network by

using low-resolution ADCs. We also proposed the AdDQA-LMS that iteratively

computes the bias compensation term and is a suitable choice for the systems

with delay line inputs. Simulations have shown excellent performance of DQA-

LMS and AdDQA-LMS as compared to DLMS for coarsely quantized signals.
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(a) Distributed network structure (b) Network statistical settings

Figure 3.6: A wireless network with N = 10 nodes.

Figure 3.7: Steady-state MSD values for the DLMS and DQA-LMS algorithms
for different SNR values.
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Figure 3.8: Steady-state and theoretical MSD values for the DLMS and DQA-
LMS algorithms for different SNR values.

Figure 3.9: Node-wise Steady-state and theoretical MSD values for the DLMS
and DQA-LMS algorithms.



4
Distributed Quantization-Aware RLS Algorithm

In this chapter, we propose a distributed quantization-aware recursive

least-squares (DQA-RLS) algorithm. We start with the derivation of the

proposed DQA-RLS algorithm and present a statistical analysis of the proposed

DQA-RLS algorithm that focuses on the mean and mean-square performances.

In addition, we devise a bias compensation strategy and investigate the

computational complexity of the proposed and existing algorithms. In the

end, we assess the estimation performance of the DQA-RLS algorithm for a

distributed system identification setup with numerical results.

4.1
Derivation of DQA-RLS

We consider xk(t) and dk(t) as the analog input and output of the unknown

system wo at node k. Let xk(i) and dk(i) denote the digital versions of xk(t)

and dk(t), and xk(i) and dk(i) denote the coarsely quantized versions of xk(i)

and dk(i), respectively.

We show next that a learning algorithm based directly on (2-10) is biased

for estimating wo and show how to correct for this bias. To this end, let

βk(i) be an M ×M bias-compensation matrix to be computed and define

d̂k(i) = w∗
k(i− 1)βk(i)xk(i). Thus, the error is given by

ek(i) = dk(i)− d̂k(i) = dk(i)−w∗
k(i− 1)βk(i)xk(i). (4-1)

As seen in (4-1), ek(i) is different from ek(i) = dk(i) −w∗
k(i − 1)xk(i) in the

diffusion RLS (DRLS) [15].

Let us consider a network of N nodes distributed over an area as in

Fig. 2.1. At time i, we globally collect the quantized input regressors into a
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matrix Xi, the quantized desired signal into vector di, the noise samples into

vector vi, and the bias-compensation coefficients into the matrix βi over all

nodes as follows:

Xi = blockdiag{x1(i), . . . , xN(i)} (MN ×N)

di = col{d1(i), . . . , dN(i)} (N × 1)

vi = col{v1(i), . . . , vN(i)} (N × 1)

βi = [β1(i), . . . , βN(i)] (M ×MN).

(4-2)

We can write down the covariance matrix of the noise vector as follows

Rv = E[viv∗
i ] = diag{σ2

v1 , . . . , σ2
vN
} (N ×N). (4-3)

Now we collect these data from time 0 to time i as follows:

X i = blockdiag{Xi, . . . , X0} (MN(i + 1)×N(i + 1)),

di = col{di, . . . , d0}T (1×N(i + 1)),

vi = col{vi, . . . , v0}T (1×N(i + 1)),

Bi = [βi, . . . , β0] (M ×MN(i + 1)),

(4-4)

where Rv,i = E[v∗
i vi]. Note that for the globally collected quantities we denote

time by a subscript, whereas for node-wise quantities we denote time by

parenthesis. Then, we estimate the M × 1 vector wo by solving the weighted

regularized least-squares problem given by

min
w

[∥∥∥w− w̌
∥∥∥2

Πi

+
∥∥∥di −w∗BiX i

∥∥∥2

Σi

]
, (4-5)

where w̌ is a given column vector, usually w̌ = 0, Πi > 0 is an M ×M positive-

definite matrix that incorporates a regularization term ∥w − w̌∥2
Πi

into the

least-squares problem, and Σi > 0 is an N(i + 1)×N(i + 1) Hermitian positive-

definite matrix that incorporates weighting into the least-squares problem. The
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regularization and weighting matrices are given as follows

Πi = λi+1Π and Σi = Λi, (4-6)

where 0 ≪ λ < 1, Π = δ−1IM with δ > 0 as a positive constant, and

Λi ≜ diag{IN , λIN , . . . , λiIN}. Note that Σi = R−1
v,i Λi and since the noise

variances are often unknown, we choose the weighting matrix as in (4-6).

We can rewrite (4-5) in the equivalent form

min
w

[
(w− w̌)∗Πi(w− w̌) + (di −w∗BiX i)Σi(di −w∗BiX i)∗

]
(4-7)

To solve (4-7), we reduce it to the standard least-squares form by introducing

the eigendecompositions of Πi as follows

Πi = Ψi∆iΨ∗
i , (4-8)

where ∆i is diagonal with positive entries, and Ψi is unitary, i.e., it satisfies

ΨiΨ∗
i = Ψ∗

i Ψi = IM . Let Λ1/2
i denote the diagonal matrix whose entries are

equal to the positive square roots of the entries of Λi, and define the change of

variables

a ≜ diΛ1/2
i , and L ≜ BiX iΛ1/2

i . (4-9)

Using (4-9), we can rewrite (4-7) as follows

min
w

[
(w− w̌)∗Πi(w− w̌) + ∥a −w∗L∥2

]
. (4-10)

Defining the change of variables

z ≜ w− w̌ and f ≜ a − w̌∗L, (4-11)

we can rewrite (4-10) as follows
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min
z

[
z∗Πiz + ∥f − z∗L∥2

]
. (4-12)

Let ∆1/2
i denote the diagonal matrix whose entries are equal to the positive

square roots of the entries of ∆i. Then using the eigendecomposition in (4-8),

we can write the equivalent form of (4-12) as follows

min
z

∥∥∥∥∥
[
0 f

]
− z∗

[
Ψ∗

i ∆
1/2
i L

] ∥∥∥∥∥
2
, (4-13)

which is a form of the standard least-squares

min
w

[∥∥∥y−w∗H
∥∥∥2
]
, (4-14)

in which the roles of y and H are played by
[
0 f

]
and

[
Ψ∗

i ∆
1/2
i L

]
, respec-

tively. All solutions ŵ to the least-squares problem (4-14) are characterized as

solutions to the linear system of equations

ŵ∗HH∗ = yH∗. (4-15)

We replace y and H with
[
0 f

]
and

[
Ψ∗

i ∆
1/2
i L

]
in (4-15) to form the

solutions ẑ to (4-12) as follows

( [
0 f

]
− ẑ∗

[
Ψ∗

i ∆
1/2
i L

] ) [
Ψ∗

i ∆
1/2
i L

]∗
= 0. (4-16)

Using ẑ = ŵ− w̌ and (4-11) in (4-16), we can write the solution ŵ to (4-12)

in a system of equations as follows

(ŵ− w̌)∗[Πi + LL∗] = (a − w̌∗L)L∗, (4-17)

or in an equivalent form the solution w(i) is given by

w(i) = w̌ + [Πi + LL∗]−1L(a − w̌∗L)∗. (4-18)

Using (4-9), the solution w(i) to the weighted regularized least-squares (4-5) is

given by
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w(i) = w̌ +
(
Πi + BiX iΣiX

∗
i B

∗
i

)−1
BiX iΣi

(
di − w̌∗BiX i

)∗
. (4-19)

To simplify, we use (4-6), assume the given column vector w̌ = 0, and write an

exponentially weighted version of (4-19) as follows

w(i) =
(
λi+1Π + BiX iΛiX i ∗B∗

i

)−1
BiX iΛid

∗
i . (4-20)

To form the recursions, we introduce P i as follows

P i =
(
λi+1Π + BiX iΛiX

∗
i B

∗
i

)−1
, (4-21)

and write down (4-20) as follows

w(i) = P iBiX iΛid
∗
i . (4-22)

We then reformulate the global least-squares solution in (4-22) as a local

least-squares solution where nodes have access to limited data from their

neighbors in the diffusion scheme [15]. In this scheme, nodes update their local

intermediate estimates hk(i) following (4-22) which yields

hk(i) = Pk(i)Bk(i)Xk(i)Λk(i)d∗
k(i), (4-23)

where

Pk(i) =
(
λi+1Π + Bk(i)Xk(i)Λk(i)X∗

k(i)B∗
k(i)

)−1
,

and Xk(i), dk(i), and Bk(i) are the collected quantities from time 0 to time i

at node k.

At the combination step, the nodes communicate their local intermediate

estimates with their neighbors and provide a combined estimate wk(i) as follows

wk(i) =
∑

l∈Nk

alkhl(i), (4-24)

where Nk is the neighborhood of node k (possibly including itself) and the

combination coefficients, alk, of neighbor nodes on node k are chosen such that
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alk = 0 if l /∈ Nk, alk > 0 if l ∈ Nk, and
∑

l∈Nk

alk = 1. (4-25)

To form the recursion, we compute Pk(i) from Pk(i− 1) as follows

P−1
k (i) = λ

(
λiΠ + Bk(i− 1)Xk(i− 1)Λk(i− 1)X∗

k(i− 1)B∗
k(i− 1)

)
+ βk(i)xk(i)x∗

k(i)β∗
k(i)

= λP−1
k (i− 1) + βk(i)xk(i)x∗

k(i)β∗
k(i).

(4-26)

Using the matrix inversion lemma

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1,

and the assignments

A← λP−1
k (i), B ← βk(i)xk(i),

C ← 1, D ← x∗
k(i)β∗

k(i),

we obtain the recursion for updating Pk(i) given by

Pk(i) = λ−1

Pk(i−1)−λ−1Pk(i− 1)βk(i)xk(i)x∗
k(i)β∗

k(i)Pk(i− 1)
1 + λ−1x∗

k(i)β∗
k(i)Pk(i− 1)βk(i)xk(i)

. (4-27)

To form the recursion for hk(i), we rewrite (4-23) as follows

hk(i) = Pk(i)
(

Bk(i− 1)Xk(i− 1)λΛk(i− 1)d∗
k(i− 1) + βk(i)xk(i)dk(i)

)

= Pk(i)
(

P−1
k (i− 1)Pk(i− 1)Bk(i− 1)Xk(i− 1)λΛk(i− 1)d∗

k(i− 1)

+ βk(i)xk(i)d∗
k(i)

)

(4-28)

From (4-26), we have P−1
k (i− 1) = λ−1

(
P−1

k (i)− βk(i)xk(i)x∗
k(i)β∗

k(i)
)
. Then

considering hk(i− 1) = Pk(i− 1)Bk(i− 1)Xk(i− 1)Λk(i− 1)d∗
k(i− 1) from

(4-23) and the fact that Pk is a symmetric matrix, we can write (4-28) as

follows
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hk(i) = Pk(i)P−1
k (i− 1)λhk(i− 1) + Pk(i)βk(i)xk(i)d∗

k(i)

= hk(i− 1)−Pk(i)βk(i)xk(i)x∗
k(i)β∗

k(i)hk(i− 1) + Pk(i)βk(i)xk(i)d∗
k(i)

= hk(i− 1) + Pk(i)βk(i)xk(i)
(
d

∗
k(i)− x∗

k(i)β∗
k(i)hk(i− 1)

)
.

(4-29)

Note that with diffusion, at time instant i, each node uses its combined estimate

wk(i − 1) instead of intermediate estimate hk(i − 1) to update hk(i). This

allows the combined estimates diffuse into the network. We then update hk(i)

as follows
hk(i) = wk(i− 1) + Pk(i)βk(i)xk(i)e∗

k(i), (4-30)

where
ek(i) = dk(i)−w∗

k(i− 1)βk(i)xk(i) (4-31)

The next section shows how the bias compensation βk(i) should be chosen

such that (4-24) is asymptotically unbiased in the mean.

4.2
Essentials of Analysis

In this section, we present some assumptions and definitions for the

statistical analysis of the proposed DQA-RLS algorithm that focuses on the

mean and mean-square performances.

Combining (4-6) with (4-26), we can write P−1
k (i) as follows:

P−1
k (i) = λP−1

k (i− 1) + βk(i)xk(i)x∗
k(i)β∗

k(i)

= λi+1Π +
i∑

j=0
λi−jβk(j)xk(j)x∗

k(j)β∗
k(j).

(4-32)

We aim to evaluate the mean behavior of the matrix Pk(i). Choosing 0≪ λ < 1,

as i→∞, the steady-state mean value of P−1
k (i) is given by

lim
i→+∞

E[P−1
k (i)] =

E
[
βk(j)xk(j)x∗

k(j)β∗
k(j)

]
1− λ

≜ P−1
k . (4-33)

To start the analysis, we need to introduce some assumptions similar
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to those often used in the analysis of adaptive algorithms in the literature.

Simulation results show that the results obtained under the following assump-

tions correspond well with real performance of the DQA-RLS algorithm, for

stationary data and for a forgetting factor close to unity.

Assumption 1: The input regressors xk(i) are zero-mean with covariance

matrices Rxk
= E[xk(i)x∗

k(i)] and temporally independent. This assumption

also applies to the additive noise sequences vk(i) with variance σ2
vk

and the

quantized regressors xk(i) with covariance matrices Rxk
= E[xk(i)x∗

k(i)].

Moreover, covariance matrices are time-invariant and all data is assumed

spatially independent.

Assumption 2: The matrix Pk(i) varies slowly in relation to w̃k(i)

and wk(i). Thus, when they appear inside the expectations we decouple

their expected values [45, 61]. Note that this a common assumption for the

performance analysis of RLS-type algorithms for λ close to unity. This also

applies to Gxk
since (2-33) is based on the statistics of xk(i).

Assumption 3: There is an iteration number i0 such that for all i > i0,

the time-averaged matrices Pk(i) and P−1
k (i) can be replaced by their expected

values, E[Pk(i)] and E[P−1
k (i)]. Note that such replacements are commonly

used in the performance analysis of RLS-type algorithms, see [15, 21, 28, 58],

i.e.,
E[Pk(i)] ≈ Pk and E[P−1

k (i)] ≈ P−1
k . (4-34)

To analyze the mean and mean-square performance of DQA-RLS, we use

the weight-error vectors

w̃k(i) = wo −wk(i), and h̃k(i) = wo − hk(i). (4-35)

The performance of bias-compensated-type adaptive filters is usually compared

in terms of the mean-square deviation (MSD) [22], defined by

MSDk ≜ lim
i→+∞

E[∥w̃k(i)∥2] = E
[

Tr
(
w̃k(i)w̃∗

k(i)
)]

. (4-36)
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We also define the following matrices:

A = A⊗ IM (MN ×MN)

W̃i = col
{
w̃1(i), . . . , w̃N(i)

}
(MN × 1).

(4-37)

4.3
Mean Performance Analysis

We assume that the input signal at each node is Gaussian with zero mean

and covariance matrix Rxk
for k = 1, 2, ..., N . We can now decompose xk(i)

and dk(i) as

xk(i) = Gxk
xk(i) + qxk

(i) (4-38a)

dk(i) = gdk
dk(i) + qdk

(i) = gdk
w∗

oxk(i) + pk(i), (4-38b)

where pk(i) = gdk
vk(i) + qdk

(i) is uncorrelated with xk(i). Note that Gxk
and

gdk
are built based on xk(i) and dk(i), respectively. Using the decomposition

model in (4-38a), we can rewrite the error in (4-1) as follows

ek(i) = dk(i)−w∗
k(i− 1)βk(i)xk(i)

= gdk
w∗

oxk(i) + pk(i)−w∗
k(i− 1)βk(i)

(
Gxk

xk(i) + qxk
(i)
)

= gdk
w∗

oxk(i)−w∗
k(i− 1)βk(i)Gxk

xk(i)−w∗
k(i− 1)βk(i)qxk

(i) + pk(i).

(4-39)

Combining (4-39) with (4-30) and subtracting from wo yields
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h̃k(i) = w̃k(i− 1)−Pk(i)βk(i)
(

Gxk
xk(i) + qxk

(i)
)

(
x∗

k(i)gdk
wo − x∗

k(i)Gxk
β∗

k(i)wk(i− 1)− q∗
xk

(i)β∗
k(i)wk(i− 1) + p∗

k(i)
)

= w̃k(i− 1) + Pk(i)βk(i)Gxk
xk(i)x∗

k(i)Gxk
β∗

k(i)wk(i− 1)

+ Pk(i)βk(i)qxk
(i)q∗

xk
(i)β∗

k(i)wk(i− 1)−Pk(i)βk(i)Gxk
xk(i)x∗

k(i)gdk
wo

+ Pk(i)βk(i)Gxk
xk(i)q∗

xk
(i)β∗

k(i)wk(i− 1)−Pk(i)βk(i)Gxk
xk(i)p∗

k(i)

+ Pk(i)βk(i)qxk
(i)x∗

k(i)Gxk
β∗

k(i)wk(i− 1)−Pk(i)βk(i)qxk
(i)x∗

k(i)gdk
wo

−Pk(i)βk(i)qxk
(i)p∗

k(i).

(4-40)

The errors pk, qxk
, and the regressors xk are assumed statistically independent,

so that the expectation of the cross terms vanishes. Taking the expectation

from the remaining terms in (4-40), we obtain

E
[
h̃k(i)

]
= E

[
w̃k(i− 1)

]
− E

[
Pk(i)βk(i)Gxk

xk(i)x∗
k(i)gdk

]
wo

+ E
[
Pk(i)βk(i)

(
Gxk

xk(i)x∗
k(i)Gxk

+ qxk
(i)q∗

xk
(i)
)

β∗
k(i)

]
E
[
wk(i− 1)

]
.

(4-41)

Let us define two M ×M matrices that include terms multiplied by wk(i− 1)

and wo in (4-41) as follows:

Θk(i) ≜ Pk(i)βk(i)
(
Gxk

xk(i)x∗
k(i)Gxk

+ qxk
(i)q∗

xk
(i)
)
β∗

k(i)

Γk(i) ≜ Pk(i)βk(i)Gxk
xk(i)x∗

k(i)gdk
.

(4-42)

We show next that a necessary but not sufficient condition to have an

asymptotically unbiased solution in the mean is that

E
[
Θk(i)

]
= E

[
Γk(i)

]
, (4-43)

and we show in the next section that this condition is possible by appropriately

choosing βk(i). Assuming (4-43), we can write (4-41) as follows
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E
[
h̃k(i)

]
= E

[
w̃k(i− 1)

]
− E

[
Θk(i)

]
E
[
w̃k(i− 1)

]
. (4-44)

From (4-32) and (4-33), we can verify that for sufficiently large i under

Assumption 3, we have
E
[
Θk(i)

]
= 1− λ. (4-45)

We now apply the weight-error vectors to the combined estimates (4-24) and

obtain
w̃k(i) =

∑
l∈Nk

alkh̃l(i), (4-46)

and taking the expectation from both sides of it and using (4-44) and (4-45),

we arrive at
E
[
w̃k(i)

]
=
∑

l∈Nk

alk(1− λ)E
[
w̃k(i− 1)

]
. (4-47)

For the global estimates and i > i0, we have

E[W̃i] = (1− λ)AE[W̃i−1] = (1− λ)i−i0Ai−i0E[W̃i0 ]. (4-48)

Observing (4-48) and recalling that the spectral radius of A (i.e., the largest

eigenvalue in modulus) is equal to one [41], we can state that for sufficiently

large i0 (or equivalently in adaptive filtering, when the algorithm reaches the

steady-state), assuming W̃i0 is element-wise bounded by some finite constant

and regarding (4-25), for 0≪ λ < 1, the term on the right-hand side of (4-48)

converges to zero and DQA-RLS is asymptotically unbiased in the mean.

4.4
Bias Compensation

In this section, we derive an expression for the bias compensation term

βk(i) such that (4-43) is true and (4-24) is asymptotically unbiased in the mean.

From (4-42) and (4-43), we must have

E
[
Pk(i)βk(i)

(
Gxk

xk(i)x∗
k(i)Gxk

+ qxk
(i)q∗

xk
(i)
)
β∗

k(i)
]

= E
[
Pk(i)βk(i)Gxk

xk(i)x∗
k(i)gdk

]
.

(4-49)

Under Assumptions 2 and 3, we can write (4-49) as follows
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(
Gxk

E
[
xk(i)x∗

k(i)
]
Gxk

+ E
[
qxk

(i)q∗
xk

(i)
])

β∗
k(i) = Gxk

E
[
xk(i)x∗

k(i)
]
gdk

.

(4-50)
Therefore, the bias compensation term is expressed by

βk(i) = βk = gdk
Rxk

Gxk

(
Gxk

Rxk
Gxk

+ Rqx,k

)−1
, (4-51)

which needs an M × M matrix inversion at each time instant i if xk(i)

are nonstationary and, moreover, we realize βk ∈ RM×M is time-invariant

for stationary inputs. In what follows, we show how to compute the bias

compensation term to reduce the complexity of our proposed algorithm.

Remark 1: (Stationary data). When the input regressors xk(i) are wide-

sense stationary, we use Rxk
= E[xk(i)x∗

k(i)] ≈ σ2
xk

IM and the matrix Gxk

reduces to gxk
IM with gxk

estimated as follows

ĝxk
(i) = 1√

σ̂2
xk

2b−1∑
j=0

lj√
π

(
e

−
τ2

j

σ̂2
xk − e

−
τ2

j+1
σ̂2

xk

)
, (4-52)

where σ̂2
xk

is an instantaneous approximation to σ2
xk

given by:

σ̂2
xk

= σ̂2
xk

+ σ̂2
qk

. (4-53)

where σ̂2
qk

is given by (2-35). To compute σ̂2
xk

which is given by (3-18), we use

the iterative recursion (3-19) to reduce the computational complexity of our

algorithm. Therefore, the bias compensation term is given by

βk(i) = βk(i)IM =
ĝxk

(i)gdk
(i)σ̂2

xk

ĝ2
xk

(i)σ̂2
xk

+ σ̂2
qk

IM . (4-54)

Remark 2: (One ADC for each node). To reduce the complexity of our

algorithm, we design only one ADC to quantize both the input regressors and

desired signals. This also covers the network with nodes in which the two ADCs

use the same set of thresholds and the same set of labels. Then gxk
and gdk

can

be considered equal and the bias compensation term is given by
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Algorithm 4: DQA-RLS algorithm at agent k

input : Initial values wk(−1) ∈ RM , combination matrix A,
σ̂2

xk
(−1) = 0, 0≪ γ < 1, 0≪ λ < 1 and Pk(−1) = Π−1

Generate Tb and Lb, and Compute σ̂2
qk

from (2-35)

output : wk(i)

1 for i = 0, 1, 2, . . . do

2 data: dk(i) and xk(i) = [xk(i), xk(i− 1), . . . , xk(i−M + 1)]T

3 σ̂2
xk

(i) = γσ̂2
xk

(i− 1) + (1− γ)|xk(i)|2

4 σ̂2
xk

= σ̂2
xk

(i) + σ̂2
qk

5 ĝxk
(i) = 1√

σ̂2
xk

2b−1∑
j=0

lj√
π

(
e

−
τ2

j

σ̂2
xk − e

−
τ2

j+1
σ̂2

xk

)
6 βk(i) = ĝ2

xk
(i)σ̂2

xk

ĝ2
xk

(i)σ̂2
xk

+σ̂2
qk

7 ek(i) = dk(i)−w∗
k(i− 1)βk(i)xk(i)

8 Pk(i) = 1
λ

Pk(i− 1)− Pk(i−1)βk(i)xk(i)x∗
k(i)βk(i)Pk(i−1)

λ+x∗
k(i)βk(i)Pk(i−1)βk(i)xk(i)


9 hk(i) = wk(i− 1) + Pk(i)βk(i)xk(i)e∗

k(i)

10 wk(i) = ∑
l∈Nk

alkhl(i)

end for

βk(i) =
ĝ2

xk
(i)σ̂2

xk

ĝ2
xk

(i)σ̂2
xk

+ σ̂2
qk

IM . (4-55)

This is the simple version of the bias compensation term that we use in the

proposed DQA-RLS algorithm which is detailed in Algorithm 4, and as we

show in the simulation results, its MSD performance is better than that of the

DRLS algorithm with coarsely quantized signals even for colored inputs and

imperfect gain control (σ2
xk
̸= 1).

4.5
Mean-Square Performance Analysis

In this section, we carry out a mean-square performance analysis and

discuss the steady-state behavior of the DQA-RLS algorithm. We first write

(4-40) as
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h̃k(i) = Pk(i)P−1
k (i)w̃k(i− 1)−Pk(i)βkxk(i)d∗

k(i)

+ Pk(i)βkxk(i)x∗
k(i)βT

k wk(i− 1).
(4-56)

Using (4-32), we obtain

h̃k(i) = Pk(i)λP−1
k (i− 1)w̃k(i− 1)−Pk(i)βkxk(i)d∗

k(i)

+ Pk(i)βkxk(i)x∗
k(i)βT

k

(
w̃k(i− 1) + wk(i− 1)

)
= λw̃k(i− 1)−Pk(i)βkxk(i)d∗

k(i) + Pk(i)βkxk(i)x∗
k(i)βT

k wo.

(4-57)

We now use (4-38a) and (4-38b) to write (4-57) as follows

h̃k(i) = λw̃k(i− 1)−Pk(i)βkGxk
xk(i)x∗

k(i)gdk
wo

−Pk(i)βkGxk
xk(i)p∗

k(i)−Pk(i)βkqxk
(i)x∗

k(i)gdk
wo

−Pk(i)βkqxk
(i)p∗

k(i) + Pk(i)βkxk(i)x∗
k(i)βT

k wo.

(4-58)

In order to simplify this expression, we assume that the choice of βk in (4-55)

makes (4-51) approximately true, so that we can approximate the instantaneous

values in the second and sixth terms on the RHS of (4-58) to be equal with

different signs and to vanish for sufficiently large i (our simulations show that

this approximation is reasonable). Therefore, the weight-error vectors of the

combined estimates in (4-46) are given by

w̃k(i) = λ
∑

l∈Nk

alkw̃l(i− 1)−
∑

l∈Nk

alkPlβlGxl
xl(i)p∗

l (i)

−
∑

l∈Nk

alkPlβlqx,l(i)x∗
l (i)gdl

wo −
∑

l∈Nk

alkPlβlqx,l(i)p∗
l (i).

(4-59)

Let us now define
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P = blockdiag
{
P1, . . . , PN

}
(MN ×MN)

B = blockdiag
{
β1, . . . , βN

}
(MN ×MN)

G = blockdiag
{
Gx1 , . . . , GxN

}
(MN ×MN)

Υi = blockdiag
{
qx,1(i)x∗

1(i), . . . , qx,N(i)x∗
N(i)

}
(MN ×MN)

ξi = col
{
x1(i)p∗

1(i), . . . , xN(i)p∗
N(i)

}
(MN × 1)

ζi = col
{
qx,1(i)p∗

1(i), . . . , qx,N(i)p∗
N(i)

}
(MN × 1)

η = col
{
gd1wo, . . . , gdN

wo

}
(MN × 1),

and write W̃i in a more compact form as

W̃i = λAW̃i−1 −APBGξi −APBΥiη −APBζi.

Taking the expectation of W̃iW̃∗
i , we obtain

E
[
W̃iW̃∗

i

]
= λ2E

[
AW̃i−1W̃∗

i−1AT
]

+ E
[
APBGξiξ

∗
iGTBTP∗AT

]
+ E

[
APBΥiηη∗Υ∗

iBTP∗AT
]

+ E
[
APBζiζ

∗
iBTP∗AT

]
+ E

[
APBGξiη

∗Υ∗
iBTP∗AT

]
+ E

[
APBΥiηξ∗

iGTBTP∗AT
]

+ E
[
APBGξiζ

∗
iBTP∗AT

]
+ E

[
APBζiξ

∗
iGTBTP∗AT

]
+ E

[
APBΥiηζ∗

iBTP∗AT
]

+ E
[
APBζiη

∗Υ∗
iBTP∗AT

]
.

(4-60)

We now use the commutative property of the expectation and vectorization

operations, and the relationship between the vectorization operation and the

Kronecker product, vec(ABC) = (CT ⊗ A) vec(B), to write (4-60) as follows

vec(Ωi) = λ2(A⊗A) vec(Ωi−1) + vec(Ξi), (4-61)

where Ωi = E
[
W̃iW̃∗

i

]
and Ξi denotes the summation of the second term to

the last one on the RHS of (4-60). Note that vec(Ωi) is stable if and only if the

spectral radius of λ2(A⊗A) is strictly smaller than 1 or |λ| < 1. Therefore,

we obtain
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lim
i→+∞

vec(Ωi) =
(
IM2N2 − λ2(A⊗A)

)−1
vec(Ξ+∞). (4-62)

For sufficiently large i, taking into account Assumption 3 and (4-33), we have

Pk = (1− λ)
[
βkRxk

βk

]−1
,

thus vec(Ξ+∞) is given by

vec(Ξ+∞) = lim
i→+∞

vec(Ξi) = (1− λ)2(A⊗A)

vec
(
B−1R−1

x

(
GE

[
ξiξ

∗
i

]
GT + E

[
Υiηη∗Υ∗

i

]
+ E

[
ζiζ

∗
i

]
+ GE

[
ξiη

∗Υ∗
i

]
+ E

[
Υiηξ∗

i

]
GT + GE

[
ξiζ

∗
i

]
+ E

[
ζiξ

∗
i

]
GT + E

[
Υiηζ∗

i

]
+ E

[
ζiη

∗Υ∗
i

])
R−1

x B−1
)

≈ (1− λ)2(A⊗A) vec
(
B−1R−1

x

(
GE

[
ξiξ

∗
i

]
GT

+ E
[
Υiηη∗Υ∗

i

]
+ E

[
ζiζ

∗
i

])
R−1

x B−1
)

,

(4-63)

where under Assumptions 2 and 3, the expectations of the cross-terms vanish

and

Rx = blockdiag
{
Rx1 , . . . , RxN

}
E
[
ξiξ

∗
i

]
= blockdiag

{
Rx1σ2

p1 , . . . , RxN
σ2

pN

}
E
[
Υiηη∗Υ∗

i

]
= blockdiag

{
g2

d1Rqx,1
(
w∗

oRx1wo

)
, . . . , g2

dN
Rqx,N

(
w∗

oRxN
wo

)}
E
[
ζiζ

∗
i

]
= blockdiag

{
Rqx,1σ

2
p1 , . . . , Rqx,Nσ2

pN

}
.

(4-64)

The analytical computation of Rxk
, Rqx,k, and σ2

pk
is detailed in Appendix A.

Therefore, the steady-state MSD at node k is given by
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MSDk = lim
i→+∞

E[∥w̃k(i)∥2] = vecT
(
Ck ⊗ IM

)
vec(Ω+∞)

= (1− λ)2 vecT
(
Ck ⊗ IM

)(
IM2N2 − λ2(A⊗A)

)−1
(A⊗A)

vec
(
B−1R−1

x

(
GE

[
ξiξ

∗
i

]
GT + E

[
Υiηη∗Υ∗

i

]
+ E

[
ζiζ

∗
i

])
R−1

x B−1
)

,

(4-65)

where Ck is an N ×N matrix with zero entries and a unity on its kth diagonal

entry that selects the part of W̃iW̃∗
i corresponding to the kth node. It can

be seen from (4-61) that, for 0 ≪ λ < 1 and A with the entries alk subject

to (4-25), the eigenvalues of λ2A⊗A remain in the interval (−1, 1), and thus

DQA-RLS is stable in the mean-square sense and
(
IM2N2 − λ2(A ⊗A)

)
in

(4-65) is nonsingular. The global MSD over all the nodes is given by

MSDglobal = 1
N

N∑
k=1

MSDk = 1
N

Tr(Ω+∞). (4-66)

Remark 3: (High precision signals, b =∞). Increasing the number of

quantization bits, the diagonal entries of Gxk
approach unity where for high

precision signals (b =∞) with xk = xk, we have Gxk
= IM according to (2-33)

and Rqx,k = 0 according to (4-38a), and consequently βk(i) = IM from (4-55).

For b =∞ we also have qdk
= 0 and gdk

= 1, and since pk(i) = gdk
vk(i) + qdk

(i),

thus σ2
pk

= σ2
vk

. Therefore, for high precision signals, the third and fourth

definitions in (4-64) vanish, and (4-65) reduces to

MSDk = (1− λ)2 vecT
(
Ck ⊗ IM

)(
IM2N2 − λ2(A⊗A)

)−1

(A⊗A) vec
(

diag
{
R−1

x1 σ2
v,1, . . . , R−1

xN
σ2

v,N

})
,

(4-67)

which is equal to the theoretical MSD of the standard DRLS. So, as we expected,

the MSD performance of DQA-RLS becomes closer to that of the standard

DRLS with the increase of the resolution of ADCs.
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4.6
Computational Complexity

Table 4.1 shows the computational complexity of the DQA-RLS algorithm

in terms of the number of multiplications and additions at node k per time

instant, where nk is the number of neighbor nodes connected to node k. At

each time instant, DQA-RLS performs a few more operations (O(M + 2b))

than DRLS, which does not change much the computational complexity that

is in the order of O(M2). Figure 4.1 shows a comparison of the computational

complexity of the DQA-RLS and DRLS algorithms for different filter lengths

in terms of the number of multiplications/divisions and additions/subtractions

assuming nk = 3 in average for each node k. As we can see, by increasing the

filter length the number of operations will increase while the computational

complexity of DQA-RLS still remains close to that of DRLS. For instance, for

M = 32 in Figure 4.1, DQA-RLS with low-resolution quantized signals adds 1%

extra multiplications/divisions to DRLS with full resolution signals while the

number of additions/subtractions operated by DQA-RLS remains very close to

that of DRLS. Note that we compute gdk
online since this is more appropriate

for non-stationary input data. However, one can compute Gxk
offline if an

estimate of Rxk
in (2-33) is available.

4.7
Simulation Results

In this section, we assess the estimation performance of DQA-RLS for

a system identification setup in a network with N = 10 nodes. The impulse

response of the unknown system has M = 8 taps, is generated randomly

and normalized to one. We design the ADCs for all nodes with a set of

thresholds Tb = {τ0, . . . , τ2b} and labels Lb = {l0, . . . , l2b−1} using the Lloyd-

Max algorithm [46, 47]. The input signals xk(i) at each node are chosen as

Gaussian i.i.d. with a covariance matrix Rxk
= Uk diag{sk}U∗

k where Uk is an

M ×M random unitary matrix and sk is an M × 1 vector with random entries
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Table 4.1: Computational complexity of DQA-RLS algorithm per time instant
at node k

Task +− × ÷ exp

σ̂2
xk

(i) 2 3 0 0

σ̂2
xk

(i) 1 0 0 0

gxk
(i) 2b − 1 2b+1 + 1 2b + 1 2b

βk(i) 1 2 1 0

ek(i) 4M 4M + 2 0 0

Pk(i) 8M2 + 2M − 1 10M2 + 6M + 2 1 0

hk(i) 4M 4M + 2 0 0

wk(i) 2nkM 4nkM 0 0

Total 8M2 + 2b + 2+
(2nk + 10)M

10M2 + 2b+1+
(4nk + 14)M + 12

2b + 3 2b

Total (DRLS [15]) 8M2 − 1+
(2nk + 10)M

10M2+
(4nk + 14)M

1 0

between 0.5 and 1. The noise samples of each node are drawn from a zero mean

white Gaussian process with variance σ2
vk

. The input regressors and desired

signals are quantized with Tb and Lb to generate xk(i) and dk(i). Figure 4.2

plots the network details.

The simulated MSD learning curves are obtained by ensemble averaging

over 100 independent trials. The steady-state MSD values are obtained by

ensemble averaging over 100 independent trials over the last 200 samples. The

combining coefficients alk are computed by the Metropolis rule [41], γ = 0.9 and

λ = 0.99. We have compared the proposed DQA-RLS [62] in Algorithm 4 with

DRLS [15], DLMS [14], and DQA-LMS [59]. The curves with full resolution

DRLS and full resolution DLMS legends refer to the case where the input signals

xk(i) and desired outputs dk(i) are not quantized and used as high precision

data for the estimation task by DRLS and DLMS algorithms, respectively,

whereas other curves are generated with b-bit quantized xk(i) and dk(i) as the

coarsely quantized data.

Figures 4.3 and 4.4 show the global MSD learning curve (average MSD
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Figure 4.1: Number of operations per node versus the filter length for nk = 3.

among nodes) and the node-wise steady state MSD values obtained from

simulations for DRLS and DQA-RLS using different numbers of bits. Curve

1 shows the standard DRLS performance assuming full resolution ADCs to

perform estimation. Curves 2, 4 and 6 show the MSD evolution of the standard

DRLS with signals coarsely quantized with b=1, 2 and 3 bits, respectively.

Curves 3, 5 and 7 show the MSD performance of the proposed DQA-RLS

algorithm that improves the MSD performance for coarsely quantized signals.

The performance of the proposed DQA-RLS algorithm is closer to the DRLS

while it reduces about 90% of the power consumption related to the ADCs in

the network (see Figure 2.3).

In the next two examples, the MSD performance is evaluated for different

signal-to-noise ratios (SNRs) adjusted for the network while nodes are working

under different SNRs, i.e., SNR at node k equals the SNR adjusted to the

network ±20 % and the results are shown in Figures 4.5 and 4.6. In particular,

Figure 4.6 compares the simulation results with those obtained by the analytical

expression in (4-66). The results in Figure 4.6 indicate that the theoretical and

simulated results agree well especially for b = 3 and b = 4 bits, and low to
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(a) Distributed network structure (b) Network statistical settings

Figure 4.2: A wireless network with N = 10 nodes.

moderate values of SNR, confirming the validity of the theoretical development.

The node-wise theoretical and experimental MSD values for different nodes for

a moderate SNR are compared in Figure 4.7 and authenticate the validation of

the MSD theoretical expression (4-65).

In Figures 4.8 and 4.9, the MSD learning curves of the proposed DQA-RLS

are compared with those of DQA-LMS [59], standard DRLS [15] and DLMS

algorithms [14]. We choose the same step sizes for all agents, i.e., µk = 0.05

for DLMS and DQA-LMS algorithms. It can be seen that the DQA-RLS

algorithm improves the estimation performance of the DQA-LMS algorithm

while both outperform the standard DRLS and DLMS, respectively, with

coarsely quantized signals. According to curves (3) and (4) in Figure 4.9, in

applications in which computational complexity is not a bottleneck, one can

use DQA-RLS with 2-bit quantization to achieve the estimation performance

of full resolution DLMS and save a large amount of energy consumption of the

ADCs.

4.8
Chapter Summary

In this chapter, we have proposed an energy-efficient framework for

distributed learning and developed the DQA-RLS algorithm along with bias

compensation strategies for IoT networks. The DQA-RLS algorithm has
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Figure 4.3: MSD curves for the DRLS and DQA-RLS algorithms.

Figure 4.4: Steady-state MSD values for the DRLS and DQA-RLS algorithms.
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Figure 4.5: Steady-state MSD values for the DRLS and DQA-RLS algorithms
for different SNR values.

Figure 4.6: Steady-state and theoretical MSD values for the DRLS and DQA-
RLS algorithms for different SNR values.
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Figure 4.7: Node-wise Steady-state and theoretical MSD values for the DRLS
and DQA-RLS algorithms.

(4)

(5)

(2)

(6)(3)

(1)

Figure 4.8: MSD curves for the DRLS, DLMS, DQA-RLS and DQA-LMS
algorithms.
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(4)
(1)

(6)

(3)

(5)

(2)

Figure 4.9: MSD curves for the DRLS, DLMS, DQA-RLS and DQA-LMS
algorithms.

comparable computational complexity to the standard DRLS algorithm while

it reduces the power consumption of the sensors in the network by using low-

resolution ADCs. We have also carried out a statistical analysis of the DQA-RLS

algorithm deducing a stability condition and an expression for the mean square

deviation (MSD). The derived analytical expressions have been shown to

accurately predict the MSD of the DQA-RLS algorithm. Numerical results

have shown the excellent performance of DQA-RLS algorithm as compared to

the standard DRLS algorithm for coarsely quantized signals.



5
Quantization-Aware Federated Averaging LMS Algorithm

In this chapter, we present the derivation of the proposed QA-FedAvg-

LMS algorithm and present a statistical analysis of the QA-FedAvg-LMS

algorithm. In addition, we devise a bias compensation strategy and investigate

the computational complexity of the proposed and existing algorithms. We

assess the estimation performance of the QA-FedAvg-LMS algorithm for a

parameter estimation setup with numerical results.

5.1
Derivation of QA-FedAvg-LMS

(a) Federated learning setup

 

(b) IoT device k

Figure 5.1: A federated IoT network

We consider an IoT network that is working under the federated learning

setup, as illustrated in Figure 5.1a, where N IoT devices are working under the

supervision of a server to complete a task. Let us consider xk(t) and dk(t) as

the analog input and output of the unknown system wo at IoT device k. Let

xk(i) and dk(i) denote the high-precision sampled versions of xk(t) and dk(t),

and xk(i) and dk(i) denote the coarsely quantized versions of xk(i) and dk(i),

respectively, as shown in Figure 5.1b.

Let βk(i) be a bias compensation coefficient to be chosen, define d̂k(i) =

βk(i)w∗(i− 1)xk(i) and construct an MSE cost function as described by
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jk(w(i− 1)) = E[|ek(i)|2] = E[∥dk(i)− d̂k(i)∥2]

= E[∥dk(i)− βk(i)w∗(i− 1)xk(i)∥2],
(5-1)

which is defined based on the quantized data samples dk(i) and xk(i), and a

bias correction term βk(i). The gradient of (5-1) with respect to w∗(i− 1) is

given by:

∇jk(w(i− 1)) = −βk(i)xk(i)(dk(i)− βk(i)w∗(i− 1)xk(i))∗. (5-2)

Replacing (5-2) into (2-20) and using (2-21), we obtain the QA-FedAvg-LMS

algorithm as follows:

wk(i) = w(i− 1) + µkβk(i)xk(i)e∗
k(i) (5-3a)

w(i) = 1
N

N∑
k=1

wk(i), (5-3b)

where ek(i) = dk(i) − βk(i)w∗(i − 1)xk(i) is the estimation error. We call

(5-3a) and (5-3b) the adaptation and averaging steps which are performed on

the devices and the server, respectively. The next section shows how the bias

compensation βk(i) should be chosen such that (5-3) is asymptotically unbiased

in the mean.

5.2
Mean Performance Analysis

To start the analysis, we use the following assumption that is very common

in parameter estimation [55,56,57] and adaptive signal processing [58].

Assumption 1: The input data regressors xk(i) are zero-mean with

covariance matrices Rxk
= E[xk(i)x∗

k(i)] and temporally independent. This

assumption also applies to the additive noise sequences vk(i) with variance σ2
vk

and the quantized regressors xk(i) with covariance matrices Rxk
= E[xk(i)x∗

k(i)].

Moreover, covariance matrices are time-invariant and all data are assumed

spatially independent.
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To analyze the performance of QA-FedAvg-LMS, we use the weight-error

vectors defined as:

w̃k(i) = wo −wk(i), and w̃i = wo −w(i). (5-4)

Under Assumption 1, if the entries in the input regressors xk(i) are uncorrelated

and with equal variance, we have Rxk
= E[xk(i)x∗

k(i)] ≈ σ2
xk

IM and the matrix

Gxk
reduces to gxk

IM . Let us denote Rqk
= E[qxk

(i)q∗
xk

(i)] ≈ σ̂2
qk

IM where σ̂2
qk

is given by (2-35).

Using (2-32), we can decompose xk(i) and dk(i) as follows:

xk(i) = gxk
xk(i) + qxk

(i), (5-5)

dk(i) = gdk
dk(i) + qdk

(i) = gdk
w∗

oxk(i) + pk(i), (5-6)

where pk(i) = gdk
vk(i) + qdk

(i). Using this decomposition, we write the error

ek(i) as follows:

ek(i) = dk(i)− βk(i)w∗(i− 1)xk(i)

= gdk
w∗

oxk(i) + pk(i)− βk(i)w∗(i− 1)
(
gxk

xk(i) + qxk
(i)
)
.

(5-7)

Replacing (5-7) into (5-3a) and subtracting from wo yields
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w̃k(i) = w̃i−1 − µkβk(i)xk(i)e∗
k(i) = w̃i−1 − µkβk(i)(gxk

xk(i) + qxk
(i))e∗

k(i)

= w̃i−1 − µkβk(i)
(

gxk
gdk

xk(i)x∗
k(i)wo + gxk

xk(i)pk(i)

− g2
xk

βk(i)xk(i)x∗
k(i)w(i− 1)− gxk

βk(i)xk(i)q∗
xk

(i)w(i− 1)

+ gdk
qxk

(i)x∗
k(i)wo + qxk

(i)pk(i)

− gxk
βk(i)qxk

(i)x∗
k(i)w(i− 1)− βk(i)qxk

(i)q∗
xk

(i)w(i− 1)
)

= w̃i−1 − µkβk(i)
((

gxk
gdk

xk(i)x∗
k(i) + gdk

qxk
(i)x∗

k(i)
)
wo

−
(
g2

xk
βk(i)xk(i)x∗

k(i) + gxk
βk(i)qxk

(i)x∗
k(i)

+ gxk
βk(i)xk(i)q∗

xk
(i) + βk(i)qxk

(i)q∗
xk

(i)
)
w(i− 1)

+ gxk
xk(i)pk(i) + qxk

(i)pk(i)
)

.
(5-8)

We take the expectation from both sides of (5-8). Since xk(i), qxk
(i), and

pk(i) are uncorrelated pairwise, the expectations of these cross terms vanish.

Considering this, we obtain

E[w̃k(i)] = E[w̃i−1]− µkβk(i)
(
E
[
gxk

gdk
xk(i)x∗

k(i)
]
wo

− E
[(

g2
xk

βk(i)xk(i)x∗
k(i) + βk(i)qxk

(i)q∗
xk

(i)
)
w(i− 1)

])
= E[w̃i−1]− µk

(
gxk

gdk
βk(i)Rxk

wo

−
(
g2

xk
β2

k(i)Rxk
+ β2

k(i)Rqk

)
E
[
w(i− 1)

])
.

(5-9)

In the last line of (5-9), we use a common assumption that states that xk(i)

varies slowly in relation to w̃i−1 [58]. Thus, when they appear inside the

expectations we decouple their expected values. This also applies to qxk
(i) in

relation to w̃i−1.

We show next that a necessary but not sufficient condition to have an

asymptotically unbiased solution in the mean is that

gxk
gdk

βk(i)Rxk
= g2

xk
β2

k(i)Rxk
+ β2

k(i)Rqk
, (5-10)

and we show in the next section that this condition is possible by appropriately
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choosing βk(i). Assuming (5-10) and using (5-4), we can write (5-9) as follows:

E[w̃k(i)] =
(
IM − µkgxk

gdk
βk(i)Rxk

)
E[w̃i−1]. (5-11)

Subtracting wo from both sides of (5-3b) we observe that adding (5-11) results

in the recursion

E[w̃i] =
(

IM −
1
N

N∑
l=1

µlgxl
gdl

βl(i)Rxl

)
E[w̃i−1]. (5-12)

We now define the following matrices:

H =
( 1

N
1N ⊗ IM

)T
(M ×MN)

M = blockdiag{µ1IM , . . . , µNIM} (MN ×MN)

Rx = blockdiag{gx1gd1β1(i)Rx1 , . . . , gxN
gdN

βN(i)RxN
} (MN ×MN)

W̃i−1 = col
{
w̃(i− 1), . . . , w̃(i− 1)

}
(MN × 1),

and write the global form of (3-11) as follows:

E[w̃i] = H
(
IMN −MRx

)
E[W̃i−1]. (5-13)

The necessary and sufficient condition to ensure the mean stability of the

network, i.e., E[w̃i]→ 0 as i→∞ is to have ρ
(
H
(
IMN −MRx

))
< 1. Since

the spectral radius of H is less than one, we must have ρ
(
IMN −MRx

)
< 1.

Therefore, the stability condition for QA-FedAvg-LMS is given by

0 < µk <
2

λmax(Rx) , (5-14)

where λmax is the largest eigenvalue of Rx.

5.3
Bias Compensation

From (5-10), we must have

βk(i)IM = gxk
gdk

Rxk

(
g2

xk
Rxk

+ Rqk

)−1
. (5-15)
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Therefore, the bias compensation term is expressed by

βk(i) = βk =
gxk

gdk
σ2

xk

g2
xk

σ2
xk

+ σ̂2
qk

. (5-16)

Remark 1: (One ADC for each sensor). To reduce the cost and energy

consumption of sensors, we consider one ADC to quantize the measurement

data {xk(i), dk(i)}. Then gxk
and gdk

can be considered equal and this reduces

the complexity of our algorithm as well.

Remark 2: (Approximation of data variance). Since the devices receive

quantized data and have access to the covariance of the quantized data,

Rxk
= E[xk(i)x∗

k(i)] ≈ σ2
xk

IM , we approximate the variance of high precision

data as follows:
σ̂2

xk
= σ̂2

xk
+ σ̂2

qk
, (5-17)

where σ̂2
qk

is given by (2-35). To compute σ̂2
xk

which is given by (3-18), we use

the iterative recursion (3-19) to reduce the computational complexity of our

algorithm. Therefore, at each data sample i, the bias correction term is given

by:
βk =

g2
xk

σ̂2
xk

g2
xk

σ̂2
xk

+ σ̂2
qk

. (5-18)

The QA-FedAvg-LMS algorithm is summarized in Algorithm 5.

5.4
Mean Square Performance Analysis

In this section, we carry out a mean-square performance analysis and

discuss the steady-state behavior of the QA-FedAvg-LMS algorithm. We first

write (5-8) as follows:
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Algorithm 5: QA-FedAvg-LMS algorithm
input : Initial value w(−1) ∈ RM , step-size µk, σ̂2

xk
(−1) = 0 and

0≪ γ < 1
Generate Tb and Lb, and Compute σ̂2

qk
from (2-35)

output : w(i)

1 for i = 0, 1, 2, . . . do

2 for device k = 1, 2, . . . , N in parallel do

2 data: dk(i) and xk(i) = [xk(i), xk(i− 1), . . . , xk(i−M + 1)]T

3 σ̂2
xk

(i) = γσ̂2
xk

(i− 1) + (1− γ)|xk(i)|2

4 σ̂2
xk

= σ̂2
xk

(i) + σ̂2
qk

5 gxk
(i) = 1√

σ̂2
xk

2b−1∑
j=0

lj√
π

(
e

−
τ2

j

σ̂2
xk − e

−
τ2

j+1
σ̂2

xk

)
6 βk(i) = g2

xk
σ̂2

xk

g2
xk

σ̂2
xk

+σ̂2
qk

7 ek(i) = dk(i)− βk(i)w∗(i− 1)xk(i)

8 wk(i) = w(i− 1) + µkβk(i)xk(i)e∗
k(i)

end for

10 Server sends w(i) = 1
N

N∑
k=1

wk(i) to all devices

end for

w̃k(i) = w̃(i− 1)− µkβkxk(i)
(
dk(i)− βkw∗(i− 1)xk(i)

)∗

= w̃(i− 1)− µkβkxk(i)d∗
k(i) + µkβ2

kxk(i)x∗
k(i)w(i− 1)

=
(
IM − µkβ2

kxk(i)x∗
k(i)

)
w̃(i− 1)− µkβkxk(i)

(
gdk

x∗
k(i)wo + p∗

k(i)
)

+ µkβ2
kxk(i)x∗

k(i)wo

=
(
IM − µkβ2

kxk(i)x∗
k(i)

)
w̃(i− 1)− µkβkgxk

gdk
xk(i)x∗

k(i)wo︸ ︷︷ ︸
I

− µkβkgdk
qxk

(i)x∗
k(i)wo − µkβkgxk

xk(i)p∗
k(i)− µkβkqxk

(i)p∗
k(i)

+ µkβ2
kg2

xk
xk(i)x∗

k(i)wo + µkβ2
kqxk

(i)q∗
xk

(i)wo︸ ︷︷ ︸
II

.

(5-19)
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The choice of βk in (5-18) makes (5-10) approximately true. In order to reduce

the complexity of the model, we assume in the sequel that (5-10) is exactly

true, so the instantaneous values of terms I and II in (5-19) are equal with

different signs and vanish for sufficiently large i (our simulations in Sec. 5.6

show that this approximation is reasonable). Then (5-19) simplifies to

w̃k(i) =
(
IM − µkβ2

kxk(i)x∗
k(i)

)
w̃(i− 1)− µkβkgdk

qxk
(i)x∗

k(i)wo

− µkβkgxk
xk(i)p∗

k(i)− µkβkqxk
(i)p∗

k(i).
(5-20)

Therefore, the weight-error vectors of the averaged estimates at the server are

given by

w̃(i) = 1
N

N∑
k=1

w̃l(i) =
(
IM −

1
N

N∑
k=1

µlβ
2
l xl(i)x∗

l (i)
)
w̃l(i− 1)

− 1
N

N∑
k=1

µlβlgdl
qxl

(i)x∗
l (i)wo −

1
N

N∑
k=1

µlβlgxl
xl(i)p∗

l (i)

− 1
N

N∑
k=1

µlβlqxl
(i)p∗

l (i)

(5-21)

Let us now define

Rx = blockdiag
{
Rx1 , . . . , RxN

}
(MN ×MN)

B = blockdiag
{
β1IM , . . . , βNIM

}
(MN ×MN)

B = blockdiag
{
β2

1IM , . . . , β2
NIM

}
(MN ×MN)

G = blockdiag
{
gx1IM , . . . , gxN

IM

}
(MN ×MN)

Υi = blockdiag
{
qx1(i)x∗

1(i), . . . , qxN
(i)x∗

N(i)
}

(MN ×MN)

ξi = col
{
x1(i)p∗

1(i), . . . , xN(i)p∗
N(i)

}
(MN × 1)

ζi = col
{
qx1(i)p∗

1(i), . . . , qxN
(i)p∗

N(i)
}

(MN × 1)

η = col
{
gd1wo, . . . , gdN

wo

}
(MN × 1),

and write w̃i in a more compact form as

w̃i = H
(
IMN −MBRx

)
W̃i−1 −HMBΥiη −HMBGξi −HMBζi.
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Defining an M ×MN matrix D as follows:

D = E
[
H
(
IMN − blockdiag{µ1β

2
1x1(i)x∗

1(i), . . . , µNβ2
NxN(i)x∗

N(i)}
)]

= H
(
IMN −MBRx

) (5-22)

and taking the expectation of W̃iW̃∗
i , we obtain

E
[
w̃iw̃∗

i

]
= E

[
DW̃i−1W̃∗

i−1D∗
]

+ E
[
HMBζiη

∗Υ∗
iBTMTHT

]
+ E

[
HMBζiζ

∗
iBTMTHT

]
+ E

[
HMBGξiξ

∗
iGTBTMTHT

]
+ E

[
HMBGξiη

∗Υ∗
iBTMTHT

]
+ E

[
HMBΥiηζ∗

iBTMTHT
]

+ E
[
HMBΥiηξ∗

iGTBTMTHT
]

+ E
[
HMBζiξ

∗
iGTBTMTHT

]
+ E

[
HMBGξiζ

∗
iBTMTHT

]
+ E

[
HMBΥiηη∗Υ∗

iBTMTHT
]
.

(5-23)

We now use the commutative property of the expectation and vectorization

operations, and the relationship between the vectorization operation and the

Kronecker product, vec(ABC) = (CT ⊗ A) vec(B), to write (5-23) as follows:

vec(Ωi) = (D ⊗D) vec(Ωi−1) + vec(Ξi), (5-24)

where Ωi = E
[
w̃iw̃∗

i

]
and Ξi denotes the summation of the second term to the

last one on the RHS of (5-23). Note that vec(Ωi) is stable if and only if the

spectral radius of (D ⊗D) is strictly smaller than 1. Therefore, we obtain

lim
i→+∞

vec(Ωi) =
(
IM2N2 − (D ⊗D)

)−1
vec(Ξ+∞), (5-25)

and vec(Ξ+∞) is given by
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vec(Ξ+∞) = lim
i→+∞

vec(Ξi) = (H⊗H)

vec
(
MB

(
GE

[
ξiξ

∗
i

]
GT + E

[
Υiηη∗Υ∗

i

]
+ E

[
ζiζ

∗
i

]
+ GE

[
ξiη

∗Υ∗
i

]
+ E

[
Υiηξ∗

i

]
GT + GE

[
ξiζ

∗
i

]
+ E

[
ζiξ

∗
i

]
GT + E

[
Υiηζ∗

i

]
+ E

[
ζiη

∗Υ∗
i

])
BTMT

)

≈ (H⊗H)

vec
(
MB

(
GE

[
ξiξ

∗
i

]
GT + E

[
Υiηη∗Υ∗

i

]
+ E

[
ζiζ

∗
i

])
BTMT

)
,

(5-26)

where under Assumptions 2 and 3, the expectations of the cross-terms vanish

and

E
[
ξiξ

∗
i

]
= diag

{
Rx1σ2

p1 , . . . , RxN
σ2

pN

}
E
[
Υiηη∗Υ∗

i

]
= diag

{
g2

d1Rqx,1
(
w∗

oRx1wo

)
, . . . , g2

dN
Rqx,N

(
w∗

oRxN
wo

)}
E
[
ζiζ

∗
i

]
= diag

{
Rqx,1σ

2
p1 , . . . , Rqx,Nσ2

pN

}
.

(5-27)

The analytical computation of Rxk
, Rqx,k, and σ2

pk
is detailed in Appendix A.

Therefore, the steady-state MSD of the network is given by

MSD = lim
i→+∞

E[∥w̃(i)∥2] = vec(Ω+∞)

= vecT
(
IM2N2 − (D ⊗D)

)−1
(H⊗H)

vec
(
MB

(
GE

[
ξiξ

∗
i

]
GT + E

[
Υiηη∗Υ∗

i

]
+ E

[
ζiζ

∗
i

])
BTMT

)
.

(5-28)

It can be seen from (5-24) that, for 0≪ µk < 1 the eigenvalues of D⊗D remain

in the interval (−1, 1), and thus QA-FedAvg-LMS is stable in the mean-square

sense and
(
IM2N2 − (D ⊗D)

)
in (5-28) is nonsingular.

Remark 3: (High precision signals, b =∞). Increasing the number of

quantization bits, the diagonal entries of Gxk
approach unity where for high

precision signals (b =∞) with xk = xk, we have Gxk
= IM according to (2-33)
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and Rqx,k = 0 according to (5-5), and consequently βk(i) = IM from (5-18). For

b =∞ we also have qdk
= 0 and gdk

= 1, and since pk(i) = gdk
vk(i)+qdk

(i), thus

σ2
pk

= σ2
vk

. Therefore, for high precision signals, the third and fourth definitions

in (5-27) vanish, and with R = blockdiag{Rx1 , . . . , RxN
}, (5-28) reduces to

MSD = vecT
(

IM2N2 −
(
(IMN −R)⊗ (IMN −R)(H⊗H)

))−1

(H⊗H) vec
(

diag
{
µ2

kσ2
v1Rx1 , . . . , µ2

kσ2
vN

RxN

})
,

(5-29)

which is equal to the theoretical MSD of the standard FedAvg-LMS. So, as we

expected, the MSD performance of QA-FedAvg-LMS becomes closer to that of

the standard FedAvg-LMS with the increase of the resolution of ADCs.

5.5
Computational Complexity

Table 5.1 shows the computational complexity of the QA-FedAvg-LMS

algorithm in terms of the number of multiplications and additions at device

k per time instant. At each time instant, QA-FedAvg-LMS performs a few

more operations (≈ O(2b)) than FedAvg-LMS. However, the extra complexity

of QA-FedAvg-LMS allows the system to work in a more energy-efficient way.

The computational cost at the server (5-3b) is the same for QA-FedAvg-LMS

and FedAvg-LMS algorithms. Table 5.2 compares the total computational

complexity of the quantization-aware algorithms [59,60,62,63,64] in this thesis

with the total computational complexity of the standard distributed adaptive

algorithms [14,15] at node k.

5.6
Simulation Results

In this section, we assess the performance of the QA-FedAvg-LMS

algorithm for a parameter estimation problem in an IoT network with N = 100

devices. The unknown parameter vector has a length of M = 32, is generated

randomly and normalized to unit norm. We generated 105 M × 1 vectors

with multivariate Gaussian distribution as the input data samples xk(i) for
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Table 5.1: Computational complexity of QA-FedAvg-LMS algorithm per time
instant at device k

Task +− × ÷ exp

σ̂2
xk

3 3 0 0

gk(i) 2b − 1 2b+1 + 1 2b + 1 2b

βk(i) 1 2 1 0

d̂k,Q(i) M − 1 M + 1 0 0

ek(i) 1 0 0 0

wk(i + 1) M M + 2 0 0

Total 2M + 2b + 3 2M + 2b+1 + 9 2b + 2 2b

Total (FedAvg-LMS) 2M 2M + 1 0 0

Table 5.2: Total computational complexity of the DLMS, DQA-LMS, DRLS,
DQA-RLS, FedAvg-LMS, and QA-FedAvg-LMS algorithms per time instant at
device k

Task +− × ÷ exp

DLMS (2 + nk)M (2 + nk)M + 1 0 0

DQA-LMS (2 + nk)M + 2b + 3 (2 + nk)M + 2b+1 + 9 2b + 2 2b

DRLS 8M2 − 1+
(2nk + 10)M

10M2+
(4nk + 14)M

1 0

DQA-RLS 8M2 + 2b + 2+
(2nk + 10)M

10M2 + 2b+1+
(4nk + 14)M + 12

2b + 3 2b

FedAvg-LMS 2M 2M + 1 0 0

QA-FedAvg-LMS 2M + 2b + 3 2M + 2b+1 + 9 2b + 2 2b

100 devices (1000 data samples for each device) with the covariance matrix

Rxk
= σ2

xk
IM where σ2

xk
∈ (0.5, 1). The noise samples of each device are drawn

from a zero mean white Gaussian process with variance σ2
vk
∈ (0.01, 0.05). The

data samples are quantized with Tb and Lb to generate xk(i) and dk(i). We

choose µk = 0.05 as the step size of QA-FedAvg-LMS and FedAvg-LMS.

We use the mean-square deviation (MSD) to investigate the performance

of the network and use the excess mean square error (EMSE) to compare the

performance of each device k as given by:
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MSD ≜ lim
i→+∞

E[∥wo −w(i)∥2],

EMSEk ≜ lim
i→+∞

E[∥(wo −wk(i))∗xk(i)∥2].
(5-30)

The simulated learning curves are obtained by ensemble averaging over 200

independent trials and the steady-state values are averaged over the last 10%

data samples. We have compared QA-FedAvg-LMS (5-3) with FedAvg-LMS

(2-24) with generated data quantized with different numbers of bits. Full

resolution FedAvg-LMS refers to the case where the data {xk(i), dk(i)} is not

quantized.

Figure 5.2 shows the evaluation of the global MSD (5-30) for 1000

communication rounds between server and devices. Figure 5.3 compares the

steady-state MSD values for the different signal-to-noise ratios (SNR) (keeping

σ2
xk
∈ (0.5, 1) and changing σ2

vk
) where the SNR value is averaged over devices.

Figure 5.4 compares the steady-state EMSE (5-30) performance of 10 randomly

chosen devices. As it can be seen in the numerical results, the network MSD and

device-wise EMSE performance of the proposed QA-FedAvg-LMS algorithm

are closer to the full resolution FedAvg-LMS while it substantially reduces the

power consumption related to the ADCs in the input sensors.

In the last example, we evaluate the MSD performance of FedAvg-LMS

and QA-FedAvg-LMS algorithms for different SNRs and we set M = 8 and

N = 10 to calculate the theoretical expressions in (5-28). The step-size is set

to 0.2 for 1-bit quantization and 0.05 for other curves. Figure 5.5 compares

the simulation results with those obtained by the analytical expression in

(5-28). The results indicate that the theoretical and simulated results agree

well especially for b = 3 and b = 4 bits, and low to moderate values of SNR,

confirming the validity of the theoretical development.
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Figure 5.2: MSD curves for the FedAvg-LMS (2-24) and QA-FedAvg-LMS (5-3)
algorithms.

Figure 5.3: Steady-state MSD versus SNR for the FedAvg-LMS (2-24) and
QA-FedAvg-LMS (5-3) algorithms.
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Figure 5.4: Steady-state EMSE curves for the FedAvg-LMS (2-24) and QA-
FedAvg-LMS (5-3) algorithms.

Figure 5.5: Steady-state and theoretical MSD values for the FedAvg-LMS and
QA-FedAvg-LMS algorithms for different SNR values.
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5.7
Chapter Summary

In this chapter, we have proposed an energy-efficient framework for

federated learning and developed the QA-FedAvg-LMS algorithm along with

bias compensation strategies for IoT networks. The QA-FedAvg-LMS algorithm

has comparable computational complexity to the standard FedAvg-LMS

algorithm while it substantially reduces the power consumption of the ADCs in

the network. Simulations have shown excellent performance of QA-FedAvg-LMS

as compared to FedAvg-LMS for coarsely quantized signals.



6
Conclusions and Future Works

This thesis has developed novel energy-efficient signal processing tech-

niques for IoT networks to fill the existing gaps in distributed signal pro-

cessing techniques working with coarsely quantized measurements. Two dis-

tributed adaptive algorithms, i.e., distributed least-mean square (LMS) and

distributed recursive least-squares (RLS), have been developed and equipped

with a quantization-aware framework to work with coarsely quantized signals

which allows a substantial reduction of the energy consumption associated

with ADCs using few quantization bits in two different scenarios: adaptive

IoT networks where devices are operated in peer-to-peer mode and federated

learning setup where devices are operated under the supervision of a central

server.

Chapter 3 has introduced the distributed quantization-aware LMS (DQA-

LMS) algorithm. The derivation of DQA-LMS was presented and consisted of

the implementation of a signal decomposition based on Bussgang’s theorem

along with the development of a diffusion LMS algorithm with adaptive bias

compensation to further improve the performance of DQA-LMS when the

ADCs work with few bits. The complexity of DQA-LMS was investigated

and it was shown that DQA-LMS has comparable computational cost to the

standard DLMS algorithm while it enormously reduces the power consumption

of the ADCs in the network. A statistical analysis of the proposed DQA-LMS

algorithm was carried out including the mean and the mean square performance

analysis, deducing a stability condition and an expression for the mean square

deviation. Simulations have evaluated the DQA-LMS algorithm against existing

techniques for a distributed parameter estimation task and demonstrated the
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effectiveness of the DQA-LMS algorithm.

Chapter 4 has introduced the distributed quantization-aware RLS (DQA-

RLS) algorithm. The derivation of DQA-RLS was presented with the bias

compensation strategy to improve the performance of DQA-RLS when the

ADCs are working with few bits. A statistical analysis of the proposed DQA-RLS

algorithm was carried out including the mean and the mean square performance

analysis, deducing a stability condition and an expression for the mean square

deviation. The complexity of DQA-RLS was investigated and it was shown

that DQA-RLS has comparable computational cost to the standard DRLS

algorithm. Simulations have assessed the DQA-RLS algorithm against existing

techniques for a distributed parameter estimation task and demonstrated the

effectiveness of the DQA-RLS algorithm and a good match between theory and

experiments.

Chapter 5 has presented the quantization-aware LMS algorithm for the

federated learning setup, and derived the QA-FedAvg-LMS algorithm and

acquired a bias compensation strategy to improve the performance of QA-

FedAvg-LMS for coarsely quantized measurements. A statistical analysis of the

proposed QA-FedAvg-LMS algorithm was carried out including the mean and

the mean square performance analysis, deducing a stability condition and an

expression for the mean square deviation. The computational complexity of

QA-FedAvg-LMS was investigated and it was shown that QA-FedAvg-LMS

has comparable computational cost to the standard FedAvg-LMS algorithm,

while it enables IoT devices to work with low resolution ADCs to reduce

their energy consumption. Simulations have evaluated the QA-FedAvg-LMS

algorithm against existing techniques for a distributed parameter estimation

task and demonstrated the effectiveness of the DQA-LMS algorithm.

Some suggestions for possible future works also include:

1. The DQA-LMS has the simplicity of LMS-type algorithms whereas

the DQA-RLS is more robust against correlated inputs and faster in
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convergence as other RLS-type algorithms. Therefore, one can easily

extend the Quantization-Aware framework to other distributed adaptive

algorithms inspired by the results obtained from DQA-LMS and DQA-

RLS algorithms. For instance, the dichotomous coordinate descent (DCD)

algorithm [65,66], the partial-diffusion recursive least-squares (PDRLS)

algorithm [28] have been successfully used for significant reduction in the

complexity and communication cost of RLS algorithms, respectively, and

are potential candidates to apply the quantization-aware framework from

DQA-RLS to reduce the complexity, the communication cost and the

energy consumption simultaneously.

2. Investigating the quantization-aware algorithms and the bias compensa-

tion strategies for the cases where i) the inputs have other probability

distribution (not Gaussian) or ii) the distribution of input data is not

known. Perhaps extending the Bussgang’s theorem for different types of

distribution could be helpful.
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[11] KONEČNỲ, J.; MCMAHAN, H. B.; YU, F. X.; RICHTÁRIK, P.; SURESH,

A. T. ; BACON, D., Federated learning: Strategies for improving

communication efficiency, arXiv preprint arXiv:1610.05492, 2016.

[12] LI, T.; SAHU, A. K.; TALWALKAR, A. ; SMITH, V., Federated learning:

Challenges, methods, and future directions, IEEE Signal Processing

Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[13] OLFATI-SABER, R.; FAX, J. A. ; MURRAY, R. M., Consensus and

cooperation in networked multi-agent systems, Proceedings of the

IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[14] LOPES, C. G.; SAYED, A. H., Diffusion least-mean squares over

adaptive networks: Formulation and performance analysis, IEEE

Transactions on Signal Processing, vol. 56, no. 7, pp. 3122–3136, 2008.



Bibliography 103

[15] CATTIVELLI, F. S.; LOPES, C. G. ; SAYED, A. H., Diffusion recursive

least-squares for distributed estimation over adaptive networks,

IEEE Transactions on Signal Processing, vol. 56, no. 5, pp. 1865–1877, 2008.

[16] XU, S.; DE LAMARE, R. C. ; POOR, H. V., Distributed estimation

over sensor networks based on distributed conjugate gradient

strategies, IET Signal Processing, vol. 10, no. 3, pp. 291–301, 2016.

[17] MILLER, T. G.; XU, S.; DE LAMARE, R. C.; NASCIMENTO, V. H. ;

ZAKHAROV, Y., Sparsity-aware distributed conjugate gradient

algorithms for parameter estimation over sensor networks, In:

2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND

COMPUTERS, pp. 1556–1560. IEEE, 2015.

[18] QIN, Z.; TAO, J. ; XIA, Y., A proportionate recursive least squares

algorithm and its performance analysis, IEEE Transactions on Circuits

and Systems II: Express Briefs, 2020.

[19] XU, S.; DE LAMARE, R. C. ; POOR, H. V., Adaptive link selection

algorithms for distributed estimation, EURASIP Journal on Advances

in Signal Processing, vol. 2015, no. 1, pp. 1–22, 2015.

[20] CHEN, F.; HU, L.; LIU, P. ; FENG, M., A robust diffusion estimation

algorithm for asynchronous networks in IoT, IEEE Internet of Things

Journal, vol. 7, no. 9, pp. 9103–9115, 2020.

[21] YU, Y.; ZHAO, H.; DE LAMARE, R. C.; ZAKHAROV, Y. ; LU, L., Robust

distributed diffusion recursive least squares algorithms with

side information for adaptive networks, IEEE Transactions on Signal

Processing, vol. 67, no. 6, pp. 1566–1581, 2019.

[22] BERTRAND, A.; MOONEN, M. ; SAYED, A. H., Diffusion bias-

compensated RLS estimation over adaptive networks, IEEE

Transactions on Signal Processing, vol. 59, no. 11, pp. 5212–5224, 2011.



Bibliography 104

[23] WALDEN, R. H., Analog-to-digital converter survey and analysis,

IEEE Journal on selected areas in communications, vol. 17, no. 4, pp. 539–550,

1999.

[24] JACOBSSON, S.; DURISI, G.; COLDREY, M.; GUSTAVSSON, U. ; STUDER,

C., Throughput analysis of massive MIMO uplink with low-

resolution ADCs, IEEE Transactions on Wireless Communications, vol. 16,

no. 6, pp. 4038–4051, 2017.

[25] JACOBSSON, S.; DURISI, G.; COLDREY, M. ; STUDER, C., Linear

precoding with low-resolution dacs for massive mu-mimo-ofdm

downlink, IEEE Transactions on Wireless Communications, vol. 18, no. 3,

pp. 1595–1609, 2019.

[26] MEZGHANI, A.; KHOUFI, M.-S. ; NOSSEK, J. A., A modified MMSE

receiver for quantized MIMO systems, Proc. ITG/IEEE WSA, Vienna,

Austria, pp. 1–5, 2007.

[27] SHAO, Z.; LANDAU, L. ; DE LAMARE, R. C., Adaptive RLS channel

estimation and sic for large-scale antenna systems with 1-bit adcs,

In: WSA 2018; 22ND INTERNATIONAL ITG WORKSHOP ON SMART

ANTENNAS, pp. 1–4. VDE, 2018.

[28] ARABLOUEI, R.; DOĞANÇAY, K.; WERNER, S. ; HUANG, Y. F., Adaptive

distributed estimation based on recursive least-squares and

partial diffusion, IEEE transactions on signal processing, vol. 62, no.

14, pp. 3510–3522, 2014.

[29] ARABLOUEI, R.; WERNER, S.; HUANG, Y. ; DOĞANÇAY, K., Distributed

least mean-square estimation with partial diffusion, IEEE Transac-

tions on Signal Processing, vol. 62, no. 2, pp. 472–484, 2013.

[30] LIN, W.; CAO, J. ; LIU, X., E3: Towards energy-efficient distributed

least squares estimation in sensor networks, In: 2014 IEEE 22ND



Bibliography 105

INTERNATIONAL SYMPOSIUM OF QUALITY OF SERVICE (IWQOS), pp.

21–30. IEEE, 2014.

[31] SATTLER, F.; WIEDEMANN, S.; MÜLLER, K.-R. ; SAMEK, W., Robust

and communication-efficient federated learning from non-iid data,

IEEE transactions on neural networks and learning systems, vol. 31, no. 9, pp.

3400–3413, 2019.

[32] KHAN, L. U.; SAAD, W.; HAN, Z.; HOSSAIN, E. ; HONG, C. S., Federated

learning for internet of things: Recent advances, taxonomy, and

open challenges, IEEE Communications Surveys & Tutorials, 2021.

[33] NGUYEN, D. C.; DING, M.; PATHIRANA, P. N.; SENEVIRATNE, A.; LI,

J. ; POOR, H. V., Federated learning for internet of things: A

comprehensive survey, IEEE Communications Surveys & Tutorials, 2021.

[34] ALIOTO, M.; SHAHGHASEMI, M., The internet of things on its edge:

Trends toward its tipping point, IEEE Consumer Electronics Magazine,

vol. 7, no. 1, pp. 77–87, 2017.

[35] HAYKIN, S. S., Adaptive filter theory, Pearson Education India, 2008.

[36] DE LAMARE, R. C.; SAMPAIO-NETO, R., Reduced-rank adaptive

filtering based on joint iterative optimization of adaptive filters,

IEEE Signal Processing Letters, vol. 14, no. 12, pp. 980–983, 2007.

[37] DE LAMARE, R. C.; SAMPAIO-NETO, R., Adaptive reduced-rank

processing based on joint and iterative interpolation, decimation,

and filtering, IEEE Transactions on Signal Processing, vol. 57, no. 7, pp.

2503–2514, 2009.

[38] FA, R.; DE LAMARE, R. C. ; WANG, L., Reduced-rank stap schemes for

airborne radar based on switched joint interpolation, decimation

and filtering algorithm, IEEE Transactions on Signal Processing, vol. 58,

no. 8, pp. 4182–4194, 2010.



Bibliography 106

[39] XIAO, L.; BOYD, S., Fast linear iterations for distributed averaging,

Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[40] XIAO, L.; BOYD, S. ; LALL, S., A scheme for robust distributed

sensor fusion based on average consensus, In: IPSN 2005. FOURTH

INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN

SENSOR NETWORKS, 2005., pp. 63–70. IEEE, 2005.

[41] SAYED, A. H.; TU, S.; CHEN, J.; ZHAO, X. ; TOWFIC, Z. J., Diffusion

strategies for adaptation and learning over networks: an exami-

nation of distributed strategies and network behavior, IEEE Signal

Processing Magazine, vol. 30, no. 3, pp. 155–171, 2013.

[42] SAYED, A. H., Adaptation, learning, and optimization over

networks, Foundations and Trends in Machine Learning, vol. 7, no. ARTICLE,

pp. 311–801, 2014.

[43] SAYED, A. H., Adaptive networks, Proceedings of the IEEE, vol. 102, no.

4, pp. 460–497, 2014.

[44] TU, S.; SAYED, A. H., Diffusion strategies outperform consensus

strategies for distributed estimation over adaptive networks, IEEE

Transactions on Signal Processing, vol. 60, no. 12, pp. 6217–6234, 2012.

[45] DINIZ, P. S.; OTHERS, Adaptive filtering, vol. 4, Springer, 1997.

[46] LLOYD, S., Least squares quantization in PCM, IEEE Transactions

on Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[47] MAX, J., Quantizing for minimum distortion, IRE Transactions on

Information Theory, vol. 6, no. 1, pp. 7–12, 1960.

[48] ORHAN, O.; ERKIP, E. ; RANGAN, S., Low power analog-to-digital

conversion in millimeter wave systems: Impact of resolution and



Bibliography 107

bandwidth on performance, In: 2015 INFORMATION THEORY AND

APPLICATIONS WORKSHOP (ITA), pp. 191–198. IEEE, 2015.

[49] RATASUK, R.; VEJLGAARD, B.; MANGALVEDHE, N. ; GHOSH, A., NB-

IoT system for M2M communication, In: 2016 IEEE WIRELESS

COMMUNICATIONS AND NETWORKING CONFERENCE, pp. 1–5. IEEE,

2016.

[50] CHUNG, H.; RYLYAKOV, A.; DENIZ, Z. T.; BULZACCHELLI, J.; WEI, G.

; FRIEDMAN, D., A 7.5-GS/s 3.8-ENOB 52-mW flash ADC with

clock duty cycle control in 65nm CMOS, In: 2009 SYMPOSIUM ON

VLSI CIRCUITS, pp. 268–269. IEEE, 2009.

[51] DI LORENZO, P.; BATTILORO, C.; MERLUZZI, M. ; BARBAROSSA, S.,

Dynamic resource optimization for adaptive federated learning

at the wireless network edge, In: ICASSP 2021-2021 IEEE INTERNA-

TIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PRO-

CESSING (ICASSP), pp. 4910–4914. IEEE, 2021.

[52] GOGINENI, V. C.; WERNER, S.; HUANG, Y. ; KUH, A., Communication-

efficient online federated learning framework for nonlinear re-

gression, arXiv preprint arXiv:2110.06556, 2021.

[53] ROWE, H. E., Memoryless nonlinearities with Gaussian inputs:

Elementary results, The BELL system technical Journal, vol. 61, no. 7,

pp. 1519–1525, 1982.

[54] BUSSGANG, J. J., Crosscorrelation functions of amplitude-distorted

gaussian signals, Tech. Rep. 216, Research Laboratory of Electronics,

Massachusetts Institute of Technology, 1952.

[55] KOUKOULAS, P.; KALOUPTSIDIS, N., Nonlinear system identification

using gaussian inputs, IEEE Transactions on Signal Processing, vol. 43,

no. 8, pp. 1831–1841, 1995.



Bibliography 108

[56] KOH, T.; POWERS, E., Second-order volterra filtering and its

application to nonlinear system identification, IEEE Transactions

on Acoustics, Speech, and Signal Processing, vol. 33, no. 6, pp. 1445–1455,

1985.

[57] VAN DER MERWE, R.; WAN, E. A., The square-root unscented

kalman filter for state and parameter-estimation, In: 2001 IEEE

INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL

PROCESSING. PROCEEDINGS (CAT. NO. 01CH37221), vol. 6, pp. 3461–

3464. IEEE, 2001.

[58] SAYED, A. H., Fundamentals of adaptive filtering, John Wiley & Sons, 2003.

[59] DANAEE, A.; DE LAMARE, R. C. ; NASCIMENTO, V. H., Energy-efficient

distributed learning with coarsely quantized signals, IEEE Signal

Processing Letters, vol. 28, pp. 329–333, 2021.

[60] DANAEE, A.; DE LAMARE, R. C. ; NASCIMENTO, V. H., Energy-efficient

distributed learning with adaptive bias compensation for coarsely

quantized signals, In: 2021 IEEE STATISTICAL SIGNAL PROCESSING

WORKSHOP (SSP), pp. 61–65. IEEE, 2021.

[61] NASCIMENTO, V. H.; SILVA, M. T. M., Adaptive filters, In: ACADEMIC

PRESS LIBRARY IN SIGNAL PROCESSING, vol. 1, pp. 619–761. Elsevier,

2014.

[62] DANAEE, A.; DE LAMARE, R. C. ; NASCIMENTO, V. H., Distributed

quantization-aware RLS learning with bias compensation and

coarsely quantized signals, IEEE Transactions on Signal Processing, vol.

70, pp. 3441–3455, 2022.

[63] DANAEE, A.; DE LAMARE, R. C. ; NASCIMENTO, V. H., Energy-

efficient distributed recursive least squares learning with coarsely



Bibliography 109

quantized signals, In: 2020 54TH ASILOMAR CONFERENCE ON

SIGNALS, SYSTEMS, AND COMPUTERS, pp. 1533–1537. IEEE, 2020.

[64] DANAEE, A.; DE LAMARE, R. C. ; NASCIMENTO, V. H., Quantization-

aware federated learning with coarsely quantized measurements,

In: 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EU-

SIPCO), pp. 1691–1695. IEEE, 2022.

[65] ZAKHAROV, Y. V.; NASCIMENTO, V. H.; DE LAMARE, R. C. ; NETO, F.

G. D. A., Low-complexity DCD-based sparse recovery algorithms,

IEEE Access, vol. 5, pp. 12737–12750, 2017.

[66] YU, Y.; LU, L.; ZHENG, Z.; WANG, W.; ZAKHAROV, Y. ; DE LAMARE,

R. C., DCD-based recursive adaptive algorithms robust against

impulsive noise, IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 67, no. 7, pp. 1359–1363, 2019.

[67] GERSHO, A.; GRAY, R. M., Vector quantization and signal compression, vol.

159, Springer Science & Business Media, 2012.



A
Theoretical expressions for MSD values

In this section, we obtain the theoretical expressions for Rxk
, Rqx,k, and

σ2
pk

based on Rxk
, σ2

vk
for the designed thresholds and labels. We consider

σα(i)β(j) = E[α(i)β∗(j)] and σ2
α(i) = E[α(i)α∗(i)]. From (4-38a) and (2-31),

Rqx,k can be obtained as follows:

Rqx,k = Rxk
−Gxk

Rxk
Gxk

, (A-1)

where Gxk
is computed as in (2-33) with Rxk

. We evaluate the covariance

matrix Rxk
whose diagonal entries are given by

[Rxk
]m,m = E[|xk(m)|2] = h

2b−1∑
j=0

l2
jP[xk(m) = lj]

= h
2b−1∑
j=0

l2
jP[τj ≤ xk(m) = lj < τj+1]

= h
2b−1∑
j=0

l2
j

(
Φ
(√hτ 2

j+1

σxk
(m)

)
− Φ

( √hτ 2
j

σxk
(m)

))
,

(A-2)

where σ2
xk

(m) = E[|xk(m)|2] = [Rxk
]m,m, Φ(.) refers to the cumulative

distribution function and the variable h = 1 for real data and h = 2 for

complex data. The off-diagonal entries of Rxk
for 1 < m, n < M and m ̸= n

are given by

[Rxk
]m,n = E[xk(m)x∗

k(n)] =
2b−1∑
j=0

2b−1∑
p=0

ljlpP[xk(m) = lj, xk(n) = lp]

=
2b−1∑
j=0

2b−1∑
p=0

ljlpP[τj ≤ xk(m) < τj+1, τp ≤ xk(n) < τp+1].
(A-3)

Unfortunately, (A-3) does not have a known closed-form expression and hence,

has to be evaluated using numerical methods [25]. However, in what follows, we
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shall present a closed-form approximation for the off-diagonal entries of Rxk
,

following [26]. Let us rewrite (4-38a) as follows:

xk(i) = Gxk
xk(i) + qxk

(i) = xk(i) + ϵk(i), (A-4)

where ϵk(i) is the quantization error which by definition is the difference between

an input value and its quantized value. Each quantization process is assigned

a distortion factor ρq(i) to indicate the relative amount of quantization error

generated, which is defined as follows:

ρq(i) =
σ2

ϵk
(i)

σ2
xk

(i) , (A-5)

where σ2
xk

(i) is the variance of the input and the distortion factor ρq(i) depends

on the number of quantization bits b, the quantizer type (uniform or non-

uniform) and the probability density function of xk(i) [26]. For Gaussian inputs

and a scalar non-uniform quantizer, e.g., Lloyd-Max quantizer, the distortion

factor ρq(i) = ρq can be obtained from Table A.1 in [47] for different b and

asymptotically approximated by ρq = π
√

3
2 2−2b for b > 5 [67]. Based on this, we

obtain an approximation of Rxk
as follows [26]:

R̂xk
≈ (1− ρq)

(
Rxk
− ρq nondiag{Rxk

}
)
, (A-6)

where the operator nondiag{A} = A− diag{A}. Using this, we approximate

the off-diagonal entries [Rxk
]m,n as follows:

nondiag{Rxk
} = R̂xk

− diag{R̂xk
}. (A-7)

Note that we compute the diagonal elements of Rxk
directly using (A-2) instead

of using the approximation in (A-6), to get an accurate expression for [Rxk
]m,m,

and approximate the off-diagonal entries [Rxk
]m,n from (A-7).

We now find a closed-form expression for σ2
pk

, where pk(i) = gdk
vk(i)+qdk

(i)

and
σ2

pk
= E[pk(i)p∗

k(i)] = g2
dk

σ2
vk

+ E[qdk
(i)q∗

dk
(i)]. (A-8)
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From (4-38b), we have

σ2
qdk

= E[qdk
(i)q∗

dk
(i)] = σ2

dk
− g2

dk
σ2

dk
, (A-9)

where considering the data model in (2-3), σ2
dk

is given by

σ2
dk

= E[dk(i)d∗
k(i)] = w∗

oRxk
wo + σ2

vk
. (A-10)

Finally, using the same evaluation as in (A-2), the variance of dk is given by

σ2
dk

= E[dk(i)d∗
k(i)] = h

2b−1∑
j=0

l2
jP[xk(m) = lj]

= h
2b−1∑
j=0

l2
jP[τj ≤ dk = lj < τj+1]

= h
2b−1∑
j=0

l2
j

(
Φ
(√hτ 2

j+1

σdk

)
− Φ

(√hτ 2
j

σdk

))
.

(A-11)

Table A.1: Distortion factor ρq for different ADC resolutions b [47]

b 1 2 3 4 5

ρq 0.3634 0.1175 0.03454 0.009497 0.002499



B
Computational complexity of DQA-RLS algorithm per time
instant at in Detail

Table B.1: Computational complexity of DQA-RLS per time instant at node k

Task +− × ÷ exp

σ̂2
xk,Q(i) = γσ̂2

xk,Q(i− 1) + (1− γ)|xk,Q(i)|2 2 3 0 0

σ̂2
xk

(i) = σ̂2
xk,Q(i) + σ̂2

q,k 1 0 0 0

gxk,b(i) = 1√
σ̂2

xk
(i)

2b−1∑
j=0

lj√
π

(
e

−
τ2

j

σ̂2
xk

(i) − e
−

τ2
j+1

σ̂2
xk

(i)

)
2b − 1 2b+1 + 1 2b + 1 2b

βk,b(i) =
g2

xk,b(i)σ̂2
xk

(i)

g2
xk,b

(i)σ̂2
xk

(i)+σ2
q,k

1 2 1 0

βk,b(i)wH
k (i− 1)xk,Q(i) 4M − 2 4M + 2 0 0

ek,Q(i) = dk,Q(i)−wH
k (i− 1)βk,b(i)xk,Q(i) 2 0 0 0

Pk(i)xk,Q(i) 4M2 − 2M 4M2 0 0

x∗
k,Q(i)Pk(i)xk,Q(i) 4M − 2 4M 0 0

λ + β2
k,b(i)x∗

k,Q(i)Pk(i)xk,Q(i) 1 2 0 0
β2

k,b(i)
λ+β2

k,b
(i)x∗

k,Q
(i)Pk(i)xk,Q(i) 0 0 1 0

Pk(i)xk,Q(i) β2
k,b(i)

λ+β2
k,b

(i)x∗
k,Q

(i)Pk(i)xk,Q(i) 0 2M 0 0
β2

k,b(i)Pk(i)xk,Q(i)
λ+β2

k,b
(i)x∗

k,Q
(i)Pk(i)xk,Q(i) x∗

k,Q(i)Pk(i) 2M2 4M2 0 0

Pk(i− 1)− β2
k,b(i)Pk(i−1)xk,Q(i)x∗

k,Q(i)Pk(i−1)
λ+β2

k,b
(i)x∗

k,Q
(i)Pk(i−1)xk,Q(i) 2M2 0 0 0

Pk(i) = 1
λ

(Pk(i− 1)−

β2
k,b(i)Pk(i− 1)xk,Q(i)x∗

k,Q(i)Pk(i− 1)
λ + β2

k,b(i)x∗
k,Q(i)Pk(i− 1)xk,Q(i)

) 0 2M2 0 0

Pk(i)βk,b(i)xk,Q(i)ek,Q(i) 2M 4M + 2 0 0

hk(i) = hk(i− 1) + Pk(i)βk,b(i)xk,Q(i)ek,Q(i) 2M 0 0 0

wk(i) =
∑

l∈Nk

alkhl(i) 2nkM 4nkM 0 0

Total 8M2 + 2b + 2+
(2nk + 10)M

10M2 + 2b+1+
(4nk + 14)M + 12

2b + 3 2b
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