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Abstract

Maboud Farzaneh Kaloorazi; Rodrigo C. de Lamare. Low-Rank Ma-
trix Approximations and Applications. Rio de Janeiro, 2018. 120p.
Tese de Doutorado – Departamento de Engenharia de Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.
This dissertation focuses on developing algorithms based on randomized

sampling techniques for low-rank matrix approximations.
Low-rank matrix approximations, that is, approximating a given matrix by
one of lower rank, play an increasingly important role in numerical linear
algebra and signal processing applications. Such a compact representation
which retains most important information of a high-dimensional matrix can
provide a significant reduction in memory requirements and, more importantly,
computational costs when the computational cost scales, e.g., according to a
high-degree polynomial, with the dimensionality.
The low-rank approximation algorithms proposed, first, alternately project the
matrix onto its row and column space via randomized sampling. Second, ap-
proximate bases for the row and column space are computed. Third, the matrix
is transformed into a lower dimensional space using the bases obtained. Next,
a deterministic method factors the transformed (reduced-size) data, and the
final low-rank approximation is computed by projecting it back to the original
space. Theoretical lower bounds on the singular values and upper bounds on
the error of the low-rank approximations for the algorithm are provided. Due
to recently developed Communication-Avoiding QR algorithms, which can per-
form the computation with optimal/minimum communication costs, the pro-
posed algorithms can exploit modern architectures and, consequently, can be
optimized for maximum efficiency.
To demonstrate the efficiency and efficacy of the algorithms, we consider image
reconstruction and robust principal component analysis (decomposing a matrix
with grossly corrupted entries into a low-rank matrix plus a sparse matrix of
outliers) applications. Through numerical experiments with synthetic and real
data, we verify that the algorithms are efficient, stable and highly accurate.

Keywords
Matrix computations, low-rank approximation, dimension reduc-

tion, matrix decomposition, numerical linear algebra, randomized al-
gorithms, randomized subspace methods, UTV decompositions, PCA,
robust PCA, image reconstruction, convex optimization, background
subtraction, anomaly detection.



Resumo

Maboud Farzaneh Kaloorazi; Rodrigo C. de Lamare (Advisor). . Rio
de Janeiro, 2018. 120p. PhD Thesis – Departamento de Engenharia de
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.
Esta dissertação trata do desenvolvimento de algoritmos baseados em

técnicas de randomização para aproximações matriciais de posto reduzido, que
servem para representar uma dada matriz de dados por uma matriz de posto
reduzido. Essas técnicas desempenham um papel cada vez mais importante
em álgebra linear numérica e em aplicações de processamento de sinais. Isto
se deve ao fato de que representações compactas que retém os atributos mais
importantes de uma matriz de grandes dimensões podem proporcionar uma
redução significativa nos requisitos de memória e no custos computacionais,
que variam de acordo com um polinômio dependente de uma das dimensões
da matriz a ser aproximada.
Os algoritmos de aproximação de posto reduzido se propõe em projetar alter-
nadamente a matriz em seu espaço de linha e coluna por meio de amostragem
aleatória. Em segundo lugar, bases aproximadas para o espaço de linha e col-
una são calculadas. Em terceiro lugar, a matriz é transformada em um espaço
dimensional inferior usando as bases obtidas. Em seguida, um método deter-
minístico fatora os dados transformados em tamanho reduzido e a aproximação
de posto reduzido é calculada projetando-a de volta ao espaço original. Os lim-
ites inferiores teóricos dos valores singulares e os limites superiores do erro das
aproximações de posto reduzido dos algoritmos são estabelecidos. Levando-se
em consideração o custo de comunicação das matrizes de dados em proces-
sadores e algoritmos QR recentemente desenvolvidos, que podem realizar a
computação com custos de comunicação reduzidos, os algoritmos propostos po-
dem explorar arquiteturas modernas e ser otimizados para máxima eficiência.
Para ilustrar a eficiência e a eficácia dos algoritmos, consideramos a recon-
strução de imagens, a análise de componentes principais robusta, em que uma
matriz com aplicações grosseiramente corrompidas em uma matriz de baixa
classificação mais uma matriz esparsa de outliers é decomposta, e problemas
de detecção de anomalias. Através de experimentos numéricos com dados sin-
téticos e reais, verificamos que os algoritmos são eficientes, estáveis, e altamente
precisos.

Palavras-chave
Cálculos matriciais, Aproximação de posto reduzido, Algoritmos com

randomização, Redução de dimensão, Análise de componentes principais
robusta.
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SOR-SVD method. 69

4.9 Removing shadows and specularities from face images. Images in
columns 1 and 4 are face images under different illuminations.
Images in columns 2 and 5 are are recovered images after removing
shadows and specularities by the ALM-SOR-SVD method, and
images in columns 3 and 6 correspond to the removed shadows
and specularities. 71

5.1 Comparison of singular values for NoisyLowRank-I. The power
method is not used, q = 0. 82

5.2 Comparison of singular values for NoisyLowRank-II. Left: No
power method, q = 0. Right: q = 2. 82

5.3 Comparison of singular values for Matrix 2. Left: No power method,
q = 0. Right: q = 2. 83

5.4 Comparison of low-rank approximation errors of the SVD and CoR-
UTV for Matrix 1. 83

5.5 Comparison of low-rank approximation errors of the SVD and CoR-
UTV for Matrix 2. 84

5.6 Comparison of the Frobenius-norm error for NoisyLowRank-I.
Left: No power method, q = 0. Right: q = 2. 85

5.7 Comparison of the Frobenius-norm error for NoisyLowRank-II.
Left: No power method, q = 0. Right: q = 2. 85

5.8 Comparison of the Frobenius-norm error for Matrix 2. Left: No
power method, q = 0. Right: q = 2. 85

5.9 (a) Errors incurred by the algorithms considered in reconstructing
the differential gear image. (b) Computational time in seconds for
different algorithms. 87

5.10 Low-rank image reconstruction. 87
5.11 Runtime comparison of TSR-SVD and CoR-UTV in reconstructing

the differential gear image. 88
5.12 Background modeling. Images in columns 1 and 4 are frames of the

surveillance video of an airport and a escalator, respectively. Images
in columns 2 and 5 are recovered backgrounds L∗, and columns 3
and 6 correspond to foregrounds S∗ by ALM-CoRUTV. 90

5.13 Removing shadows and specularities from face images. Images in
columns 1 and 4 are face images under different illuminations.
Images in columns 2 and 5 are are recovered images after removing
shadows and specularities by the ALM-SOR-SVD method, and
images in columns 3 and 6 correspond to the removed shadows
and specularities. 91



6.1 A comparison of variances for PCA, RBAD, SSPBAD. 97
6.2 A comparison of detection rate for PCA, RBAD, SSPBAD and

RPCA. Variance of the measurement noise σ2 = 0.1 98



Table list

2.1 Pseudo-code of robust PCA solved by ALM. 33
2.2 Pseudo-code for the SR-RPCA algorithm. 36
2.3 Computational time (in seconds). For the SR-RPCA method, all

four random matrices are used. 38

3.1 Pseudo-code of robust PCA solved by ALM-UZVD. 46
3.2 Numerical results for synthetic matrix recovery. 47
3.3 Comparison of the InexactALM and ALM-UZVD methods for real-

time data recovery. 49

4.1 Pseudo-code for RPCA solved by the ALM-SOR-SVD method. 66
4.2 Comparison of the ALM-SOR-SVD and ALM-PSVD methods for

synthetic data recovery for the case r(L) = 0.05 × n and s =
0.05× n2. 68

4.3 Comparison of the ALM-SOR-SVD and ALM-PSVD methods for
synthetic data recovery for the case r(L) = 0.05×n and s = 0.1×n2. 68

4.4 Comparison of the ALM-PSVD and ALM-SOR-SVD methods
for real-time data recovery. 70

5.1 Pseudo-code of robust PCA solved by ALM-CoRUTV. 80
5.2 Comparison of the ALM-CoRUTV and ALM-CoRUTV methods for

synthetic data recovery for the case r(L) = 0.05 × n and s =
0.05× n2. 88

5.3 Comparison of the ALM-CoRUTV and InexactALM methods for
synthetic data recovery for the case r(L) = 0.05×n and s = 0.1×n2. 89

5.4 Numerical results for real matrix recovery. 90

6.1 Pseudocode for the proposed RBAD technique. 95
6.2 Pseudocode for the proposed SSPBAD technique. 96



List of Abreviations

PCA – Principal Component Analysis
RPCA – Robust Principal Component Analysis
SVD – Singular Value Decomposition
RRR-UZVD – Randomized Rank-Revealing UZV Decomposition
SOR-SVD – Subspace-Orbit Randomized Singular Value Decomposition
CoR-UTV – Compressed Randomized UTV Decompositions
SR-RPCA – Switched-Randomized Robust Principal Component Analysis
RSMs – Randomized Subspace Methods
RBAD – Randomized Basis for Anomaly Detection
SSPBAD – Switched Subspace-Projected Basis for Anomaly Detection
ALM – Augmented Lagrange Multipliers
Flops – Floating-Point Operations



1
Introduction

With recent advances in collecting data and storage capabilities, large
volumes of data are produced every day in areas such as engineering, eco-
nomics, astronomy, biology, remote sensing [98]. Such high-dimensional data,
which now are termed big data, present new challenges in data analysis, since
the traditional approaches break down partly due to the increase in the num-
ber of observations [24]. In dealing with high-dimensional data sets, in many
cases, not all the variables (measured with each observation) are important,
due to large number of interrelated variables, for understanding the underlying
phenomena of interest. Thus, it is of high interest to reduce the dimensional-
ity of the original data set or to approximate it with a lower-dimensional
component prior to any modeling or procedure to extract useful information.
Representing a high-dimensional data set by a lower dimensional component,
which contains as much variation of the data as possible, can significantly re-
duce memory requirements, and more importantly, computational costs of the
data processing [77].

1.1
Motivations, Problems and Background

Computing a low-rank approximation of an input data matrix, i.e., ap-
proximating the matrix by one of lower rank, is a fundamental task in nu-
merical linear algebra and signal processing applications. Such a compact rep-
resentation, which retains most important information of a high-dimensional
matrix can provide a significant reduction in memory requirements, and more
importantly, computational costs when the computational cost scales, e.g.,
according to a high-degree polynomial, with the dimensionality. Matrices
with low-rank structures have found many applications in background sub-
traction [5, 53, 69, 93], system identification [30], IP network anomaly detec-
tion [52,60], latent variable graphical modeling, [13], ranking and collaborative
filtering, [78], subspace clustering [67, 68, 76], sensor and multichannel signal
processing [17], biometrics [91,94], statistical process control and multidimen-
sional fault identification [27, 46], quantum state tomography [16], and DNA
microarray data [88].
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Traditional algorithms such as the singular value decomposition (SVD)
[35] and the rank-revealing QR (RRQR) decomposition [11,37] are among the
most commonly used algorithms for computing a low-rank approximation of
a matrix. A UTV decomposition, proposed in [79, 81], on the other hand,
is a compromise between the SVD and the RRQR decomposition, having
the virtues of both. Given a matrix A, the UTV algorithm computes a
decomposition A = UTVT , where U and V have orthonormal columns, and T
is triangular (either upper or lower triangular). These deterministic algorithms,
however, are computationally expensive for large data sets. Furthermore,
standard techniques for their computation are challenging to parallelize in
order to utilize advanced computer architectures [18,36,39].

Recently developed algorithms for low-rank approximations based on ran-
dom sampling schemes have been shown to be surprisingly computationally
efficient, highly accurate and robust, and are known to outperform the tra-
ditional algorithms in many practical situations [25, 33, 36, 39, 71, 74]. These
randomized algorithms first form a compressed version of the given matrix
through random linear combinations of its rows or columns. Further compu-
tations are then performed on the submatrix using deterministic algorithms
such as the SVD and the QR decomposition with column pivoting to obtain
the final low-rank approximation. The advantage of randomized algorithms
over their classical counterparts lies in the fact that (i) they operate on a
compressed version of the data matrix rather than a matrix itself, so they are
computationally efficient, and (ii) they can be organized to take advantage of
modern architectures, performing a decomposition with minimum communi-
cation cost [15,21].

Motivated by recent developments, the scope of this dissertation is
to contribute to the aforementioned line of work by developing efficient,
accurate and provably correct randomized algorithms for low-rank matrix
approximation.

1.2
Structure and Contributions of the Dissertation

In this section, we outline the structure of this work and highlight our
contributions. In addition to this introductory chapter, this dissertation con-
sists of six more chapters. We will summarize the content and key contributions
of each chapter.
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1.2.1
Chapter 2: Literature Review

This chapter surveys prior and related works which based on this dis-
sertation grew out. It discusses deterministic and randomized methods for
dimensionality reduction and low-rank matrix approximation, including linear
principal component analysis (PCA) technique and non-linear robust PCA. At
the end of this chapter, we further present a new fast robust PCA technique
applied to background subtraction in surveillance videos.

1.2.2
Chapter 3: Randomized Rank-Revealing UZV Decomposition

This chapter presents an efficient rank-revealing algorithm powered by
randomization termed randomized rank-revealing UZV decomposition (RRR-
UZVD). For an input matrix, RRR-UZVD delivers information on a specific
number of leading singular values and corresponding singular vectors of the
matrix. The work of this chapter serves as the basis for the algorithms
developed in the next two chapters. Main contributions include:

– Given a matrix A, RRR-UZVD constructs an approximation such as
A ≈ UZVT , where U and V have orthonormal columns, leading-
diagonal block of Z is well-conditioned and reveals the numerical rank of
A, and its off-diagonal blocks have sufficiently small `2-norms.

– The rank-revealing property of the proposed algorithm is proved.

– RRR-UZVD is applied to reconstruct a low-rank image as well as to
solve the robust PCA problem [9, 14, 93], i.e, to decompose a matrix
into its low-rank and sparse components, in applications of background
modeling in surveillance video and shadow and specularity removal from
face images.

1.2.3
Chapter 4: Subspace-Orbit Randomized SVD

This chapter proposes a new matrix decomposition approach termed
Subspace-Orbit Randomized Singular Value Decomposition (SOR-SVD) which
based on random sampling techniques approximates the SVD of a given matrix.
SOR-SVD is simple, accurate, numerically stable, and provably correct. Main
contributions include:

– Given a large and dense matrix of size m × n, SOR-SVD computes a
rank-k approximation of the matrix by making a few passes over the data
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with an arithmetic cost of O(mnk) floating-point operations. The main
operations of the algorithm involve matrix-matrix multiplication and
the QR decomposition, and due to recently developed Communication-
Avoiding QR (CAQR) algorithms that perform the computation with
optimal communication cost [21], SOR-SVD can be optimized for peak
machine performance on modern computational platforms.

– Theoretical lower bounds on the singular values and upper bounds on
the error of the low-rank approximation for SOR-SVD are provided. It
is experimentally shown that the low-rank approximation error bounds
provided are empirically sharp for one class of matrices considered.

– SOR-SVD is employed to solve the robust PCA problem [9, 14, 93]
and studied in computer vision applications of background/foreground
separation in surveillance video and shadow and specularity removal from
face images.

1.2.4
Chapter 5: Compressed Randomized UTV Decompositions

This chapter introduces a novel rank-revealing matrix decomposition
algorithm termed Compressed Randomized UTV (CoR-UTV) decomposition.
CoR-UTV is primarily developed to compute a low-rank approximation of an
input matrix by using random sampling schemes. Main contributions include:

– Given a large and dense matrix A of size m× n with numerical rank k,
CoR-UTV computes a low-rank approximation ÂCoR of A such that

ÂCoR = UTVT , (1-1)

where U and V have orthonormal columns, and T is triangular (ei-
ther upper or lower, whichever is preferred). CoR-UTV only requires
a few passes through data, for a matrix stored externally, and runs
in O(mnk) floating-point operations. The operations of the algorithm
involve matrix-matrix multiplication, the QR and rank revealing QR
decompositions. Due to recently developed Communication-Avoiding
QR algorithms [20, 21, 26], which perform the computations with op-
timal/minimum communication costs, CoR-UTV can be optimized for
peak machine performance on modern architectures.

– The rank-revealing property of CoR-UTV is proved, and upper bounds
on the error of the low-rank approximation are given.

– CoR-UTV is applied to treat an image reconstruction problem, as well
as the robust PCA problem [9, 14, 93] in applications of background
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subtraction in surveillance video and shadow and specularity removal
from face images.

1.2.5
Chapter 6: Randomized Subspace Methods

This chapter presents two novel subspace separation methods using ran-
domization, collectively called randomized subspace methods (RSMs), to de-
tect anomalies in Internet Protocol (IP) networks. Main contributions include:

– Given a matrix of link traffic data, RSMs perform a normal-plus-
anomalous matrix decomposition and, subsequently, detect traffic
anomalies in the anomalous subspace using a statistical test. In contrast
to the traditional subspace methods, RSMs do not form the covariance
matrix of the traffic data and, as a result, obviate computing the expen-
sive SVD for separating the subspaces.

1.2.6
Chapter 7: Conclusions

This chapter summarizes our work and discusses directions for future
research and some open problems that can be further explored.

1.3
Notation

We now introduce the mathematical notation that will be used through-
out this thesis.

Bold-face upper-case letters are used to denote matrices. Given a matrix
A, ‖A‖1, ‖A‖2, ‖A‖F , ‖A‖∗ denote the `1-norm, the spectral norm, the
Frobenius norm, the nuclear norm, respectively. σj(A) denotes the j-th largest
singular value of A, and the numerical range of A is denoted by R(A). The
symbol E denotes expected value with respect to random variables. Given a
random variable Ω, EΩ denotes expectation with respect to the randomness in
Ω, and the dagger † denotes the Moore-Penrose pseudo-inverse.
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2
Literature Review

In this chapter, we carry out a literature review on the most relevant
low-rank matrix approximation techniques that are used in the comparisons
with the approaches proposed in this thesis. Low rank matrix approximations
consist of computing an approximation of a matrix by one of lower rank,
which can be used in a variety of signal processing applications such as image
reconstruction, background/foreground subtraction, and anomaly detection.
The goal is to compactly represent the input matrix with limited loss of
information. Such a representation can provide a significant reduction in
memory requirements as well as computational costs [77]. In what follows, we
will review several algorithms for low-rank matrix approximations that include
deterministic algorithms, randomized algorithms, principal component analysis
and robust principal component analysis.

2.1
Deterministic Algorithms

2.1.1
Singular Value Decomposition

Given a matrix A ∈ Rm×n, where m ≥ n, with numerical rank k, its
singular value decomposition (SVD) [18,35] is defined as:

A =UAΣAVT
A

=
[
Uk U0

]
︸ ︷︷ ︸
UA∈Rm×n

Σk 0
0 Σ0


︸ ︷︷ ︸

ΣA∈Rn×n

[
Vk V0

]T
︸ ︷︷ ︸

VT
A∈Rn×n

, (2-1)

where Uk ∈ Rm×k, U0 ∈ Rm×n−k have orthonormal columns, spanning the
range of A and the null space of AT , respectively, Σk ∈ Rk×k and Σ0 ∈
Rn−k×n−k are diagonal containing the singular values, i.e., Σk = diag(σ1, ..., σk)
and Σ0 = diag(σk+1, ..., σn), and Vk ∈ Rn×k and V0 ∈ Rn×n−k have
orthonormal columns, spanning the range of AT and the null space of A,
respectively. A can be written as A = Ak + A0, where Ak = UkΣkVT

k , and
A0 = U0Σ0VT

0 . The SVD constructs the optimal rank-k approximation Ak to
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A, as stated in the following theorem.

Theorem 2.1 (Eckart and Young [28], and Mirsky [64])

minimize
rank(B)≤k

‖A−B‖2 = ‖A−Ak‖2 = σk+1. (2-2)

minimize
rank(B)≤k

‖A−B‖F = ‖A−Ak‖F =
√√√√ n∑
j=k+1

σ2
j . (2-3)

The SVD is numerically stable and highly accurate and yields detailed
information on singular subspaces and singular values, however it is prohibitive
to compute i.e., it costs O(mn2) flops. Moreover, standard techniques for its
computation are challenging to parallelize in order to take advantage of modern
computational environments [18,36,39]. To approximate the SVD, however, a
Krylov subspace method such as the Lanczos and Arnoldi algorithm can be
used, which constructs a partial SVD of a matrix, for instance A, at a cost
O(mnk). However, these methods suffer from two drawbacks. First, inherently,
they are numerically unstable [8, 18, 35]. Second, they do not lend themselves
to parallel implementations [36,39], which makes them unsuitable for modern
computational architectures.

2.1.2
Rank-Revealing QR Decomposition

Another widely used algorithm for low-rank approximations considered
as a relatively economic alternative to the SVD is the rank-revealing QR
decomposition (RRQR) [11]. The RRQR is a special QR decomposition with
column pivoting (QRCP), which reveals the numerical rank of the input
matrix. Given the matrix A, it takes the following form:

AP = QR = Q

R11 R12

0 R22

 , (2-4)

where P is a permutation matrix, Q ∈ Rm×n has orthonormal columns,
R ∈ Rn×n is upper triangular where R11 ∈ Rk×k is well-conditioned with
σmin(R11) = O(σk), and the `2-norm of R22 ∈ Rn−k×n−k is sufficiently small,
i.e., ‖R22‖2 = O(σk+1) (here we have written the reduced QR decomposition,
where the silent columns and rows of Q and R, respectively, have been
removed). If there is an additional requirement that the `2-norm of R−1

11 R22 is
small, i.e., a low order polynomial in n, this decomposition is called “strong
RRQR decomposition" [37]. The rank-k approximation to A is then computed
as follows:

ÂRRQR = Q(:, 1 : k)R(1 : k, :)PT , (2-5)
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where we have used MATLAB notation to indicate submatrices, i.e., Q(:, 1 : k)
denotes the first k columns of Q, and R(1 : k, :) denotes the first k rows of R.

2.1.3
UTV Decompositions

A UTV decomposition [79, 81] is a compromise between the SVD and
QRCP, which has the virtues of both: UTV (i) is computationally more efficient
than the SVD, and (ii) provides information on the numerical null space of
the matrix (RRQR does not explicitly furnish the null space information)
[40,79,81,82]. For the matrix A, UTV takes the form:

A = UTVT (2-6)

where U ∈ Rm×n and V ∈ Rn×n have orthonormal columns, and T is triangu-
lar. If T is upper triangular, the decomposition is called URV decomposition:

A = U

T11 T12

0 T22

VT . (2-7)

If T is lower triangular, the decomposition is called ULV decomposition:

A = U

T11 0
T21 T22

VT . (2-8)

The URV and ULV decompositions are collectively referred to as UTV
decompositions [35,40], and are performed by reduction of the matrix A using
unitary transformations to upper and lower triangular forms, respectively. If
there is a well-defined gap in the singular value spectrum of A, i.e., σk � σk+1,
the UTV decompositions are said to be rank-revealing in the sense that
the numerical rank k is revealed in the triangular submatrix T11 ∈ Rk×k

(2-7), (2-8), and the `2-norm of off-diagonal submatrices, [TT
12 TT

22]T and
[T21 T22], are of the order σk+1 [32, 79,81], i.e.,

σmin(T11) = O(σk),

‖[TT
12 TT

22]T‖2 = O(σk+1),

‖T21 T22‖2 = O(σk+1).

(2-9)

QRCP and UTV decompositions provide highly accurate approximations
to A, however they suffer from two drawbacks. First, they are expensive to
compute in terms of arithmetic costs, i.e., O(mn2) flops. Second, methods for
their computation are challenging to parallelize, and as a result, they can not
exploit modern architectures [18,36,39].
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2.2
Randomized Algorithms

Recently developed algorithms for low-rank approximations based on
randomization [25,33,36,39,71,74,86] have attracted significant attention due
to the facts that (i) they are computationally efficient, and (ii) they readily lend
themselves to a parallel implementation to exploit advanced computational
platforms.

2.2.1
Random Projections

In random projections (RP) [3, 49, 63], the given high-dimensional data
matrix is projected onto a lower-dimensional subspace using a random matrix.
The RP is a computationally efficient dimensionality reduction technique, but,
unlike PCA, it is not optimal in terms of mean-square error since it introduces a
trivial distortion in the data. Given A ∈ Rm×n, n m-vectors, them-dimensional
data are projected onto a k-dimensional subspace, where k � m, using a
random matrix Φ ∈ Rk×m:

Bran = ΦA. (2-10)
The key idea behind the RP is the Johnson-Lindenstrauss (JL) lemma

[49]: n points in Euclidean space can be projected to k dimensions, where
k = cε−2log(n), c is a positive constant, and ε > 0 while introducing a distortion
of at most 1 + ε. To be more precise, for any m-vectors x and y, the following
holds with constant probability:√

k

m
‖x− y‖2(1− ε) ≤ ‖Φx−Φy‖2 ≤

√
k

m
‖x− y‖2(1 + ε). (2-11)

The original projection matrix Φ is characterized by the following three
properties:

– Orthogonality: The columns of Φ are orthogonal to each other,

– Normality: The columns of Φ have unit length,

– Spherical symmetry: For orthogonal matrix A, ΦA and A have the same
distribution.

However, researchers showed that the JL guarantee (2-11) still holds by
dropping these properties: orthogonality and the normality conditions were
dropped by [44], and spherical symmetry condition by [1].

Beginning with [33], many randomized algorithms have been proposed
for low-rank matrix approximations. The algorithms in [22, 25, 73], built
on Frieze et al.’s idea [33], first sample columns of an input matrix with
a probability proportional to either their magnitudes or leverage scores,
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representing the matrix in a compressed form. The submatrix is then used
for further computation (post-processing step) using deterministic algorithms
such as the SVD and pivoted QR decomposition [35] to obtain the final low-
rank approximation. Sarlós [74] proposes a different method based on results
of the Johnson-Lindenstrauss (JL) lemma [49]. He showed that random linear
combinations of rows, i.e., projecting the data matrix onto a structured random
subspace, render a good approximation to a low-rank matrix. The works
in [15,66] have extended and improved Sarlós’s idea and construct a low-rank
approximation based on subspace embedding.

2.2.2
A Randomized Algorithm for PCA

Rokhlin et al. [71] employ random projections in order to approximate the
matrix A; first, the input matrix is projected onto a low dimensional random
subspace by means of a random Gaussian matrix and, next, the low-rank
approximation ÂranPCA is given through computations on the reduced-sized
matrix. Given A and an integer k ≤ ` ≤ min{m,n}, the proposed method [71]
approximates A by taking the steps described in Algorithm 1.

Algorithm 1 Randomized PCA
Input: Matrix A ∈ Rm×n, integers k and `.
Output: A low-rank approximation.

1: Draw a random matrix G ∈ R`×m from a standard Gaussian distribution,
2: Compute R = GA,
3: Compute an SVD RT = QSHT ,
4: Compute T = AQ,
5: Compute an SVD T = UΣWT ,
6: Compute V = QW,
7: ÂranPCA = UΣVT .

To obtain more accurate approximation, specifically for a matrix with
slowly decaying singular values, the authors incorporate q steps of a power
iteration [72]. Thus, the matrix R, step 2 of Algorithm 1, is defined as follows:

R = G(AAT )qA. (2-12)
and the rank-k approximation Aran satisfies:

‖A− ÂranPCA‖2 ≤ βm1/(4q+2)σk+1, (2-13)

with high probability, where β is a constant, and σk+1 is the (k+1)-th singular
value of A. To approximate A, this approach requires 2(q+ 1) passes over the
data, for matrices stored out-of-core, and the flop counts satisfy
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CranPCA ∼ (2 + 2q)`Cmult + 2`2(m+ 2n), (2-14)

where Cmult is the cost of a matrix-vector multiplication with A or AT . A pass
over the data is defined as visiting the data matrix by the algorithm to carry
our the computations.

2.2.3
Randomized Algorithms for SVD

Halko et al. [39] propose two methods in order to approximate the SVD of
a given matrix based on randomization. The first method, randomized SVD,
for which the authors provide theoretical analysis and extensive numerical
experiments, for the matrix A and integers k ≤ ` < min{m,n} and q, is
described in Algorithm 2.

Algorithm 2 Randomized SVD (R-SVD)
Input: Matrix A ∈ Rm×n, integers k, ` and q.
Output: A rank-` approximation.

1: Draw a Gaussian random matrix Ω ∈ Rn×`;
2: Compute Y = (AAT )qAΩ;
3: Compute a QR decomposition Y = QR;
4: Compute B = QTA;
5: Compute an SVD B = ŨΣVT ;
6: ÂRSVD = (QŨ)ΣVT .

The R-SVD approximates A as follows: (i) a compressed matrix Y,
through random linear combinations of columns of A is formed, (ii) a QR
decomposition is performed on Y, where the Q factor constructs an approxi-
mate basis for R(A), (iii) A is projected onto a subspace spanned by columns
of Q, forming B, (iv) a full SVD of B is computed. In Algorithm 2, q is the
number of steps of a power method [39,71]. ARSVD satisfies

E‖A−ARSVD‖2 ≤
[
1 + 4

√
2min{m,n}

k − 1

]1/(2q+1)
σk+1, (2-15)

where E denotes the expectation operator, and σk+1 is the (k + 1)-th singular
value of A. To decompose A, the R-SVD algorithm requires 2(q + 1) passes
over the data, for matrices stored externally, and the flop counts satisfy

CRSVD ∼ (2q + 2)`Cmult + 2`2(m+ n), (2-16)

where Cmult is the cost of a matrix-vector multiplication with A or AT . The
cost in (2-16) results from a dense matrix A. If A is sparse, the arithmetic
cost is proportional to the number s of non-zero entries of A, satisfying

CRSVD ∼ (2q + 2)`s+ 2`2(m+ n). (2-17)
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If the Gaussian random matrix Ω is replaced by a random matrix with
internal structure such as the the subsampled randomized Hadamard transform
(SRHT) [87], the number of flops will be reduced. An SRHT matrix Ω ∈ Rn×`

has the following form:
Ω =

√
n

`
RHD, (2-18)

where

– D ∈ Rn×n is diagonal whose entries are independently drawn from
{−1, 1},

– H ∈ Rn×n is a Walsh-Hadamard matrix scaled by n−1/2,

– R ∈ R`×n is a sparse matrix whose rows are samples, without replace-
ment, from the standard basis of Rn.

By defining Ω as in (2-18), the product AΩ is computed in O(mnlog(`))
flops [87]. As a result, flop counts of the RSVD satisfy

CRSVD ∼ mnlog(`) + (2q + 1)`Cmult + 2`2(m+ n). (2-19)

Gu [36] applies a slightly modified version of the R-SVD algorithm to
improve subspace iteration methods, and presents a new error analysis. The
second method proposed in [39, Section 5.5] is a single-pass algorithm, i.e., it
requires only one pass through data, to compute a low-rank approximation of
a given matrix. For the matrix A, the decomposition, which we call two-sided
randomized SVD (TSR-SVD), is computed as described in Algorithm 3.

Algorithm 3 Two-Sided Randomized SVD (TSR-SVD)
Input: Matrix A ∈ Rm×n, integers k and `.
Output: A rank-` approximation.

1: Draw random matrices Ψ1 ∈ Rn×` and Ψ2 ∈ Rm×`;
2: Compute Y1 = AΨ1 and Y2 = ATΨ2 in a single pass through A;
3: Compute QR decompositions Y1 = Q1R1, Y2 = Q2R2;
4: Compute Bapprox = QT

1 Y1(QT
2 Ψ1)†;

5: Compute an SVD Bapprox = ŨΣ̃Ṽ;
6: ÂTSR = (Q1Ũ)Σ̃(Q2Ṽ)T .

In Algorithm 3, Bapprox is an approximation to B = QT
1 AQ2, Q1Ũ is

an approximation to the left subspace, Q2Ṽ is an approximation to the right
subspace, and Σ̃ is an approximation to the first ` singular values of A.
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2.2.4
Sketching-based Fixed-Rank Approximation

Tropp et al. [86] propose a suite of low-rank approximation methods of
a given matrix by making use of a sketch of the matrix. For the matrix A, its
sketch is formed in a single pass through A to capture the action of the matrix,
and further processing is performed on the sketch by means of deterministic
methods to construct the low-rank approximation. The algorithm proposed
in [86, Algorithm 7], which we call sketching fixed-rank approximation (SFRA),
is presented in Algorithm 4.

Algorithm 4 Sketching-based Fixed-Rank Approximation (SFRA)
Input: Matrix A ∈ Rm×n, target rank k, sketch size parameters (p1, p2).
Output: A rank-k approximation.

1: Draw two random matrices Ω ∈ Rn×p1 , Ψ ∈ Rp2×m;
2: Form sketches of A: Y = AΩ, W = ΨA;
3: Compute a QR decomposition Y = QyRy;
4: Compute a QR decomposition ΨQy = QR;
5: Form X = R†(QTW)
6: Compute a rank-k truncated SVD X = UkΣkVT

k ;
7: ÂSFRA = (QUk)ΣkVT

k .

The key difference between TSR-SVD and SFRA, however, is that in
order to capture the action of AT , the former projects A onto a subspace
spanned by its rows, whereas the latter projects A onto a random subspace,
i.e., a subspace spanned by columns of Ψ. The limitation of SFRA, as pointed
out by authors [86], is that it can not treat all low-rank matrix approximation
problems, rather it can be applied in situations where it is only possible to
make a single pass through the input matrix.

2.3
Comparison of Deterministic and Randomized Algorithms for Image
Reconstruction

In this section, we assess the quality of low-rank approximation com-
puted by the algorithms discussed by reconstructing a gray-scale image of a
differential gear of size 1280 × 804, taken from [26]. The results are shown
in Figures 2.1 and 2.2; Figure 2.1 shows the reconstructed images of the dif-
ferential gear with rank = 70, and Figure 2.2 displays the Frobenius-norm
approximation error against the corresponding approximation rank, where the
error is calculated as:

eapprox = ‖A− Âapprox‖F , (2-20)
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where Âapprox is the approximation computed by each algorithm. Judging from
Figure 2.1, with a careful scrutiny, small defects appear in reconstructions
by randomized algorithms with no power iteration, i.e., randomized PCA, R-
SVD, TSR-SVD, as well as SFRA.While reconstructed images by deterministic
algorithms (the SVD, QRCP, UTV) as well as randomized algorithms with one
step of power iteration are visually indistinguishable from the original.

Figure 2.1: Low-rank image reconstruction. Approximations of a 1280 × 804
differential gear image are computed with rank = 70.

2.4
Computational and communication costs

In this section, we briefly describe the costs associated with an algorithm.
The cost of any algorithm involves [21]:

1. Arithmetic which is floating-point arithmetic operations such as addition,
multiplication, or division of two floating-point numbers.

2. Communication which is data movement between different levels of a
memory hierarchy on a sequential machine (see Figure 2.3a), or data
movement between processors working in parallel on a parallel machine
(see Figure 2.3b).

Communication costs involve both bandwidth costs, which are propor-
tional to the number of words of data sent, and latency costs, which are pro-
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Figure 2.2: Errors incurred by different algorithms in reconstructing the
differential gear image.

portional to the number of messages in which the data is sent. On high perfor-
mance computing architectures, for a data matrix stored externally, communi-
cation costs become substantially more expensive compared to the arithmetic,
and the gap is increasing rapidly for technological reasons [21, 23]. Therefore,
developing new algorithms or redesigning existing algorithms to solve a prob-
lem in hand with minimum communication costs is highly desirable.

In this thesis we focus on developing randomized methods for low-rank
matrix approximations, and providing mathematical analysis for them. We
furnish arithmetic costs for the proposed algorithms, and comment on their
communication costs. However, a detailed study of communication costs of
the algorithms and implementing them on advanced computational platforms
is beyond the scope of this work.

2.5
Principal Component Analysis

Principal component analysis (PCA) [46, 50] is a linear dimensionality
reduction technique that tranforms a data matrix to a lower-dimensional
subspace that captures most features of the data. In particular, PCA seeks
to reduce the dimensionality of a data matrix, containing a large number of
interrelated variables, by finding a few orthogonal linear combinations of the
original variables with the largest variance. Given an input matrix A ∈ Rm×n,
where m ≥ n, first the covariance matrix is formed by

Σn×n = 1
m

(A− µ)T (A− µ), (2-21)
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Figure 2.3: Memory architectures [45]. (a) The processor and a level-1 cache
memory are on one chip, and a level-2 cache lies between the chip and
the memory. (b) Each processor has a memory, and communication between
processors is done over an interconnection network.

where µ contains the mean of A. Next, using the spectral decomposition
theorem [18,35], Σ is written as:

Σ = WΛWT, (2-22)

where W has orthonormal columns containing eigenvectors of Σ, and Λ =
diag(λ1, ..., λn) contains the eigenvalues of Σ. The (full) principal components
(PCs) are then given by

B = AW. (2-23)
It has been shown [46,50] that, given k < n, the first k PCs (Bk = AWk)

capture the most important information in A. The computational cost for PCA
is O(mn2 + n3) flops.

2.6
Robust PCA

PCA is well-known to be very sensitive to grossly corrupted observations;
a single grossly corrupted element in the observation matrix can render the
approximated matrix far from true. After a long line of research to robustifying
PCA against grossly perturbed observations, robust PCA [9, 14, 93] was
proposed. Robust PCA assumes that the data matrix X ∈ Rm×n consists
of a linear superposition of two matrices such that

X = L + S, (2-24)

where L is a low-rank matrix, i.e., rank(L) � min{m,n}, and S is a sparse
matrix of corrupted entries, i.e, ‖S‖0 � mn, where ‖·‖0 denotes the `0-norm
of the matrix (number of nonzero entries). Robust PCA has been initially
proposed in [93] to solve the following optimization problem:
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minimize(L,S)rank(L) + η‖S‖0

subject to L + S = X,
(2-25)

where η > 0 is a weighting parameter. Unfortunately, both the rank minimiza-
tion and the `0-norm minimization problems are NP-hard [89], [65]. Therefore,
to get a tractable optimization problem, (2-25) is relaxed by replacing the rank
with the nuclear norm [29], and the `0-norm with the `1-norm [10], leading to
the convex program:

minimize(L,S) ‖L‖∗ + λ‖S‖1

subject to L + S = X,
(2-26)

where, for any matrix B, ‖B‖∗ ,
∑
i σi(B) is the nuclear norm of B (sum of

the singular values), ‖B‖1 ,
∑
ij |Bij| is the `1-norm of B, and λ > 0 is a

weighting parameter. The iterative thresholding (IT) algorithm [93] solves the
following relaxed version of (2-26):

minimize(L,S) ‖L‖∗ + λ‖S‖1 + 1
2γ ‖L‖

2
F + 1

2γ ‖S‖
2
F

subject to L + S = X,
(2-27)

where ‖B‖F ,
√
trace(BTB) is the Frobenius norm of the matrix B and γ

is a large positive scalar. The solution pair (L∗,S∗) is given after iteratively
minimizing the Lagrangian function of (2-27) with respect to L, S and Y:

L(L,S,Y) , ‖L‖∗ + λ‖S‖1 + 1
2γ ‖L‖

2
F + 1

2γ ‖S‖
2
F + 1

γ
〈Y,X− L − S〉,

(2-28)
where Y ∈ Rm×n is a matrix of Lagrange multipliers, and 〈A,B〉 , trace(BTA)
is the inner product of matrices A and B. The work in [9] solves (2-26) via
the method of augmented Lagrange multipliers (ALM) [59,95], and terms the
approach Principal Component Pursuit (PCP). The ALM method operates on
the augmented Lagrangian function of (2-26):

L(L,S,Y, µ) , ‖L‖∗ + λ‖S‖1 + 〈Y,X− L − S〉+ µ

2‖X− L − S‖2
F ,

(2-29)
where Y ∈ Rm×n is a matrix of Lagrange multipliers, µ > 0 is a penalty param-
eter. The optimal solution pair (L∗,S∗) is given after iteratively minimizing
(2-29) with respect to L (while fixing S), and then with respect to S (while
fixing L), i.e., the following two equations:

Lj+1 = arg min
L
L(L,S,Y) = D 1

µ
(X− S + 1

µ
Y), (2-30)

Sj+1 = arg min
S
L(L,S,Y) = Sλ

µ
(X− L + 1

µ
Y), (2-31)
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where Dε(B) = USε(Σ)VT is a singular-value thresholding operator [7], where
B = UΣVT is a singular value decomposition, and Sε(x) = sgn(x)max(|x| −
ε, 0) is a soft-thresholding (shrinkage) operator [38,84]. The pseudocode of the
ALM method for RPCA is given in Table 2.1.

Table 2.1: Pseudo-code of robust PCA solved by ALM.

Input: Matrix X, λ, µ,Y0 = S0 = 0, j = 0;
Output: Low-rank plus sparse matrix

1: while the algorithm does not converge do
2: Compute Lj+1 = Dµ−1(X− Sj + µ−1Yj);
3: Compute Sj+1 = Sλµ−1(X− Lj+1 + µ−1Y);
4: Compute Yj+1 = Yj + µ(X− Lj+1 − Sj+1);
5: end while
6: return L∗ and S∗

2.7
Comparison of PCA and Robust PCA for Background Modeling in
Surveillance Video

In this section, we compare PCA and robust PCA methods for separating
background and foreground in a video stream taken from [58] (for the PCA
method 5 PCs have been used). The results are shown in Figure 2.4. In the
background recovered by PCA ghostly artifacts appear showing that PCA can
not completely separate moving objects from the background. Furthermore,
substantial defects appear in the foreground. While robust PCA successfully
model the background and foreground.

2.8
Switched-Randomized Robust PCA

This section presents a new fast robust PCA technique termed switched-
randomized robust PCA (SR-RPCA) [51] and applies it in application of
background subtraction in surveillance videos.

The ALM method applied to solve the robust PCA problem yields the
optimal solution, however, its major bottleneck is computing a computationally
demanding SVD at each iteration to approximate the low-rank component L
of X. To address this concern and speed up the convergence of the ALM
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Figure 2.4: Background modeling in surveillance video. In (a) and (b), images
in column 1 are frames of the surveillance video, images in column 2 are
recovered backgrounds, and column 3 corresponds to foregrounds recovered
by the algorithms.

method, the work in [59] proposes a few techniques including predicting
the principal singular space dimension, a continuation technique [85], and a
truncated SVD by using PROPACK package [57]. The modified algorithm [59],
called InexactALM hereafter in this dissertation, substantially improves the
convergence speed, however the bottleneck is that the truncated SVD [57]
employed uses the lanczos algorithm that is inherently unstable and, moreover,
due to the limited data reuse in its operations it has very poor performance
on modern architectures [8, 35,36,39].

To address this issue, we thus, by retaining the original objective func-
tion proposed in [9, 14, 59, 93], replace the SVD with an approximation; the
approximate left and right singular vectors of the input matrix are drawn
from the column and row spaces, respectively, using the bilateral projections
technique [97], through switching among different random matrices. Further-
more, to obtain the corresponding singular values, a technique that employs
the Weibull distribution [48] is used to estimate the singular values of the
matrix. After convergence of the proposed robust PCA algorithm, to guaran-
tee a sparse error matrix SR-RPCA uses a hard thresholding operator [4] to
keep only the largest elements in the sparse matrix. The SR-RPCA method
is applied for background modeling in surveillance videos. We also apply the
method on the data matrix partitioned with two different schemes.

2.8.1
The Bilateral Projections Technique

The bilateral projections technique [97], termed bilateral random projec-
tions (BRP), is a fast method to approximate a rank-r matrix A ∈ Rm×n as
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described in Algorithm 5.

Algorithm 5 The Bilateral Projections Technique
Input: Matrix A ∈ Rm×n, integer r.
Output: A rank-k approximation.

1: Draw a random matrix B2 ∈ Rn×r;
2: for j = 1: q + 1 do
3: Compute B1 = AB2;
4: Compute B2 = ATB1;
5: end for
6: Compute QR decompositions B1 = Q1R1, B2 = Q2R2;
7: Form the rank-k approximation ÂBRP = Q1[R1(B1

TB1)−1R2
T ]1/2q+1Q2

T .

In Algorithm 5, T1 ∈ Rm×r is obtained by a right multiplication of A with
a random matrix B2 ∈ Rn×r, and B2 is then updated by a left multiplication
of B1. Q1 and Q2 are approximations to the left and right singular vectors of
A, respectively. The integer q corresponds to the number of steps of a power
iteration scheme [71,72].

2.8.2
Singular Values Estimation Technique

To compute an SVD-like low-rank approximation of a given matrix A, we
first compute Q1 and Q2 via the bilateral projections technique (Algorithm 5).
Next, we estimate the singular values of A which are then incorporated with Q1

and Q2 to approximate the SVD of A. The proposed technique is based on the
observation of data from surveillance videos that if the matrix is decomposable
into a low-rank and a sparse component, the singular value distribution follows
the Weibull distribution [48]. First, random numbers are generated using the
Weibull distribution and normalized to be between 0 and 1. Then, they are
multiplied by the largest singular value of the data matrix obtained via the
R-SVD Algorithm 2. Experimental results show that the estimated singular
values are fairly close to the leading singular values of A. For our experiment,
we determine the rank r by applying the following inequality [2], which relates
the numerical rank r of any matrix B with the `2 and Frobenius norms:

‖A‖2 ≥
‖A‖F√

r
(2-32)

In order to obtain more accurate approximations Q1 and Q2, we use four
different random matrices B2 generated as follows:

– a matrix with i.i.d Gaussian entries i.e., N (0, 1),

– a matrix whose entries are i.i.d. random variables drawn from a uniform
distribution in the interval (0, 1),
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– a Markov matrix whose entries are all non-negative and entries of each
column add up to 1,

– a matrix whose entries are independently drawn from {-1, 1}.

The SR-RPCA method switches among different random matrices and
chooses the best one in order to obtain the solution pair (L∗, S∗) with lower
distortion. To guarantee the sparse structure of the chosen error matrix S∗,
the SR-RPCA approach uses a hard thresholding operator Hs(·) [4]. Hs(·) is a
nonlinear operator that keeps the largest s entries (in magnitude) of a matrix it
operates on, and sets all other entries to zero. The pseudo-code of the proposed
method is given in Table 2.2.

Table 2.2: Pseudo-code for the SR-RPCA algorithm.

Input: Matrix X ∈ Rm×n, λ, µ0, µ̄, ρ,Y0,S0, k = 0;
1: Generate four random matrices;
2: for each random matrix do
3: Compute Q1 and Q2 using the bilateral projections technique;
4: while the algorithm does not converge do
5: Estimate singular values Λ;
6: Determine the numerical rank r;
7: Lk+1 = Q1(:, 1 : r)ΛrQ2(:, 1 : r)T ; → Λr = diag(Λ(1 : r))
8: Sk+1 = Sλµ−1

k
(X− Lk+1 + µ−1

k Y);
9: Yk+1 = Yk + µk(X− Lk+1 − Sk+1);

10: µk+1 ← max(ρµk, µ̄);
11: end while
12: end for
13: Choose the lowest error & corresponding random projection matrix

& return (L◦, S◦);
14: Apply the hard-thresholding operator: Hs(S◦);
15: return L◦ and S◦.

2.8.3
Partitioning Input Matrix

We can further perform SR-RPCA on the partitioned input matrices.
The advantage of partitioning the data matrix into submatrices are twofold (i)
it enables to parallelize the operations on the matrix, and (ii) it reduce memory
requirements. The disadvantage, however, is that the recovery guarantee
provided in [9, 14] is less likely to be satisfied for each block meaning that
the probability of obtaining the exact solution by concatenating the solution
of each block is reduced. For partitioning, we use two partitioning schemes,
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column-wise and row-wise. In both cases, X is partitioned into small blocks,
and we apply SR-RPCA to each block, and combine the solution of the
corresponding blocks afterwards to recover the original matrix. For column-
wise partitioning, consider Φi as a subset of columns of the data matrix X
such that the entries of XΦi , the ith block, are chosen between 1 + (i−1)n/K
and in/K where K is the number of submatrices as described by

X =
[
Φ1|Φ2| . . . |ΦK

]
(2-33)

For row-wise partitioning, consider Υj as a subset of rows of X such that
the entries of XΥj , the jth block, are chosen between 1+(j−1)m/P and jm/P ,
where P is the number of submatrices as given by

X =
[
ΥT

1 |ΥT
2 | . . . |ΥT

P

]T
(2-34)

2.8.4
Experiments

We conduct experiments on two real-time videos introduced in [58]. Both
video streams have 200 grayscale frames. One has dimensions 176× 144 in each
frame taken in an airport, and the other one has dimensions 120× 160 in each
frame taken in a buffet restaurant. The data matrices are obtained through
concatenating 200 frames, i.e., X ∈ R25344×200 and X ∈ R19200×200.

We set the initial values of the SR-RPCA method as suggested by [59],
and compare the results with those of [59]. Both algorithms stop when the
following stopping condition holds:

‖X− Lsol − Ssol‖F
‖X‖F

< 10−7, (2-35)

where (Lsol,Ssol) is the pair of solution of either algorithm. Figure 2.5 shows
the recovered backgrounds and foregrounds of two sample frames of video
streams by the SR-RPCA method. We do not show the results of the RPCA
algorithm, as well as the SR-RPCA on partitioned data matrix since they are
visually identical to those presented.

If the SR-RPCA method is used in full power, i.e., all four random
matrices are used, the computational time for the algorithm to converge, say t,
is close to the work in [59]. However, if only one of the random matrices is used,
roughly speaking, the computational time should be divided by 4, yielding t/4.
Table 2.3 summarizes the computational time for the two methods.
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Figure 2.5: Background modeling in surveillance videos. Images in (a) are
frames of the video streams. Images in (b) and (c) are recovered backgrounds
and foregrounds by the SR-RPCA method, respectively.

Table 2.3: Computational time (in seconds). For the SR-RPCA method, all
four random matrices are used.
Methods Airport hall Buffet restaurant
RPCA [59] 41 31
SR-RPCA 46 32
SR-RPCA on column-wise partitioned data
matrix (K = 5)

42 31

SR-RPCA on row-wise partitioned data ma-
trix (P = 6)

39 29



3
Randomized Rank-Revealing UZV Decomposition

This chapter presents a new rank-revealing algorithm termed randomized
rank-revealing UZV decomposition (RRR-UZVD) [53]. The work of this chap-
ter serves as the basis for the algorithms presented in the next two chapters.

The RRR-UZVD first, through randomization, constructs orthonormal
bases for the column and row space of the input matrix. Second, the matrix
is compressed by multiplying on the right and the left by the approximate
bases. Third, columns of the compressed matrix and, accordingly, columns of
the approximate bases are permuted. Finally, the low-rank approximation is
given by projecting the small projected matrix back to the original space. The
rank-revealing property of the proposed algorithm is proved. The RRR-UZVD
is applied to reconstruct a low-rank image as well as to solve the robust PCA
problem.

3.1
The RRR-UZVD Algorithm

The RRR-UZVD delivers information on singular values and singular
subspaces of a matrix using randomization. Given a matrix A ∈ Rm×n, where
m ≥ n, with numerical rank k and an integer k ≤ ` < n, RRR-UZVD
constructs an approximation ÂUZV to A which takes the following form:

ÂUZV = UZVT = U

Zk G
H E

VT , (3-1)

where U ∈ Rm×` and V ∈ Rn×` have orthonormal columns. The matrix
Zk ∈ Rk×k is well-conditioned, and its diagonal elements are approximations
of leading singular values of A, and matrices G ∈ Rk×`−k, H ∈ R`−k×k and
E ∈ R`−k×`−k have sufficiently small `2-norms. We call diagonals of Z ∈ R`×`,
Z-values of A.

The RRR-UZVD has the rank-revealing property in the sense that the
rank k of A is revealed in the submatrix Zk, and the `2-norm of other
submatrices are of the order σk+1; see Theorem 3.1. This is analogous to
definitions of rank-revealing decompositions in the literature [11, 12, 37, 41,
79,81]. The RRR-UZVD for the matrix A is computed as follows:
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1. Generate a random test matrix Φ ∈ Rn×`,

2. Compute the matrix product:

Z1 = AΦ. (3-2)

3. Compute the matrix product:

Z2 = ATZ1. (3-3)

4. Compute QR decompositions of Z1 and Z2:

Z1 = UR1, and Z2 = VR2. (3-4)

5. Compute the matrix product:

Z = UTAV. (3-5)

6. Project the compressed data back to the original space, delivering a low-
rank approximation:

ÂUZV = UZVT . (3-6)

The matrix Z1 ∈ Rm×` (3-2) is constructed by linear combinations of columns
of A by Φ. The matrix Z2 ∈ Rn×` (3-3) is formed by linear combinations
of rows of A by Z1. The matrices U and V (3-4) are approximate bases for
R(A) and R(AT ), respectively, where R(·) denotes the range of a matrix. The
matrix Z ∈ R`×` (3-5) is formed by compression of A through left and right
multiplications by the approximate bases, and the diagonal of Z provides an
approximation to singular values of A.

The RRR-UZVD, described in its basic form, requires three passes
through data. However, it can be modified to revisit A only once. To this end,
the compressed matrix Z (3-5) can be computed by using currently available
matrices as follows: both sides of the currently unknown Z are postmultiplied
by VTΦ, i.e.,

ZVTΦ = UTAVVTΦ. (3-7)
Having defined A ≈ AVVT and Z1 = AΦ, an approximation to Z can be
obtained by

Zapprox = UTZ1(VTΦ)†, (3-8)
where † denotes the pseudo-inverse.

The RRR-UZVD may produce poor approximate bases and fuzzy sin-
gular values that deviate significantly from the exact ones (computed by the
SVD), especially in applications where the matrix has slowly decaying singular
values. Moreover, the orthonormal columns of U and V may not be necessar-
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ily in a contributing order and, as a result, the Z-values may not be in a
non-increasing order. To address these concerns, we propose two techniques:

1. Power iterations. A few steps of a power method [39,71] can significantly
improve the performance of the algorithm, due to alternately applying
the sketch of the input matrix for projections.

2. Column permutation. The column reordering technique is implemented
as follows: (i) sort the diagonal of Z according to their magnitudes
(decreasing order), returning a permutation matrix Π, (ii) post-multiply
U and V by Π: Us = UΠ, and Vs = VΠ.

The modified RRR-UZVD is described in Algorithm 6.

Algorithm 6 The RRR-UZVD algorithm
Input: Matrix A ∈ Rm×n, integers k, ` and q,
Output: A rank-` approximation.

1: Draw a random test matrix Z2 ∈ Rn×`;
2: for i = 1: q + 1 do
3: Compute Z1 = AZ2;
4: Compute Z2 = ATZ1;
5: end for
6: Compute QR decompositions Z1 = UR1 and Z2 = VR2;
7: Compute Z = UTAV or Zapprox = UTZ1(VTZ2)†;
8: Perform the column reordering technique, returning Us, Vs, Zapprox =

UT
s Z1(VT

s Z2)†;
9: Form the low-rank approximation of ÂUZV = UsZapproxVT

s .

3.2
Analysis of RRR-UZVD

In this section, we discuss the rank-revealing property and computational
complexity of RRR-UZVD.

3.2.1
Rank-Revealing Property

For the matrix A, and integers k ≤ ` ≤ n and q, the partitioned RRR-
UZVD has the following form:

ÂUZV = UZVT =
[
U1 U2

] Zk G
H E

 [V1 V2

]T
, (3-9)

where U1 ∈ Rm×k, U2 ∈ Rm×`−k, V1 ∈ Rn×k, V2 ∈ Rn×`−k, Zk ∈ Rk×k

is well-conditioned and its diagonals are approximations of leading singular
values of A. We show that Zk reveals the rank, and submatrices G ∈ Rk×`−k,
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H ∈ R`−k×k, E ∈ R`−k×`−k have small `2-norms. The following theorem states
the rank-revealing property of RRR-UZVD. This result is new.

Theorem 3.1 Let A ∈ Rm×n, where m ≥ n, be a matrix with numerical rank
k whose SVD is defined in (2-1), and its RRR-UZVD is defined in (3-9). Then,
we have

σmin(Zk) = O(σk), (3-10)

‖[H E]‖2 = O(σk+1), (3-11)

‖[GT ET ]T‖2 = O(σk+1). (3-12)

Proof. The proof is given in Appendix 8.1.

3.2.2
Computational Complexity

To factor A, the simple version of RRR-UZVD incurs the following costs:
Step 1 costs O(n`), Step 2 costs O(mn`), Step 3 costs O(mn`), Step 4 costs
O(m`2 +n`2), Step 5 costs O(mn`+m`2) (if the matrix Z is approximated by
Zapprox of equation (3-8) in this step, the cost would be O(m`2 + n`2 + `3)).
The column reordering technique costs O(m`). The dominant cost of Step 1-6
occurs when multiplying A and AT with the corresponding matrices. Thus

CUZV = O(mn`). (3-13)

The sample size parameter ` is typically close to the rank k. RRR-UZVD
requires either three or two passes (when Z is approximated by Zapprox) over
data to factor A. When the power method is used (Algorithm 6), RRR-UZVD
requires either (2q+ 3) or (2q+ 2) passes (when Z is approximated by Zapprox)
over data with arithmetic costs of (2q + 3)CUZV or (2q + 2)CUZV, respectively.

The RRR-UZVD, except for matrix-matrix multiplications which are
readily parallelizable, performs two QR decompositions on matrices of size
m × ` and n × `, whereas the R-SVD performs one QR decomposition
on an m × ` matrix and one SVD on a n × ` matrix. While recently
developed Communication-Avoiding QR (CAQR) algorithms [21] are optimal
in terms of communication costs, standard techniques to compute an SVD
are challenging for parallelization [18, 61]. Thus, the operations of RRR-
UZVD can be organized to provide a low-rank approximation with the optimal
communication cost.
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3.3
Simulations

In this section, we evaluate the performance of RRR-UZVD. We illustrate
through numerical examples that RRR-UZVD (i) is a rank revealer, and (ii)
provides estimates of singular values, i.e., Z-values, that with remarkable
fidelity track singular values of the matrix. We compare the performance of
RRR-UZVD against those of the optimal SVD, QR with column pivoting
(QRCP) and R-SVD. We next consider an image reconstruction problem in
which a low-rank image of a differential gear of size 1280×804 is reconstructed
using RRR-UZVD. Finally, we develop an algorithm to solve the robust PCA
problem by making use of RRR-UZVD, and experimentally investigate the
effectiveness of the proposed method on synthetic and real data.

3.3.1
Rank-Revealing Property and Singular Value Estimation

For the first example, we generate a noisy rank-k matrix A ∈ R1000×1000

as A = A1 +A2. A1 = UΣVT , where U and V are orthonormal matrices, and
Σ is diagonal containing the singular values σis whose entries decrease linearly
from 1 to 10−9, and σk+1 = ... = σ1000 = 0. A2 is a Gaussian matrix normalized
to have `2-norm gap × σk. In MATLAB notation, we have smax = 1; smin
= 1e-9; s = linspace(smax,smin,n); s(k+1:n) = 0; G = randn(n); E
= G/norm(G); A = orth(rand(n)) ∗ diag(s) ∗ orth(rand(n)) + gap ∗
s(k) ∗ E. We set k = 20, ` = 2k, and gap = 0.15.

For the second example a challenging matrix A ∈ R1000×1000 with
multiple gaps in its singular value spectrum, the devil’s stairs [80], is generated.
The singular values of A are arranged akin to a descending staircase, where
each step consists of d = 10 equal singular values. We set q = 1 for R-SVD
and RRR-UZVD.

We compare the quality of singular values computed by RRR-UZVD
(Algorithm 6) against that of the SVD, QRCP, and R-SVD. The results
are shown in Figure 3.1. We make the following observations: (i) RRR-
UZVD strongly reveals the gap between σ20 and σ21 in the first matrix, and
estimates singular values with no loss of accuracy compared to the SVD, while
QRCP fails to reveal the rank, and its approximations to the leading singular
values significantly deviate from those of the SVD, and (ii) For the Devil’s
stairs matrix, RRR-UZVD reveals multiple gaps in its singular values and,
further, perfectly tracks the singular values. RRR-UZVD provides excellent
approximations to the singular values of the matrix, while QRCP fails in
revealing the gaps, estimating and tracking the singular values of the matrix.
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Figure 3.1: Comparison of singular values.

3.3.2
Image Reconstruction

We assess the quality of the low-rank approximation produced by RRR-
UZVD by reconstructing a gray-scale image of a differential gear of size
1280×804, taken from [26]. We compare the results with those of the truncated
QRCP, R-SVD, and the truncated SVD by using (widely recommended)
PROPACK package [57].

The results are shown in Figure 3.2; Figures 3.2a and 3.2b show the re-
constructed images with rank = 25 and rank = 85, respectively, using the
algorithms mentioned. Figure 3.3a displays the Frobenius-norm approxima-
tion error against the corresponding approximation rank, where the error is
calculated as:

eapprox = ‖A− Âapprox‖F , (3-14)
where Âapprox is the approximation computed by each algorithm. Figure 3.3b
compares the runtime of RRR-UZVD, R-SVD and the truncated SVD against
the corresponding approximation rank. We have discarded truncated QRCP
because there is no optimized LAPACK function for QRCP with a specified
rank.

In Figure 3.2a (rank-25 approximation), RRR-UZVD and R-SVD with
q = 0 show the poorest reconstruction qualities. The truncated QRCP shows
a better approximation, while RRR-UZVD and R-SVD with q = 1 produce
approximations as good as the truncated SVD, outperforming the truncated
QRCP. In Figure 3.2b (rank-85 approximation), with a careful scrutiny tiny
artifacts appear in the reconstructed images by truncated QRCP as well as
RRR-UZVD and R-SVD with q = 0, while reconstructed images by truncated
SVD, RRR-UZVD and R-SVD with q = 1 are visually indistinguishable from
the original.
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Figure 3.2: Low-rank image reconstruction.

Figure 3.3: (a) Errors incurred by the algorithms considered in reconstructing
the differential gear image. (b) Computational time in seconds for different
algorithms.
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Figure 3.3b illustrates how the execution time for truncated SVD sub-
stantially grows as the approximation rank increases. The results show that
one step of the power method hardly adds to the execution time of more effi-
cient RRR-UZVD. This shows that RRR-UZVD produces comparable results
with truncated SVD at a much lower cost. However, we expect that since RRR-
UZVD’s operations can be performed with minimum communication costs (see
subsection 3.2.2), on current and future advanced computers RRR-UZVD to
be faster than the truncated SVD as well as R-SVD, where communication
cost is a major bottleneck on the performance of an algorithm.

3.3.3
Robust PCA Using RRR-UZVD

We now apply RRR-UZVD to solve the robust PCA problem [9, 14, 93];
see Section 2.6 of Chapter 2 for a detailed description of robust PCA. We retain
the original objective function proposed in [9,14,59,93], and apply RRR-UZVD
as a surrogate to the SVD to solve the optimization problem (2-26). We adopt
the continuation technique [59, 85], which increases µ in each iteration. The
pseudocode of the proposed method, called ALM-UZVD hereafter, is given in
Table 3.1.

Table 3.1: Pseudo-code of robust PCA solved by ALM-UZVD.

Input: Matrix X, λ, µ0, µ̄, ρ,Y0,S0, j = 0;
Output: Low-rank plus sparse matrix

1: while the algorithm does not converge do
2: Compute Lj+1 = Zµ−1

j
(X− Sj + µ−1

j Yj);
3: Compute Sj+1 = Sλµ−1

j
(X− Lj+1 + µ−1

j Y);
4: Compute Yj+1 = Yj + µj(X− Lj+1 − Sj+1);
5: Update µj+1 = max(ρµj, µ̄);
6: end while
7: return L∗ and S∗

In Table 3.1, for a matrix B having a RRR-UZV decomposition described
in Section 3.1, Zδ(B) refers to a UZV thresholding operator defined as:

Zδ(B) = U(:, 1 : r)Z(1 : r, :)VT , (3-15)

where r is the number of diagonals of Z greater than δ, Sδ(x) =
sgn(x)max(|x|−δ, 0) is a shrinkage operator and λ, µ0, µ̄, ρ, Y0, and S0 are ini-
tial values. We compare the results of ALM-UZVD with those of InexactALM [59]
(See Section 2.8 of Chapter 2 for more details on InexactALM).
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3.3.3.1
Synthetic Data Recovery

We construct a rank-k matrix X = L + S as a sum of a low-rank
matrix L ∈ Rn×n and a sparse error matrix S ∈ Rn×n. L is generated as
L = UVT , where U, V ∈ Rn×k are standard normal matrices, and S has s
non-zero entries independently drawn from the set {-100, 100}. We consider
k = rank(L) = 0.05 × n and s = ‖S‖0 = 0.05 × n2, where ‖ · ‖0 denotes the
`0-norm.

We apply the ALM-UZVD and InexactALM algorithms to X to recover L
and S. The numerical results are summarized in Table 3.2. In our experi-
ments, we adopt the initial values suggested in [59], and algorithms are ter-
minated when ‖X− Lsol − Ssol‖F < 10−4‖X‖F is satisfied, where (Lsol,Ssol)
is the pair of solution of either algorithm. In Table 3.2, Time refers to the
computational time in seconds, Iter. refers to the number of iterations, and
ζ = ‖X− Lsol − Ssol‖F/‖X‖F refers to relative error. RRR-UZVD requires
a prespecified rank ` to perform the factorization. We thus set ` = 2k, as a
random start, and q = 2. Judging from the results in Table 3.2, we make sev-
eral observations on ALM-UZVD: (i) it successfully detects the exact numerical
rank k of the input matrix in all cases, (ii) it provides the exact optimal so-
lution, while it requires one more iteration compared to InexactALM, and (iii)
outperforms InexactALM in terms of runtime, with speedups of up to 5×.

Table 3.2: Numerical results for synthetic matrix recovery.

n r(L) ‖S‖0 Methods r(L̂) ‖Ŝ‖0 Time Iter. ξ

1000 50 5e4 InexactALM 50 5e4 2.5 9 3.1e-5
ALM-UZVD 50 5e4 0.6 10 4.2e-5

2000 100 2e5 InexactALM 100 2e5 17.6 9 4.9e-5
ALM-UZVD 100 2e5 4.4 10 4.1e-5

3000 150 45e4 InexactALM 150 45e4 52.9 9 5.2e-5
ALM-UZVD 150 45e4 10.5 10 5.3e-5

3.3.3.2
Background Modeling in Surveillance Video

In this experiment, we apply ALM-UZVD to a surveillance video introduced
in [58]. The video consists of 200 grayscale frames of size 256× 320, taken in a
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Figure 3.4: (a) Images in columns 1, 2, and 3 are frames of the video, recovered
backgrounds L∗ and foregrounds S∗, respectively, by ALM-UZVD. (b) Images in
column 1 are cropped images of a face under varying illuminations. Images in
column 2 and 3 are recovered images by ALM-UZVD and errors corresponding
to the shadows and specularities, respectively.

shopping mall. We form a matrix X ∈ R81920×200 by stacking individual frames
as its columns.

The RRR-UZVD, used in ALM-UZVD, requires a prespecified rank ` which
we determine by using the following bound that relates the rank k of any
matrix B with the nuclear and Frobenius norms [35]:

‖B‖∗ ≤
√
k‖B‖F . (3-16)

We set ` = k + p, where k is the minimum value satisfying (3-16), and p = 2
is an oversampling parameter. Again, we set q = 2 for RRR-UZVD.

Some frames of the surveillance video with recovered foregrounds and
backgrounds are displayed in Figure 3.4a. As seen, ALM-UZVD successfully
recovers the low-rank and sparse components of the video. Table 3.3 presents
the numerical results, which shows ALM-UZVD outperform InexactALM in terms
of runtime.

3.3.3.3
Shadow and Specularity Removal from Face Images

In this experiment, we use face images from the Yale B face database [34].
Each image has the size 192× 168 with a total of 64 different illuminations. The
images are stacked as columns of a matrix X ∈ R32256×64. The recovered images
are displayed in Figure 3.4b. We observe that the shadows and specularities
have been effectively extracted in the sparse components by ALM-UZVD. Table
3.3 summarizes the numerical results.

We conclude that ALM-UZVD successfully recovers the face images under
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Table 3.3: Comparison of the InexactALM and ALM-UZVD methods for real-time
data recovery.

Dataset InexactALM
Time Iter. ξ

ALM-UZVD
Time Iter. ξ

Shopping mall
81920× 200

47.8 23 7.1e-5 15.8 23 8.1e-5

Yale B02
32256× 64

3.5 21 7.5e-5 2.0 21 9.1e-5

different illuminations from the dataset studied nearly two times faster than
InexactALM.



4
Subspace-Orbit Randomized Singular Value Decomposition

This chapter introduces a new matrix decomposition approach termed
Subspace-Orbit Randomized Singular Value Decomposition (SOR-SVD),
which makes use of random sampling techniques to give a low-rank approxi-
mation to an input matrix.

The SOR-SVD algorithm for a matrix A ∈ Rm×n constructs a rank-
k approximation in O(mnk) flops by making only a few passes through A.
Built on RRR-UZVD [53], the difference between the two algorithms is that
in SOR-SVD an SVD is applied on the compressed matrix rather than column
permutation technique. This allows further exploration of the properties of
SOR-SVD. Theoretical lower bounds on the singular values and upper bounds
on the error of the low-rank approximation for SOR-SVD are provided. We
experimentally show that the low-rank approximation error bounds provided
are empirically sharp for one class of matrices considered. To demonstrate the
effectiveness of SOR-SVD, we conduct experiments on synthetic data as well as
real data in computer vision applications of background/foreground separation
in surveillance video and shadow and specularity removal from face images.

4.1
Proposed SOR-SVD Algorithm

The SOR-SVD computes a fixed-rank approximation of a given matrix.
Given a matrix A ∈ Rm×n, where m ≥ n, with numerical rank k and an
integer k ≤ ` < n, SOR-SVD is computed as follows: using a random number
generator, we form a real matrix Ω ∈ Rn×` with entries being independent,
identically distributed (i.i.d.) Gaussian random variables of zero mean and unit
variance. We then compute the matrix product:

T1 = AΩ, (4-1)

where T1 ∈ Rm×` is formed by linear combinations of columns of A by the
random Gaussian matrix. T1 is nothing but a projection onto the subspace
spanned by columns of A. Having T1, we form the matrix T2 ∈ Rn×`:

T2 = ATT1, (4-2)
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where T2 is constructed by linear combinations of rows of A by T1. T2 is
nothing but a projection onto the subspace spanned by rows of A. Using the
QR decomposition algorithm, we factor T1 and T2 such that:

T1 = Q1R1 and T2 = Q2R2, (4-3)

where Q1 and Q2 are approximate bases for R(A) and R(AT ), respectively.
We now form a matrix M ∈ R`×` by compression of A through left and right
multiplications by orthonormal bases:

M = QT
1 AQ2, (4-4)

We then compute the rank-k truncated SVD of M:

Mk = ŨkΣ̃kṼk, (4-5)

Finally, we form the SOR-SVD-based low-rank approximation of A:

ÂSOR = (Q1Ũk)Σ̃k(Q2Ṽk)T , (4-6)

where Q1Ũk ∈ Rm×k and Q2Ṽk ∈ Rn×k are approximations to the k

leading left and right singular vectors of A, respectively, and Σ̃k contains
an approximation to the k leading singular values. The algorithm is presented
in Algorithm 7.

Algorithm 7 Subspace-Orbit Randomized SVD (SOR-SVD)
Input: Matrix A ∈ Rm×n, integers k and `.
Output: A rank-k approximation.

1: Draw a standard Gaussian matrix Ω ∈ Rn×`;
2: Compute T1 = AΩ;
3: Compute T2 = ATT1;
4: Compute QR decompositions T1 = Q1R1, T2 = Q2R2;
5: Compute M = QT

1 AQ2;
6: Compute the rank-k truncated SVD Mk = ŨkΣ̃kṼk;
7: Form the low-rank approximation of A:ÂSOR = (Q1Ũk)Σ̃k(Q2Ṽk)T .

The SOR-SVD requires three passes through data, for matrices stored-
out-of-core, but it can be modified to revisit the data only once. To this end,
the compressed matrix M (4-4) can be computed by making use of currently
available matrices as follows: both sides of the currently unknown M are
postmultiplied by QT

2 Ω:

MQT
2 Ω = QT

1 AQ2QT
2 Ω. (4-7)

Having defined A ≈ AQ2QT
2 and T1 = AΩ, an approximation to M is

obtained by:
Mapprox = QT

1 T1(QT
2 Ω)†. (4-8)
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Remark 4.1 In the SOR-SVD algorithm, projecting A onto a subspace
spanned by its rows using a matrix containing random linear combinations
of its columns, i.e., equation (4-2), significantly improves the quality of the
approximate basis Q2, compared to that of the TSR-SVD (Algorithm 3). This
results in (i) an accurate approximation Mapprox to M, and (ii) tighter bounds
for the singular values.

The two key differences between our proposed SOR-SVD and TSR-SVD
are (i) to use a sketch of the input matrix in order to project it onto its row
space, rather than using a random matrix, and (ii) to apply truncated SVD
on the reduced-size matrix.

SOR-SVD may be sufficiently accurate for matrices whose singular values
display some decay, however in applications where the data matrix has a
slowly decaying singular values, it may produce singular vectors and singular
values that significantly deviate from those of the optimal SVD. Thus, we
incorporate q steps of a power iteration [39, 71] to improve the accuracy of
the algorithm in these circumstances. Using power iterations, to obtain the
approximate bases, the algorithm consecutively projects the input matrix onto
is subspaces by making use of compressed versions of the input matrix. This
substantially improves the quality of left and right approximate bases. The
resulting algorithm is described in Algorithm 8. Note that in implementing
Algorithm 8, a non-updated T2 must be used to form Mapprox.

Algorithm 8 SOR-SVD with Power Method
Input: Matrix A ∈ Rm×n, integers k, ` and q.
Output: A rank-k approximation.

1: Draw a standard Gaussian matrix T2 ∈ Rn×`;
2: for i = 1: q + 1 do
3: Compute T1 = AT2;
4: Compute T2 = ATT1;
5: end for
6: Compute QR decompositions T1 = Q1R1, T2 = Q2R2;
7: Compute M = QT

1 AQ2 or Mapprox = QT
1 T1(QT

2 T2)†;
8: Compute the rank-k truncated SVD Mk = ŨkΣ̃kṼk or Mapprox-k =

ŨkΣ̃kṼk;
9: Form the low-rank approximation of A: ÂSOR = (Q1Ũk)Σ̃k(Q2Ṽk)T .

4.2
Analysis of SOR-SVD

In this section, we provide a detailed analysis of the performance of the
SOR-SVD algorithms, the basic version in Algorithm 7 as well as the one in
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Algorithm 8. In particular, we develop lower bounds on singular values, as well
as upper bounds on the rank-k approximation error in terms of the spectral
and Frobenius norms.

The TSR-SVD (Algorithm 3) results in the approximation A ≈ Q1MQT
2 ,

where M is defined in (4-4). However, the SOR-SVD procedure results in
A ≈ Q1MkQT

2 , where Mk is the rank-k truncated SVD of M. The following
theorem is a generalization of Theorem 2.1 for SOR-SVD.

Theorem 4.2 Let Q1 ∈ Rm×` and Q2 ∈ Rn×` be matrices with orthonormal
columns, and 1 ≤ k ≤ `. Let Mk be the rank-k truncated SVD of QT

1 AQ2.
Then Mk is an optimal solution to the following optimization problem:

minimize
M∈R`×`,rank(M)≤k

‖A−Q1MQT
2 ‖F = ‖A−Q1MkQT

2 ‖F , (4-9)

and

‖A−Q1MkQT
2 ‖F ≤ ‖A0‖F +‖Ak−Q1QT

1 Ak‖F +‖Ak−AkQ2QT
2 ‖F , (4-10)

and we also have

‖A−Q1MkQT
2 ‖2 ≤ ‖A0‖2 + ‖Ak −Q1QT

1 Ak‖F + ‖Ak −AkQ2QT
2 ‖F .
(4-11)

Proof. The proof is given in Appendix 8.2.1.

4.2.1
Deterministic Error Bounds

In this section, we make use of techniques from linear algebra to give
generic error bounds which depend on the interaction between the standard
Gaussian matrix Ω and the right singular vectors of the data matrix A.

To derive lower bounds on approximated singular values, we begin by
stating two key results that are used in the analysis later on.

Theorem 4.3 (Thompson [83]) Let the matrix A have singular values as
defined in (2-1), and M ∈ R`×` be a submatrix of A. Then for j = 1, ..., `,
we have

σj ≥ σj(M). (4-12)

The relation in (4-12) can be easily proven by allowing M to be M =
QT

1 AQ2, where Q1 ∈ Rm×` and Q2 ∈ Rn×` are orthonormal matrices.

Remark 4.4 Since the matrices M and Mk have the same singular values σj,
for j = 1, ..., k, and moreover, singular values of QT

1 AQ2 and Q1QT
1 AQ2QT

2

coincide [83], we have



Chapter 4. Subspace-Orbit Randomized Singular Value Decomposition 54

σj ≥ σj(Q1MkQT
2 ) = σj(Q1QT

1 AQ2QT
2 ). (4-13)

Lemma 4.5 (Gu [36]). Let B ∈ Rm×n be any matrix, Ω ∈ Rn×` be full
column rank, and X ∈ R`×` be a non-singular matrix. Let BΩ = QbRb and
BΩX = QxRx be QR decompositions of the matrix products. Then

QbQT
b = QxQT

x . (4-14)

For the matrix T2, equation (4-2), and by the SVD of A given in (2-1),
we have

T2 = ATT1 = ATAΩ = VΣ2VTΩ. (4-15)
By partitioning Σ2, we have

T2 = V


Σ2

1 0 0
0 Σ2

2 0
0 0 Σ2

3



VT

1 Ω

VT
2 Ω

 = Q2R2, (4-16)

where Σ1 ∈ Rk×k, Σ2 ∈ R`−p−k×`−p−k, Σ3 ∈ Rn−`+p×n−`+p. We define
Ω1 ∈ R`−p×` and Ω2 ∈ Rn−`+p×` as follows:

Ω1 , VT
1 Ω, and Ω2 , VT

2 Ω. (4-17)

We assume that Ω1 is full row rank and its pseudo-inverse satisfies

Ω1Ω†1 = I. (4-18)

To understand the behavior of singular values and the low-rank approx-
imation, we choose a matrix X ∈ R`×`, which orients the first k columns of
T2X in the directions of the k leading singular vectors in V. Thus we choose

X =
[
Ω†1

Σ2
1 0

0 Σ2
2

−1

, X̃
]
, (4-19)

where the X̃ ∈ R`×p is chosen such that X ∈ R`×` is non-singular, and
Ω1X̃ = 0. Now we write

T2X = ATAΩX = V


Σ2

1 0
0 Σ2

2

Ω1

Σ2
3Ω2

X = V


I 0 0
0 I 0

W1 W2 W3

 , (4-20)

where W1 = Σ2
3Ω2Ω†1Σ−2

1 ∈ Rn−`+p×k, W2 = Σ2
3Ω2Ω†1Σ−2

2 ∈ Rn−`+p×`−p−k,
and W3 = Σ2

3Ω2X̃ ∈ Rn−`+p×p.
Now by a QR decomposition of equation (4-20), with partitioned matri-

ces, we have
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V


I 0 0
0 I 0

W1 W2 W3

 =Q̃R̃ = [Q̃1 Q̃2 Q̃3]


R̃11 R̃12 R̃13

0 R̃22 R̃23

0 0 R̃33



=


(Q̃1R̃11)T

(Q̃1R̃12 + Q̃2R̃22)T

(Q̃1R̃13 + Q̃2R̃23 + Q̃3R̃33)T


T

.

(4-21)

We use this representation to develop lower bounds on singular values and
upper bounds on the error of the rank-k approximation of SOR-SVD.

Lemma 4.6 Let W1 be defined as in (4-20), and Ω1 be full row rank. Then
for ÂSOR defined in Algorithms 7 and 8, we have

σk(ÂSOR) ≥ σk√
1 + ‖W1‖2

2

. (4-22)

Proof. The proof is given in Appendix 8.2.2.
We now present the result.

Theorem 4.7 Suppose that the matrix A has an SVD defined in (2-1),
2 ≤ k + p ≤ `, and ÂSOR is computed through the basic form of SOR-
SVD (Algorithm 7). Assume furthermore that Ω1 is full row rank, then for
j = 1, ..., k, we have

σj ≥ σj(ÂSOR) ≥ σj√
1 + ‖Ω2‖2

2‖Ω1
†‖2

2

(
σ`−p+1
σj

)4
, (4-23)

and when the power method is used (Algorithm 8), we have

σj ≥ σj(ÂSOR) ≥ σj√
1 + ‖Ω2‖2

2‖Ω1
†‖2

2

(
σ`−p+1
σj

)4q+4
. (4-24)

Proof. The proof is given in Appendix 8.2.3.
To derive upper bounds on the error of the low-rank approximation with

respect to the spectral and Frobenius norms provided equations (4-10), (4-11),
it suffices to bound the right-hand sides of the equations, i.e., ‖Ak−Q1QT

1 Ak‖F
and ‖Ak−AkQ2QT

2 ‖F . To this end, we begin by stating a proposition from [39].

Proposition 4.8 (Halko et al. [39]) Suppose that for given matrices N1 and
N2, R(N1) ⊂ R(N2). Then for any matrix A, it holds that

‖PN1A‖2 ≤ ‖PN2A‖2,

‖(I−PN2)A‖2 ≤ ‖(I−PN1)A‖2,
(4-25)
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where PN1 and PN2 are orthogonal projections onto N1 and N2, respectively.

By combining Lemma 4.5 and Proposition 4.8, it follows that

‖Ak(I−Q2QT
2 )‖F = ‖Ak(I− Q̃Q̃T )‖F ≤ ‖Ak(I− Q̃1Q̃T

1 )‖F . (4-26)

By the definition of Q̃1, equation (8-25), it follows

I− Q̃1Q̃T
1 = V


I− W̃−1 0 −W̃−1WT

1

0 −I 0
−W1W̃−1 0 I−W1W̃−1WT

1

VT , (4-27)

where W1 is defined in (4-20), and W̃−1 is defined as follows:

R̃−1
11 R̃−T11 = (R̃T

11R̃11)−1 = (1 + WT
1 W1)−1 = W̃−1.

We then have

Ak(I− Q̃1Q̃T
1 ) = U[Σ1 0 0]VT (I− Q̃1Q̃T

1 )

= U[Σ1(I− W̃−1) 0 −Σ1W̃−1WT
1 ]VT︸ ︷︷ ︸

N

. (4-28)

By the definition of the Frobenius norm, it follows that

‖Ak(I− Q̃1Q̃T
1 )‖F =

√
trace(NNT ) =

√
trace(Σ1WT

1 (I + W1WT
1 )−1W1ΣT

1 )

≤
√
trace([‖W1Σ1‖2

2I + Σ−2
1 ]−1)

=‖W1Σ1‖2

√
trace(Σ1[‖W1Σ1‖2

2I + Σ−2
1 ]−1)ΣT

1 )

≤
√
k‖W1Σ1‖2σ1√
σ12 + ‖W1Σ1‖2

2

.

(4-29)
Plugging this into (4-26), we have

‖Ak(I−Q2QT
2 )‖F ≤

√
k‖W1Σ1‖2σ1√
σ12 + ‖W1Σ1‖2

2

. (4-30)

To bound ‖Ak − Q1QT
1 Ak‖F , we need to perform the same procedure

described for T2 for the matrix product T1 in equation (4-1). Thus, for T1

and by the SVD of A in (2-1), we have

T1 = AΩ = UΣVTΩ. (4-31)

By partitioning Σ, we obtain

T1 = U


Σ1 0 0
0 Σ2 0
0 0 Σ3



VT

1 Ω

VT
2 Ω

 = Q1R1. (4-32)

Having (4-17), we now choose a matrix X ∈ R`×`, which orients the first k
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columns of T1X in the directions of the k leading singular vectors in U. Thus,
we have

X =
[
Ω†1

Σ1 0
0 Σ2

−1

, X̄
]
, (4-33)

where the X̄ ∈ R`×p is chosen such that X ∈ R`×` is non-singular, and
Ω1X̄ = 0. We now write

T1X = AΩX = U


Σ1 0

0 Σ2

Ω1

Σ3Ω2

X = U


I 0 0
0 I 0

D1 D2 D3

 , (4-34)

where D1 = Σ3Ω2Ω†1Σ−1
1 ∈ Rn−`+p×k, D2 = Σ3Ω2Ω†1Σ−1

2 ∈ Rn−`+p×`−p−k,
and D3 = Σ3Ω2X̄ ∈ Rn−`+p×p. We then write

U


I 0 0
0 I 0

D1 D2 D3

 = Q̄R̄ = [Q̄1 Q̄2 Q̄3]


R̄11 R̄12 R̄13

0 R̄22 R̄23

0 0 R̄33

 . (4-35)

and as a result, we have

U


I
0

D1

 = Q̄1R̄11. (4-36)

By Lemma 4.5, we have
Q1QT

1 = Q̄Q̄T . (4-37)
where Q1 and Q̄ are the Q-factors of the QR decompositions of T1 (4-32)
and T1X (4-35), respectively. By combining Lemma 4.5 and Proposition 4.8,
it follows that

‖(I−Q1QT
1 )Ak‖F = ‖(I− Q̄Q̄T )Ak‖F ≤ ‖(I− Q̄1Q̄T

1 )Ak‖F . (4-38)

By the definition of Q̄1, equation (4-36), it follows

I− Q̄1Q̄T
1 = U


I− D̄−1 0 −D̄−1DT

1

0 −I 0
−D1D̄−1 0 I−D1D̄−1DT

1

UT , (4-39)

where D1 is defined in (4-34), and D̄−1 is defined as follows:

R̄−1
11 R̄−T11 = (R̄T

11R̄11)−1 = (1 + DT
1 D1)−1 = D̄−1.

We then write

(I− Q̄1Q̄T
1 )Ak = (I− Q̄1Q̄T

1 )U


Σ1

0
0

VT = U


(I− D̄−1)Σ1

0
−D1D̄−1Σ1

VT

︸ ︷︷ ︸
H

. (4-40)
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By the definition of the Frobenius norm, it follows that

‖(I− Q̄1Q̄T
1 )Ak‖F =

√
trace(HTH) =

√
trace(Σ1DT

1 (I + D1DT
1 )−1D1ΣT

1 )

≤
√
trace([‖D1Σ1‖2

2I + Σ−2
1 ]−1)

=‖D1Σ1‖2

√
trace(Σ1[‖D1Σ1‖2

2I + Σ−2
1 ]−1)ΣT

1 )

≤
√
k‖D1Σ1‖2σ1√
σ12 + ‖D1Σ1‖2

2

.

(4-41)
By plugging this into (4-38), we obtain

‖(I−Q1QT
1 )Ak‖F ≤

√
k‖D1Σ1‖2σ1√
σ12 + ‖D1Σ1‖2

2

. (4-42)

We now present the result.
Theorem 4.9 With the notation of Theorem 4.7, and % = 2, F , the approxi-
mation error for Algorithm 7 must satisfy

‖A− ÂSOR‖% ≤ ‖A0‖% +

√√√√ α2‖Ω2‖2
2‖Ω1

†‖2
2

1 + β2‖Ω2‖2
2‖Ω1

†‖2
2

+

√√√√ η2‖Ω2‖2
2‖Ω1

†‖2
2

1 + τ 2‖Ω2‖2
2‖Ω1

†‖2
2
,

(4-43)
where α =

√
k
σ2
`−p+1
σk

, β = σ2
`−p+1
σ1σk

, η =
√
kσ`−p+1, and τ = σ`−p+1

σ1
. When

the power method is used (Algorithm 8), α =
√
k
σ2
`−p+1
σk

(
σ`−p+1
σk

)2q
, β =

σ2
`−p+1
σ1σk

(
σ`−p+1
σk

)2q
, η = σk

σ`−p+1
α, and τ = 1

σ`−p+1
β.

Proof. The proof is given in Appendix 8.2.4.
Theorem 4.7 shows that the accuracy of singular values depends strongly

on the ratio σ`−p+1
σj

for j = 1, ..., k, whereas by Theorem 4.9, the accuracy of
the low-rank approximation depends on σ`−p+1

σk
. The power method decreases

the extra factors in the error bounds by driving down the aforesaid ratios
exponentially fast. Thus, by increasing the number of iterations q, we make
the extra factors as close to zero as we wish. However, this increases the cost
of the algorithm.

4.2.2
Average-Case Error Bounds

In this section, we provide an average-case error analysis for the SOR-
SVD algorithm, which, in contrast to the argument in Section 4.2.1, depends
on distributional assumptions on the random matrix Ω. To be precise, Ω
has a standard Gaussian distribution which is invariant under all orthogonal
transformations. This means that for any matrix V with orthonormal columns,
the product VTΩ has the same standard Gaussian distribution. This allows
us to take advantage of the vast literature on properties of Gaussian matrices.
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We begin by stating a few propositions that are used later on.

Proposition 4.10 (Gu [36]) Let G ∈ Rm×n be a Gaussian matrix. For any
α > 0, we have

E

 1√
1 + α2‖G‖2

2

 ≥ 1√
1 + α2ν2

, (4-44)

where ν =
√
m+

√
n+ 7.

Proposition 4.11 With the notation of Proposition 4.10 and, furthermore,
for any β > 0, we have

E


√√√√ α2‖G‖2

2
1 + β2‖G‖2

2

 ≤
√

α2ν2

1 + β2ν2 . (4-45)

where ν is defined in (4-44).

Proof. The proof is given in Appendix 8.2.5.

Proposition 4.12 (Gu [36]) Let G ∈ R`−p×` be a Gaussian matrix. Then
rank(G) = `− p with probability 1. For p ≥ 2 and any α > 0

E

 1√
1 + α2‖G†‖2

2

 ≥ 1√
1 + α2ν2

, (4-46)

where ν = 4e
√
`

p+ 1 .

Proposition 4.13 With the notation of Proposition 4.12 and, furthermore,
for any β > 0, we have

E


√√√√ α2‖G†‖2

2
1 + β2‖G†‖2

2

 ≤
√

α2ν2

1 + β2ν2 . (4-47)

where ν is defined in (4-46).

Proof. The proof is given in Appendix 8.2.6.
We now present the result.

Theorem 4.14 With the notation of Theorem 4.7 and γj = σ`−p+1
σj

, for
j = 1, ..., k, for Algorithm 7, we have

E(σj(ÂSOR)) ≥ σj√
1 + ν2γ4

j

, (4-48)

and when the power method is used (Algorithm 8), we have

E(σj(ÂSOR)) ≥ σj√
1 + ν2γ4q+4

j

, (4-49)

where ν = ν1ν2, ν1 =
√
n− `+ p+

√
`+ 7, and ν2 = 4e

√
`

p+1 .
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Proof. The proof is given in Appendix 8.2.7.
We now present a theorem that establishes average error bounds on the

error of the low-rank approximation.

Theorem 4.15 With the notation of Theorem 4.7, and % = 2, F , for Algo-
rithm 7, we have

E‖A− ÂSOR‖% ≤ ‖A0‖% + (1 + γk)
√
kνσ`−p+1, (4-50)

and when the power method is used (Algorithm 8), we have

E‖A− ÂSOR‖% ≤ ‖A0‖% + (1 + γk)
√
kνσ`−p+1γ

2q
k , (4-51)

where γk and ν are defined in Theorem 4.14.

Proof. The proof is given in Appendix 8.2.8.

Remark 4.16 The expectation bounds set forth in Theorem 4.14 and 4.15
describe the typical behavior of SOR-SVD due to measure concentration effects.
Approximation error tail bounds can be developed by making use of the methods
from [36, Section 5.3].

4.2.3
Computational Complexity

To decompose the matrix A, SOR-SVD of Algorithm 7 incurs the
following costs: Step 1 costs O(n`), Step 2 costs O(mn`), Step 3 costs O(mn`),
Step 4 costs O(m`2 + n`2), Step 5 costs O(mn` + m`2) (if the matrix M is
approximated by Mapprox of equation (4-8) in this step, the cost would be
O(m`2 + n`2 + `3)), Step 6 costs O(`3), Step 7 (forming the left and right
approximate bases) costs O(m`k+n`k). The dominant cost of Step 1 through
Step 7 occurs when multiplying A and AT with the corresponding matrices.
Thus

CSOR-SVD = O(mn`). (4-52)
The sample size parameter ` is typically close to the minimal rank k.

The cost in (4-52) results from the dense matrix A considered. If A is sparse,
the arithmetic cost is proportional to the number s of non-zero entries of A:
O(s`).

Algorithm 7 requires either three or two passes (when M is approximated
by Mapprox) through data to factor A. When the power method is incorporated
(Algorithm 8), SOR-SVD requires either (2q + 3) or (2q + 2) passes (when
M is approximated by Mapprox) over the data with arithmetic costs of (2q +
3)CSOR-SVD or (2q + 2)CSOR-SVD, respectively.
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Except for matrix-matrix multiplications, which are easily parallelizable,
SOR-SVD performs two QR decompositions on matrices of sizem×` and n×`,
whereas R-SVD performs one QR decomposition on an m×` matrix. Recently,
Demmel et al. [21] developed communication-avoiding sequential and parallel
QR decomposition algorithms that perform the computations with optimal
communication costs. Thus, this step of both algorithms can be implemented
efficiently. In addition, SOR-SVD performs an SVD on an `× ` matrix, M (or
Mapprox) in Algorithms 7 and 8, whereas the R-SVD performs an SVD on a n×`
matrix, B in Algorithm 2. Standard techniques to compute an SVD, however,
are challenging for parallelization [18, 61]. Given a large input matrix A for
which a rank-k approximation to be computed, where k ≤ ` � min{m,n},
M (or Mapprox) would be much smaller than B. Considering the size of M
(or Mapprox) and, further, having known that current advanced computers
have hardware switches that are controlled in software [23], the SVD of the
`× ` matrix can be computed either in-core on a sequential processor or with
minimum communication cost on parallel processors. Thus, this step of SOR-
SVD can be executed efficiently. This significantly reduces the computational
time of SOR-SVD, an advantage over R-SVD.

4.3
Numerical Experiments

In this section, we evaluate the performance of the SOR-SVD algorithm
through numerical tests. Our goal is to experimentally investigate the behavior
of the SOR-SVD algorithm in different scenarios.

In Section 4.3.1, we consider two classes of synthetic matrices to experi-
mentally verify that the SOR-SVD algorithm provides highly accurate singular
values and low-rank approximations. We compare the performance of SOR-
SVD with those of the SVD, R-SVD (Algorithm 2), TSR-SVD (Algorithm 3),
and SFRA (Algorithm 4).

In Section 4.3.2, we experimentally investigate the tightness of the low-
rank approximation error bounds for the spectral and Frobenius norm provided
in Theorem 4.9.

In Section 4.3.3, we apply the SOR-SVD to recovering a low-rank plus
a sparse matrix through experiments on (i) synthetically generated data with
various dimensions, numerical rank and gross errors, and (ii) real-time data in
applications to background subtraction in surveillance video, and shadow and
specularity removal from face images.
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Figure 4.1: Comparison of singular values for the noisy low-rank matrix. No
power method, (q = 0) (left), and q = 2 (right).

4.3.1
Synthetic Matrices

We first describe two types of data matrices that we use in our tests to
assess the behavior of SOR-SVD. For the sake of simplicity, we focus on square
matrices.

– Matrix 1: A Noisy Low-Rank Matrix. This matrix is generated as
described in Section 3.3.1 (first example). Here we set gap = 0.1.

– Matrix 2: A Matrix with Rapidly Decaying Singular Values. Matrix
A ∈ R1000×1000 is generated as A = UΣVT , where U and V are
random orthonormal matrices, Σ = diag(1−1, 2−1, ..., n−1). We set the
rank k = 10.

To study the behavior of SOR-SVD and, further, to provide a fair
comparison, we factor the matrix A using the SVD, R-SVD, TSR-SVD, SOR-
SVD, and SFRA algorithms. R-SVD, TSR-SVD, and SOR-SVD all require a
predetermined sample size parameter ` to compute an approximation of A.
Thus, we arbitrarily set ` = 38 for the first test matrix, and ` = 18 for the
second test matrix. These randomized algorithms require the same number
of passes through A, either two or 2q + 2 when the power iteration is used
to perform the factorization. SFRA, however, requires sketch size parameters
(p1, p2) to compute an approximation. We thus set p1 = 2k+1 and p2 = 2p1 +1
for both classes of matrices studied, based on the recommendations provided in
the work [86, Section 4.5]. We then compare the singular values and low-rank
approximations computed by the algorithms mentioned.

Figures 4.1 and 4.2 display the singular values computed by each algo-
rithm for the two matrices. SOR-SVD and SFRA use a truncated SVD on
the corresponding reduced-size matrices M and X, respectively. However, we
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Figure 4.2: Comparison of singular values for the matrix with polynomially
decaying singular values. No power method, (q = 0) (left), and q = 2 (right).

show the results for a full SVD, i.e., a full SVD performed on M and X, for
the purpose of comparison.

From the figures, we make the following observations:

– For the first matrix (noisy low-rank), SFRA shows the poorest perfor-
mance among the algorithms studied: it considerably overestimates some
of the leading as well as trailing singular values of the matrix.

– For the noisy low-rank matrix, when the power method is not used
(q = 0), the SOR-SVD approximations of some singular values are good
estimates of the true ones, while for the others the estimates are relatively
poor. In this case, SOR-SVD outperforms TSR-SVD, while having a
similar performance to R-SVD. When q = 2, the quality of estimated
singular values shows a substantial improvement, and no loss of accuracy
is seen in the approximations by SOR-SVD, compared to the optimal
SVD.

– For the second matrix (polynomially decaying spectrum), when q = 0,
TSR-SVD has the poorest performance among the randomized algorithm
considered, while R-SVD, SOR-SVD, and SFRA show similar perfor-
mances. When q = 2, which corresponds to incorporating the power
method, SOR-SVD matches the performance of the optimal SVD. In
this case, R-SVD and TSR-SVD approximate the singular values of the
matrix with very high accuracy.

To compare the quality of low-rank approximations, we first construct a
rank-k approximation Âout to A by each algorithm. For R-SVD, TSR-SVD,
and SOR-SVD, we compute the approximations by varying the sample size
parameter `, while the rank is fixed. For SFRA, however, we compute the
rank-k approximation by varying the sketch size parameters (p1, p2) through
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Figure 4.3: Comparison of the Frobenius norm approximation error for the
noisy low-rank matrix. No power method, (q = 0) (left), and q = 2 (right).

Figure 4.4: Comparison of the Frobenius norm approximation error for the
matrix with polynomially decaying singular values. No power method, (q = 0)
(left), and q = 2 (right).

increasing the target rank. We then calculate the Frobenius-norm error:

ek = ‖A− Âout‖F . (4-53)

Figures 4.3 and 4.4 display the results. Since SFRA does not employ the
power iteration, we have discarded its results from the second graphs of the
figures in order to clearly demonstrate the results for other algorithms. We
make the following observations:

– When no power method is employed by the randomized algorithms, for
both test matrices TSR-SVD shows the worst performance among the
algorithms, while R-SVD, SOR-SVD, and SFRA show similar behavior.

– When the power method is incorporated, for both test matrices SFRA
has the poorest performance among the algorithms (we have discarded
its results from the graphs since they are far away from those of the
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Figure 4.5: Comparison of the Frobenius norm error of SOR-SVD with the
theoretical bound (Theorem 4.9). No power method, (q = 0) (left), and q = 2
(right).

optimal SVD). In this case, SOR-SVD approximates the matrices with
almost no loss of accuracy compared to the SVD.

4.3.2
Empirical Evaluation of SOR-SVD Error Bounds

The theoretical error bounds for SOR-SVD are given in Theorem 4.9.
To evaluate the tightness of the bounds provided by Theorem 4.9, we form an
input matrix according to Matrix 1. With the rank k = 20 fixed, we increase
the sample size parameter `, considering the assumption 2 ≤ p ≤ ` − k. A
comparison between the theoretical bounds and what are achieved in practice
is shown in Figures 4.5 and 4.6; Figure 4.5 compares the Frobenius norm error
with the corresponding theoretical bound, and Figure 4.6 compares the spectral
norm error with the corresponding theoretical bound.

The effect of the power scheme can be easily seen from the figures; when
q = 2, the theoretical bounds given in Theorem 4.9 closely track the error in
the low-rank approximation of Algorithm 8. We conclude that for the noisy
low-rank matrix, the theoretical error bounds are empirically sharp.

4.3.3
Robust PCA Using SOR-SVD

We now apply SOR-SVD to solve the robust PCA problem [9,14,93]; see
Section 2.6 of Chapter 2 for a detailed description of robust PCA. We retain
the original objective function proposed in [9,14,59,93], and apply SOR-SVD
as a surrogate to the SVD to solve the optimization problem (2-26). We adopt
the continuation technique [59, 85], which increases µ in each iteration. The
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Figure 4.6: Comparison of the spectral norm error of SOR-SVD with the
theoretical bound (Theorem 4.9). No power method, (q = 0) (left), and q = 2
(right).

pseudocode of the proposed method, called ALM-SOR-SVD hereafter, is given
in Table 4.1.

Table 4.1: Pseudo-code for RPCA solved by the ALM-SOR-SVD method.

Input: Matrix X, λ, µ0, µ̄, ρ,Y0,S0, k = 0;
Output: Low-rank plus sparse matrix

1: while the algorithm does not converge do
2: (U,Σ,V) = sor-svd(X− Sk + µ−1

k Yk);
3: Lk+1 = USµ−1

k
(Σ)VT ;

4: Sk+1 = Sλµ−1
k

(X− Lk+1 + µ−1
k Y);

5: Yk+1 = Yk + µk(X− Lk+1 − Sk+1);
6: µk+1 ← max(ρµk, µ̄);
7: end while
8: return L∗ and S∗

In Table 4.1 Sε(x) = sgn(x)max(|x|−ε, 0) is a soft-thresholding operator
[38], and λ, µ0, µ̄, ρ, Y0, and S0 are initial values.

In the next subsections, we verify the efficiency and efficacy of the ALM-
SOR-SVD to solve the RPCA problem on randomly generated data, as well
as real-time data. We compare the experimental results obtained with those of
applying the partial SVD (by using PROPACK package) [57]. The PROPACK
function provides an efficient algorithm, suitable for approximating large low-
rank matrices, which computes a specified number of largest singular values
and corresponding singular vectors of a matrix by making use of the Lanczos
bidiagonalization algorithm with partial reorthogonalization (BPRO). We run
the experiments in MATLAB on a desktop PC with a 3 GHz intel Core i5-4430
processor and 8 GB of memory.
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4.3.3.1
Synthetic Data Recovery

We generate rank-k X = L + S as a sum of a low-rank matrix L ∈ Rn×n

and a sparse matrix S ∈ Rn×n. The matrix L is generated by a matrix
multiplication L = UVT , where U, V ∈ Rn×k have standard Gaussian
distributed entries. The matrix S has s non-zero entries independently drawn
from the set {-50, 50}. We apply the ALM-SOR-SVD method and the ALM
method using the partial SVD, hereafter ALM-PSVD, on X to recover L and S.

Table 4.2 summarizes the numerical results where rank(L) = 0.05×n and
s = ‖S‖0 = 0.05×n2, and Table 4.3 presents the results for a more challenging
scenario where rank(L) = 0.05 × n and s = ‖S‖0 = 0.1 × n2. In the Tables,
Time denotes the computational time in seconds, Iter. denotes the number
of iterations, and ξ denotes the relative error defined as ‖X− L̂− Ŝ‖F/‖X‖F ,
where (L̂, Ŝ) is the pair of solution of either algorithm. For the simulations,
the initial values suggested in [59] are adopted, and the algorithms stop when
the following condition holds:

‖X− L̂− Ŝ‖F
‖X‖F

< 10−7. (4-54)

Since SOR-SVD and the truncated SVD require a predetermined rank `
to perform the decomposition, we set ` = 2r, a random start, and q = 1 for
SOR-SVD.

The results in Tables 4.2 and 4.3 lead us to make several conclusions on
the ALM-SOR-SVD method:

– It successfully detects the numerical rank k in all cases.

– It provides the exact recovery of the sparse matrix S from X, with the
same number of iterations compared to the ALM-PSVD method.

– In terms of runtime, it outperforms the ALM-PSVD method with
speedups of up to 47 times.

4.3.3.2
Background Subtraction in Surveillance Video

In this experiment, we use four different real-time videos introduced
in [58]. The first video sequence has 200 grayscale frames with dimensions
176× 144 in each frame, and has been taken in a hall of an airport. We stack
each frame as a column of the data matrix X ∈ R25344×200. The second video has
200 grayscale frames with dimensions 256× 320 in each frame, and has been
taken in a shopping mall. Thus X ∈ R81920×200. These two videos have relatively
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Table 4.2: Comparison of the ALM-SOR-SVD and ALM-PSVD methods for
synthetic data recovery for the case r(L) = 0.05× n and s = 0.05× n2.

n r(L) ‖S‖0 Methods r(L̂) ‖Ŝ‖0 Time Iter. ξ

500 25 12.5e3 ALM-SOR-SVD 25 12.5e3 0.1 17 6.3e-8
ALM-PSVD 25 12.5e3 2.2 17 6.6e-8

1000 50 5e4 ALM-SOR-SVD 50 5e4 0.7 17 5.3e-8
ALM-PSVD 50 5e4 22 17 5.4e-8

2000 100 2e5 ALM-SOR-SVD 100 2e5 4.6 17 5.0e-8
ALM-PSVD 100 2e5 167 17 5.1e-8

3000 150 45e4 ALM-SOR-SVD 150 45e4 11.8 17 4.9e-8
ALM-PSVD 150 45e4 563 17 4.8e-8

Table 4.3: Comparison of the ALM-SOR-SVD and ALM-PSVD methods for
synthetic data recovery for the case r(L) = 0.05× n and s = 0.1× n2.

n r(L) ‖S‖0 Methods r(L̂) ‖Ŝ‖0 Time Iter. ξ

500 25 25e3 ALM-SOR-SVD 25 25e3 0.2 20 4.9e-8
ALM-PSVD 25 25e3 2.5 20 3.2e-8

1000 50 1e5 ALM-SOR-SVD 50 1e5 0.8 19 8.3e-8
ALM-PSVD 50 1e5 25.9 19 8.1e-8

2000 100 4e5 ALM-SOR-SVD 100 4e5 5.3 19 7.4e-8
ALM-PSVD 100 4e5 189 19 6.8e-8

3000 150 9e5 ALM-SOR-SVD 150 9e5 13.6 19 7.6e-8
ALM-PSVD 150 9e5 609 19 7.2e-8

static background. The third video has 200 grayscale frames with dimensions
130× 160 in each frame, i.e., X ∈ R20800×200, and has been taken from an
escalator at an airport. The background of this video changes due to the
moving escalator. The fourth video has 250 grayscale frames with dimensions
128× 160 in each frame taken in an office. Thus X ∈ R20480×250. In this video,
the illumination changes drastically, making it very challenging to analyze.

The predetermined rank `, assigned to both algorithms, is obtained by
invoking the bound in (3-16). We assign the minimum value of k satisfying
(3-16) to `, i.e., ` = k, and set q = 1 for SOR-SVD.
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Figure 4.7: Background subtraction in surveillance video. Images in columns
1 and 4 are frames of the video sequence of an airport and a shopping mall,
respectively. Images in columns 2 and 5 are recovered backgrounds L̂, and
columns 3 and 6 correspond to foregrounds Ŝ by the ALM-SOR-SVD method.

Figure 4.8: Background subtraction in surveillance video. Images in columns
1 and 4 are frames of the video sequence of an escalator and an office,
respectively. Images in columns 2 and 5 are recovered backgrounds L̂, and
columns 3 and 6 correspond to foregrounds Ŝ by the ALM-SOR-SVD method.

Some sample frames of the videos with corresponding recovered back-
grounds and foregrounds are shown in Figures 4.7 and 4.8. We only show the
results of the ALM-SOR-SVD method since the results returned by the ALM-
PSVD method are visually identical. It is evident that the proposed method
can successfully recover the low-rank and sparse components of the data matrix
in all scenarios.

Table 4.4 summarizes the numerical results. In all cases, the ALM-SOR-
SVD method outperforms the ALM-PSVD method in terms of runtime, while
having the same number of iterations.

4.3.3.3
Shadow and Specularity Removal From Face Images

In our experiment, we use face images taken from the Yale B face
database [34]. Each image has dimensions 192× 168 with a total of 64
illuminations. The images are stacked as columns of the data matrix X ∈
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Table 4.4: Comparison of the ALM-PSVD and ALM-SOR-SVD methods for
real-time data recovery.

Dataset ALM-PSVD
Time Iter. ξ

ALM-SOR-SVD
Time Iter. ξ

Airport hall
25344× 200

14.2 36 6.0e-8 5.7 36 6.6e-8

Shopping mall
81920× 200

44.2 36 6.9e-8 19.1 36 6.8e-8

Escalator
20800× 200

11.3 36 7.5e-8 4.6 36 6.5e-8

Lobby
20480× 250

10.9 37 5.8e-8 6.6 37 5.7e-8

Yale B03
32256× 64

6.0 36 9.2e-8 2.5 36 7.5e-8

Yale B08
32256× 64

7.2 36 9.8e-8 2.6 36 7.6e-8

R32256×64. The recovered images are shown in Figure 4.9, and the numerical
results are presented in Table 4.4.

We conclude that the ALM-SOR-SVD method successfully recovers the
low-rank and sparse matrices from the dataset with speedups of up to 2.7 times,
compared to the ALM-PSVD method with the same number of iterations.
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Figure 4.9: Removing shadows and specularities from face images. Images
in columns 1 and 4 are face images under different illuminations. Images
in columns 2 and 5 are are recovered images after removing shadows and
specularities by the ALM-SOR-SVD method, and images in columns 3 and 6
correspond to the removed shadows and specularities.



5
Compressed Randomized UTV Decompositions

This chapter presents a rank-revealing decomposition algorithm powered
by the randomized sampling schemes termed compressed randomized UTV
(CoR-UTV) decomposition, which computes a low-rank approximation of a
given matrix.

For a large and dense matrix A ∈ Rm×n with numerical rank k, CoR-
UTV computes a low-rank approximation ÂCoR of A such as

ÂCoR = UTVT , (5-1)

where U and V have orthonormal columns, and T is triangular (either
upper or lower, whichever is preferred). Built on SOR-SVD, the difference
between the two algorithms is that in CoR-UTV a QR algorithm with column
pivoting (QRCP) is used on the compressed matrix rather than an SVD. This
allows CoR-UTV (i) to be more computationally efficient and, (ii) to employ
communication-avoiding QRCP algorithm [20,26] to deliver the factorization,
making it even more suitable on modern computational platforms than SOR-
SVD. CoR-UTV only requires a few passes through data, for an A stored
externally, and runs in O(mnk) flops. The rank-revealing property of CoR-
UTV is proved, and upper bounds on the error of the low-rank approximation
are given. CoR-UTV is applied to treat an image reconstruction problem, as
well as the robust PCA problem in applications of background subtraction in
surveillance video and shadow and specularity removal from face images.

5.1
The CoR-UTV Algorithm

The CoR-UTV decomposition constructs a low-rank approximation of
an input matrix in the form of (5-1). We focus on a matrix A with m ≥ n,
where CoR-UTV produces a middle matrix T that is upper triangular, i.e.,
URV decomposition [79]. The modifications required for a corresponding CoR-
UTV algorithm for the other case where m < n, i.e., ULV decomposition [81],
that produces a lower triangular middle matrix T is straightforward. For a
theoretical comparison of the URV and ULV decompositions see [31,40,79,81,
82] and the references therein. We also present a version of CoR-UTV with
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power iteration, which improves the performance of the algorithm at an extra
computational cost.

Given a matrix A ∈ Rm×n, where m ≥ n, with numerical rank k and an
integer k ≤ ` < n, CoR-UTV is computed by taking the following seven steps:

1. Generate a standard Gaussian matrix Ψ ∈ Rn×`,

2. Compute the matrix product:

C1 = AΨ, (5-2)

The matrix C1 ∈ Rm×` is a projection onto the subspace spanned by
columns of A.

3. Compute the matrix product:

C2 = ATC1, (5-3)

The matrix C2 ∈ Rn×` is a projection onto the subspace spanned by rows
of A.

4. Compute QR decompositions of C1 and C2:

C1 = Q1R1, and C2 = Q2R2, (5-4)

The matrices Q1 and Q2 are approximate bases for R(A) and R(AT ),
respectively.

5. Compute the matrix product:

D = QT
1 AQ2, (5-5)

The matrix D ∈ R`×` is formed by compression of A via left and right
multiplications by orthonormal bases.

6. Compute a QR decomposition with column pivoting (QRCP) of D:

D = Q̃R̃P̃T . (5-6)

7. Form the CoR-UTV-based low-rank approximation of A:

ÂCoR = UTVT , (5-7)

where U = Q1Q̃ ∈ Rm×` and V = Q2P̃ ∈ Rn×` construct approxima-
tions to the first ` left and right singular vectors of A, respectively, and
T = R̃ ∈ R`×` is upper triangular with diagonals approximating the first
` singular values of A.
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Algorithm 9 Compressed Randomized UTV (CoR-UTV)
Input: Matrix A ∈ Rm×n, integers k and `.
Output: A rank-` approximation.

1: Draw a standard Gaussian matrix Ψ ∈ Rn×`;
2: Form C1 = AΨ;
3: Form C2 = ATC1;
4: Compute QR decompositions C1 = Q1R1 and C2 = Q2R2;
5: Form D = QT

1 AQ2;
6: Compute the QRCP D = Q̃R̃P̃T ;
7: Form the CoR-UTV-based low-rank approximation of A: ÂCoR = UTVT ;

U = Q1Q̃,T = R̃,V = Q2P̃T .

The CoR-UTV algorithm is presented in Algorithm 9.
CoR-UTV requires three passes over the data, for a matrix stored

externally, but it can be altered to revisit the data only once. To this end, the
compressed matrix D (5-5), is computed by making use of available matrices
as follows:

DQT
2 Ψ = QT

1 AQ2QT
2 Ψ. (5-8)

where both sides of currently unknown D are postmultiplied by QT
2 Ψ. Having

defined A ≈ AQ2QT
2 and C1 = AΨ, an approximation to D is obtained by

Dapprox = QT
1 C1(QT

2 Ψ)†. (5-9)

The key differences between CoR-UTV and TSR-SVD (Algorithm 3) are
as follows:

– CoR-UTV uses a sketch of the input matrix in order to project it onto
its row space, i.e., equation (5-3). This (i) significantly improves the
quality of the approximate basis Q2, and as a result, the approximate
right singular subspace of A, compared to that of TSR-SVD, which uses
a random matrix for the projection, and (ii) allows (5-9) to provide a
highly accurate approximation to (5-5).

– CoR-UTV applies a column-pivoted QR decomposition to D, i.e., equa-
tion (5-6), whereas TSR-SVD uses an SVD to factor the compressed
matrix. This, as explained later on, reduces the computational costs of
the algorithm compared to TSR-SVD.

The key difference between CoR-UTV and SOR-SVD [54], however,
lies in the computation of the compressed matrix D; SOR-SVD applies a
truncated SVD and, as result, gives a rank-k approximation to A, while
CoR-UTV employs a column-pivoted QR decomposition and returns a rank-`
approximation. Nevertheless, the SVD is computationally more expensive than
the column-pivoted QR and, moreover, standard techniques to computing it
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are challenging to parallelize [18, 36, 39]. While recently developed column-
pivoted QR algorithms use randomization, which can factor a matrix with
optimal/minimum communication cost [26, 62]. This can substantially reduce
the computational costs of decomposing the compressed matrix, compared to
the SVD, when it does not fit into fast memory.

CoR-UTV may be sufficiently accurate for matrices whose singular values
display some decay, however, in applications where the data matrix has a
slowly decaying singular values, it may produce poor singular vectors and
singular values compared to those of the SVD. Thus, we incorporate q steps
of a power iteration [39,71] to improve the accuracy of the algorithm in these
circumstances. Given the matrix A, and integers k ≤ ` < n and q, the resulting
algorithm is described in Algorithm 10. Notice that to compute CoR-UTV
when the power method is employed, a non-updated C2 must be used to form
Dapprox.

Algorithm 10 CoR-UTV with Power Method
Input: Matrix A ∈ Rm×n, integers k, ` and q.
Output: A rank-` approximation.

1: Draw a standard Gaussian matrix C2 ∈ Rn×`;
2: for i = 1: q + 1 do
3: Form C1 = AC2;
4: Form C2 = ATC1;
5: end for
6: Compute QR decompositions C1 = Q1R1, C2 = Q2R2;
7: Form D = QT

1 AQ2 or Dapprox = QT
1 C1(QT

2 C2)†;
8: Compute a QRCP D = Q̃R̃P̃T or Dapprox = Q̃R̃P̃T ;
9: Form the CoR-UTV-based low-rank approximation of A: ÂCoR = UTVT ;

U = Q1Q̃,T = R̃,V = Q2P̃T .

5.2
Analysis of CoR-UTV Decompositions

In this section, we provide an analysis of the performance of CoR-UTV,
Algorithms 9 and 10. In particular, we discuss the rank-revealing property
of the algorithm, and provide upper bounds for the error of the low-rank
approximation.

We extensively borrow material from the analysis of SOR-SVD [54]
since the two algorithms, CoR-UTV and SOR-SVD, have a few steps similar.
However, the key difference is that these randomized algorithms employ
different deterministic decompositional methods in order to factor the input
matrix. We discuss that CoR-UTV is computationally cheaper and, moreover,
can exploit advanced computer architectures better than SOR-SVD.
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5.2.1
Rank-Revealing Property

To prove that CoR-UTV is rank-revealing, it is required to show that (i)
the T factor of the decomposition reveals the rank of A, and (ii) the trailing off-
diagonal block of T is small. Furthermore, the relation between the Gaussian
random matrix used and the T factor must be expressed. To be more precise,
the quality of the k-th approximated singular value is to be expressed in terms
of properties of the Gaussian matrix.

The T factor of CoR-UTV is, in fact, the R factor of a numerically stable
deterministic QRCP of D (5-6), where D is a compressed version of A. We
now write (5-6) as:

DP̃ = Q̃R̃ = Q̃

R̃11 R̃11

0 R̃22

 . (5-10)

Thus, we guarantee that R̃11 ∈ Rk×k reveals the rank of D, i.e.,
σmin(R̃11) ≤ σk(D), and ‖R̃22‖2 ≤ σk+1(D). See [11,37,40] for more details on
QRCP.

Next, we need to show how the singular values of D are related to those
of A. We establish this relation by stating a theorem from [83].

Theorem 5.1 (Thompson [83]) Let the matrix A have an SVD as defined in
(2-1), and D ∈ R`×` be any submatrix of A. Then for j = 1, ..., `, we have

σj+1 ≤ σj(D) ≤ σj. (5-11)

To prove (5-11), it only suffices to allow D be D = QT
1 AQ2, where

Q1 ∈ Rm×` and Q2 ∈ Rn×` are orthonormal matrices.
Thus, we will have

σmin(R̃11) ≤ σk(D) ≤ σk,

‖R̃22‖2 ≤ σk+1(D) ≤ σk+1.
(5-12)

Now, we furnish the relation of σk(D) and the standard Gaussian matrix
Ψ. To this end, first, suppose that the sample size parameter ` satisfies

2 ≤ p+ k ≤ ` (5-13)

where p is called an oversampling parameter [36, 39]. Since Ψ has interaction
with the right singular vectors V of A, i.e., equation (5-2), we have

Ψ̃ = VT
AΨ = [Ψ̃T

1 Ψ̃T
2 ]T (5-14)
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where Ψ̃1 and Ψ̃2 have ` − p and n − ` + p rows, respectively. The following
theorem, taken from [54], bounds σk(D).

Theorem 5.2 Suppose that the matrix A has an SVD defined in (2-1),
2 ≤ p+k ≤ `, and the matrix D is formed through step 1 to step 5 of Algorithm
9. Moreover, assume that Ψ̃1 is full row rank, then we have

σk ≥ σk(D) ≥ σk√
1 + ‖Ψ̃2‖2

2‖Ψ̃
†
1‖2

2

(
σ`−p+1
σk

)4
, (5-15)

and when the matrix D is formed through step 1 to step 7 of Algorithm 10,
i.e., the power method is used, we have

σk ≥ σk(D) ≥ σk√
1 + ‖Ψ̃2‖2

2‖Ψ̃
†
1‖2

2

(
σ`−p+1
σk

)4q+4
. (5-16)

Finally, since the random matrix Ψ has the standard Gaussian distribu-
tion, the average-case lower bound on the k-th singular value of CoR-UTV is
given in the following theorem, taken from [54].

Theorem 5.3 With the notation of Theorem 5.2, and γk = σ`−p+1
σk

, for
Algorithm 9, we have

E(σk(D)) ≥ σk√
1 + ν2γ4

k

, (5-17)

and when the power method is used, Algorithm 10, we have

E(σk(D)) ≥ σk√
1 + ν2γ4q+4

k

, (5-18)

where ν = ν1ν2, ν1 =
√
n− `+ p+

√
`+ 7, and ν2 = 4e

√
`

p+1 .

This completes the discussion on the rank-revealing property of the CoR-
UTV algorithm.

5.2.2
Low-Rank Approximation

CoR-UTV efficiently constructs an accurate low-rank approximation to
an input matrix A. We provide theoretical guarantees on the accuracy of these
approximations in terms of the Frobenius and spectral norm. To this end, we
first state a theorem from [54].

Theorem 5.4 Let the matrix A have an SVD as defined in (2-1), and
Q1 ∈ Rm×` and Q2 ∈ Rn×` be matrices with orthonormal columns constructed
by means of CoR-UTV, where 1 ≤ k ≤ `. Let, furthermore, Dk be the best
rank-k of D = QT

1 AQ2. Then, we have
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‖A−Q1DkQT
2 ‖F ≤ ‖A0‖F + ‖Ak −Q1QT

1 Ak‖F + ‖Ak −AkQ2QT
2 ‖F ,
(5-19)

and

‖A−Q1DkQT
2 ‖2 ≤ ‖A0‖2 + ‖Ak −Q1QT

1 Ak‖F + ‖Ak −AkQ2QT
2 ‖F .
(5-20)

Now, we rewrite the CoR-UTV-based low-rank approximation, equation
(5-7), as follows:

ÂCoR = Q1DQT
2 . (5-21)

This perfectly makes sense since the column-pivoted QR decomposition, which
factors D, is a numerically stable deterministic method [35]. Thus, for ξ = 2, F ,
it follows that

‖A− ÂCoR‖ξ ≤ ‖A−Q1DkQT
2 ‖ξ. (5-22)

This relation holds because Dk is the rank-k approximation of D.

Theorem 5.5 With the notation of Theorem 5.2, for ξ = 2, F , we have

‖A− ÂCoR‖ξ ≤ ‖A0‖ξ + ‖Ak −Q1QT
1 Ak‖F + ‖Ak −AkQ2QT

2 ‖F . (5-23)

Having stated the connection between CoR-UTV and SOR-SVD, we can
obtain upper bounds for the CoR-UTV-based low-rank approximation.

Theorem 5.6 Let the matrix A have an SVD as defined in (2-1), 2 ≤ p+k ≤
`, and ÂCoR is computed through the basic version of CoR-UTV, Algorithm 9.
Furthermore, assume that Ψ̃1 is full row rank. Then, for ξ = 2, F , we have

‖A− ÂCoR‖ξ ≤ ‖A0‖ξ +

√√√√ α2‖Ψ̃2‖2
2‖Ψ̃

†
1‖2

2

1 + β2‖Ψ̃2‖2
2‖Ψ̃

†
1‖2

2
+

√√√√ η2‖Ψ̃2‖2
2‖Ψ̃

†
1‖2

2

1 + τ 2‖Ψ̃2‖2
2‖Ψ̃

†
1‖2

2
,

(5-24)
where α =

√
k
σ2
`−p+1
σk

, β = σ2
`−p+1
σ1σk

, η =
√
kσ`−p+1 and τ = σ`−p+1

σ1
.

When the power iteration is used, Algorithm 10, α =
√
k
σ2
`−p+1
σk

(
σ`−p+1
σk

)2q
,

β = σ2
`−p+1
σ1σk

(
σ`−p+1
σk

)2q
, η = σk

σ`−p+1
α and τ = 1

σ`−p+1
β.

Theorem 5.6 implies that, at least, the bounds for SOR-SVD hold for
CoR-UTV. For a detailed error analysis of the SOR-SVD algorithm, see [54].

The random matrix Ψ has the standard Gaussian distribution, we thus
present a theorem that establishes average error bounds on the CoR-UTV-
based low-rank approximation.

Theorem 5.7 With the notation of Theorem 5.6, and γk = σ`−p+1
σk

, for the
basic version of CoR-UTV, Algorithm 9, we have
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E‖A− ÂCoR‖ξ ≤ ‖A0‖ξ + (1 + γk)
√
kνσ`−p+1, (5-25)

and when the power method is used, Alg. 10, we have

E‖A− ÂCoR‖ξ ≤ ‖A0‖ξ + (1 + γk)
√
kνσ`−p+1γ

2q
k , (5-26)

where ν is defined in Theorem 5.3.

5.2.3
Computational Complexity

CoR-UTV in order to decompose the matrix A, where A is stored out-
of-core, only requires either three passes or 2q + 3 passes (when the power
method is employed) over data with the following operation count:

CCoR-UTV ∼ (2q + 3)`Cmult + 6`2 + 2n`(`+ 1) + 8
3`

3, (5-27)

where Cmult is the cost of a matrix-vector multiplication with A or AT , and
the cost of the QR and QRCP, for instance, for A, are 2mn2 and 8

3mn
2

flops, respectively [35, 40]. For the case where the compressed matrix D is
approximated by Dapprox, CoR-UTV requires either two or 2q+2 passes (when
the power method is used) over data, and the flop count satisfies

CCoR-UTV ∼ (2q + 2)`Cmult + 6`2 + 2n`(2`+ 1) + 17
3 `

3. (5-28)

The CoR-UTV algorithm, except for matrix-matrix multiplications,
which are readily parallelizable, performs two QR decompositions on matri-
ces of size m × ` and n × `, and one QRCP on an ` × ` matrix. TSR-SVD
and SOR-SVD, however, perform an SVD on the `× ` matrix, which is more
expensive than a QRCP. Furthermore, recently developed column-pivoted QR
algorithms, based on randomization, can perform the factorization with opti-
mal/minimum communication costs [20, 21, 26, 62], while standard techniques
to compute an SVD are challenging for parallelization [18,36,39]. As a result,
for very large matrices to be factored on advanced computational platforms,
where the compressed `×` matrix does not fit into fast memory, the execution
time to computing CoR-UTV can be substantially less than those of TSR-SVD
and SOR-SVD. See [20, 21] for a comprehensive discussion on communication
cost.

5.2.4
Robust PCA Using CoR-UTV

We now apply CoR-UTV to solve the robust PCA problem [9,14,93]; We
retain the original objective function proposed in [9,14,59,93], and apply CoR-
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UTV as a surrogate to the SVD to solve the optimization problem (2-26). We
adopt the continuation technique [59, 85], which increases µ in each iteration.
The pseudocode of the proposed method, called ALM-CoRUTV hereafter, is given
in Table 5.1.

Table 5.1: Pseudo-code of robust PCA solved by ALM-CoRUTV.

Input: Matrix M, λ, µ0, µ̄, ρ,Y0,S0, j = 0;
Output: Low-rank plus sparse matrix

1: while the algorithm does not converge do
2: Compute Lj+1 = Cµ−1

j
(M− Sj + µ−1

j Yj);
3: Compute Sj+1 = Sλµ−1

j
(M− Lj+1 + µ−1

j Y);
4: Compute Yj+1 = Yj + µj(M− Lj+1 − Sj+1);
5: Update µj+1 = max(ρµj, µ̄);
6: end while
7: return L∗ and S∗

In Table 5.1, for any matrix B having a CoR-UTV decomposition
described in Section 5.1, Cδ(B) refers to a CoR-UTV thresholding operator
defined as:

Cδ(B) = U(:, 1 : r)T(1 : r, :)VT , (5-29)
where r is the number of diagonals of T greater than δ, and λ, µ0, µ̄, ρ, Y0,
and S0 are initial values. The main operation of the ALM-CoRUTV algorithm is
computing CoR-UTV in each iteration, which is efficient in terms of flops,
O(mnk), and can be computed with minimum communication costs; see
subsection 5.2.3. In subsection 5.3.4, we experimentally verify that ALM-CoRUTV
converges to the exact optimal solution.

5.3
Numerical Experiments

In this section, we present the results of some numerical experiments
conducted to evaluate the performance of the CoR-UTV algorithm for ap-
proximating a low-rank input matrix. We show that CoR-UTV provides highly
accurate singular values and low-rank approximations, and compare our algo-
rithm against several other algorithms from the literature. We furthermore
employ CoR-UTV for solving the robust PCA problem.

5.3.1
Comparison of Rank-revealing Property and Singular Values

We first show that CoR-UTV (i) is a rank revealer, i.e., the gap in the
singular values of the input matrix is revealed, and (ii) provides highly accurate
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singular values that with remarkable fidelity track singular values of the matrix.
For the sake of simplicity, we focus on square matrices, and experiments are
implemented in MATLAB.

We construct two types of matrices of order 103:

– Matrix 1 (Noisy Low-Rank). This matrix is formed by a linear super-
position of two matrices A = A1 + E. A1 = UΣVT , where U and
V are random orthonormal matrices, Σ is a diagonal matrix contain-
ing the singular values σis that decrease linearly from 1 to 10−9, and
σj = 0 for j = k + 1, ..., 103. The matrix E is a Gaussian matrix
normalized to have `2-norm gap × σk. In MATLAB notation, smax
= 1; smin = 1e-9; s = linspace(smax,smin,n); s(k+1:n) = 0;
G = randn(n); G = G/norm(G); A = orth(rand(n)) ∗ diag(s) ∗
orth(rand(n)) + gap ∗ s(k) ∗ G. We set the numerical rank k = 20,
and consider two cases:

– gap = 0.01; NoisyLowRank-I
– gap = 0.1; NoisyLowRank-II

– Matrix 2 (Fast Decay). This matrix is formed in a similar way as A1 of
Matrix 1, but now the diagonals of Σ take a different form such that
σj = 1 for j = 1, ..., k, and σj = (j − k + 1)−2 for j = k + 1, ..., 103 [86].
We set the numerical rank k = 10.

We compare the quality of singular values computed by our method,
described in Section 5.1, against that of alternative rank-revealing methods
such as the SVD, QR with column pivoting (QRCP), UTV, and TSR-SVD.

For CoR-UTV and TSR-SVD, we set the sample size parameter ` = 2k,
chosen randomly. Both algorithms require the same number of passes over
A, either two or 2q + 2 when the power method is used, to perform the
factorization. To compute a UTV decomposition, we implement the lurv
function from [32].

The results are shown in Figures 5.1−5.3. We make the following obser-
vations:

– For all matrices (NoisyLowRank-I, NoisyLowRank-II, Matrix 2), CoR-
UTV strongly reveals the numerical rank k, as do the SVD, UTV and
TSR-SVD, while QRCP weakly reveals the rank of NoisyLowRank-I
and Matrix 2, and only suggests the gap in the singular values of
NoisyLowRank-II.
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Figure 5.1: Comparison of singular values for NoisyLowRank-I. The power
method is not used, q = 0.

Figure 5.2: Comparison of singular values for NoisyLowRank-II. Left: No
power method, q = 0. Right: q = 2.

– CoR-UTV, without making use of the power iteration scheme, i.e.,
q = 0, provides an excellent approximation to singular values for
NoisyLowRank-I and Matrix 2. For NoisyLowRank-II, CoR-UTV out-
performs TSR-SVD when q = 0, in approximating both leading and
trailing singular values, and it only requires two steps of the power it-
eration to deliver singular values as accurate as the optimal SVD. The
QRCP algorithm, however, gives a fuzzy approximation to singular val-
ues of the matrices considered.

5.3.2
Comparison of Low-Rank Approximation

1. Rank-` Approximation. Since CoR-UTV computes a rank-` approxi-
mation of a given matrix, we first investigate how accurate this approximation
is. To this end, we compute a rank-` approximation ÂCoR for NoisyLowRank-I,
NoisyLowRank-II, and Matrix 2 using Algorithms 9 and 10 for each sample
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Figure 5.3: Comparison of singular values for Matrix 2. Left: No power method,
q = 0. Right: q = 2.

Figure 5.4: Comparison of low-rank approximation errors of the SVD and CoR-
UTV for Matrix 1.

size parameter `, and calculate the approximation error as:

e` = ‖A− ÂCoR‖2. (5-30)

We compare the approximation errors (5-30) against those produced by the
rank-` approximations using the SVD, i.e., minimal error σ`+1. The results are
shown in Figures 5.4 and 5.5.

Judging from the figures, (i) when q = 0, which corresponds to the basic
version of CoR-UTV ( Algorithm 9), the approximation is rather poor. (ii)
The error incurred by Alg. 9 produces an upper bound for the minimal error.
(iii) With only one step of the power iteration q = 1, Alg. 10, the accuracy
of the approximation substantially improves, resulting in an approximation as
accurate as the optimal SVD for all three matrices.

2. Rank-k Approximation. We now compare the low-rank approximations
constructed by our method against those of the SVD, QRCP, TSR-SVD,
and SOR-SVD. We have excluded the UTV algorithm because it has, by
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Figure 5.5: Comparison of low-rank approximation errors of the SVD and CoR-
UTV for Matrix 2.

far, the worst performance among the algorithms discussed. This allows us
to display the behavior of other algorithms clearly in the graphs. To make
a fair comparison, we construct a rank-k approximation Âout to A by each
algorithm, and calculate the error:

ek = ‖A− Âout‖ξ, (5-31)

where ξ = F for the Frobenius-norm error, and ξ = 2 for the spectral-
norm error. For the randomized algorithms, TSR-SVD, SOR-SVD, CoR-UTV,
we construct a rank-k approximation by varying the sample size parameter
`, since, as shown, this parameter colors the quality of approximations.
The rank-k approximation by TSR-SVD is constructed by selecting the first
k approximate singular vectors and corresponding singular values. SOR-
SVD constructs a rank-k approximation of an input matrix, and the rank-k
approximation by CoR-UTV is computed as follows:

ÂCoR−k = U(:, 1 : k)T(1 : k, :)VT . (5-32)

For the randomized algorithms, we run the experiment with zero step of
the power method (q = 0), and q = 2. The results are shown in Figures 5.6-5.8.
(The results for the spectral-norm error are shown in the appendix). We make
two observations: (1) For matrices NoisyLowRank-I and NoisyLowRank-II,
when q = 0, as the number of samples increases the performance of CoR-UTV
exceeds that of QRCP, becoming close to optimal performance of the SVD.
In this case, CoR-UTV and SOR-SVD show similar performances, exceeding
that of TSR-SVD. (2) When q = 2, the errors resulting from CoR-UTV show
no loss of accuracy compared to the optimal SVD. In this case, QRCP has the
poorest performance for all examples.



Chapter 5. Compressed Randomized UTV Decompositions 85

Figure 5.6: Comparison of the Frobenius-norm error for NoisyLowRank-I. Left:
No power method, q = 0. Right: q = 2.

Figure 5.7: Comparison of the Frobenius-norm error for NoisyLowRank-II.
Left: No power method, q = 0. Right: q = 2.

Figure 5.8: Comparison of the Frobenius-norm error for Matrix 2. Left: No
power method, q = 0. Right: q = 2.
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5.3.3
Image Reconstruction

We assess the quality of low-rank approximation by reconstructing a
gray-scale image of a differential gear of size 1280×804, taken from [26], using
CoR-UTV, truncated QRCP, and the truncated SVD by using PROPACK
package [57]. This set of experiments were run in MATLAB on a desktop PC
with a 3 GHz intel Core i5-4430 processor and 8 GB of memory.

The results are shown in Figures 5.9 and 5.10; Figure 5.9a displays the
Frobenius-norm approximation error against the corresponding approximation
rank, where the error is calculated as:

eapprox = ‖A− Âapprox‖F , (5-33)

where Âapprox is the approximation computed by each algorithm, and Figure
5.9 shows the reconstructed images of the differential gear with rank = 20 and
rank = 90 using the algorithms mentioned.

Judging from the figures, for the rank-20 approximation, truncated
QRCP and CoR-UTV without power iteration technique produce the poorest
reconstruction qualities. CoR-UTV with one step of power iteration produces a
better result. Truncated SVD and CoR-UTV with two steps of power iteration,
however, appear to have reconstructed images that are visually identical.
For the rank-90 approximation, with a careful scrutiny, fine defects appear
in reconstructions by truncated QRCP and CoR-UTV with q = 0, while
reconstructed images by truncated SVD, CoR-UTV with q = 1 and q = 2
are visually indistinguishable from the original.

Figure 5.9b compares the runtime of CoR-UTV and the truncated SVD
against the corresponding approximation rank for the reconstruction scenario.
We have excluded truncated QRCP because there is no optimized LAPACK
function for QRCP with a specified rank. Figure 5.9b illustrates how the exe-
cution time for truncated SVD substantially grows as the approximation rank
increases. While, even two steps of the power method hardly adds to the execu-
tion time of more efficient CoR-UTV. This, taken together with reconstructions
of Figure 5.10, shows that CoR-UTV produces comparable results with trun-
cated SVD at a much lower cost. We expect, however, that since CoR-UTV can
be performed using operations with optimal communication cost, on current
and future advanced computers CoR-UTV to be faster, where communication
cost is a major bottleneck on the performance of an algorithm.

In order to illustrate the computational time of CoR-UTV and TSR-
SVD, randomized algorithms that produce a rank-` approximation, we provide
another figure, Figure 5.11, which compares the runtime of algorithms against
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Figure 5.9: (a) Errors incurred by the algorithms considered in reconstructing
the differential gear image. (b) Computational time in seconds for different
algorithms.

Figure 5.10: Low-rank image reconstruction.

the corresponding approximation. As can be seen CoR-UTV shows a better
performance as the approximation rank increases, and due to employing QRCP
rather than an SVD, to approximate very large matrices, we expect CoR-UTV
to be faster on advanced computers.

5.3.4
Robust PCA

In this subsection, we experimentally investigate the efficiency and ef-
ficacy of ALM-CoRUTV, described in Table 5.1, in recovering the low-rank and
sparse components of synthetic and real data. We compare the results obtained
with those of the efficiently implemented inexact ALM method by [59], called
InexactALM hereafter.
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Figure 5.11: Runtime comparison of TSR-SVD and CoR-UTV in reconstruct-
ing the differential gear image.

5.3.4.1
Recovery of Synthetic Matrix

We generate rank-k X = L + S as described in Section 4.3.3.1. The only
difference is that the non-zero entries of S are drawn from the set {-80, 80}
instead of {-50, 50}. We apply the ALM-CoRUTV and InexactALM algorithms
to X to recover L and S. The numerical results are summarized in Tables 5.2
and 5.3. Both algorithms are terminated when the following stopping condition
holds: ‖X− Lout − Sout‖F

‖X‖F
< 10−5, (5-34)

where (Lout,Sout) is the pair of output of either algorithm.

Table 5.2: Comparison of the ALM-CoRUTV and ALM-CoRUTV methods for
synthetic data recovery for the case r(L) = 0.05× n and s = 0.05× n2.

n r(L) ‖S‖0 Methods r(L̂) ‖Ŝ‖0 Time Iter. ξ

1000 50 5e4 ALM-CoRUTV 50 5e4 0.6 12 9.6e-6
InexactALM 50 5e4 4.1 12 2.1e-6

2000 100 2e5 ALM-CoRUTV 100 2e5 3.7 12 8.3e-6
InexactALM 100 2e5 27.4 12 2.7e-6

3000 150 45e5 ALM-CoRUTV 150 45e5 9.4 12 8.7e-6
InexactALM 150 45e5 75.6 12 3.1e-6

4000 200 8e5 ALM-CoRUTV 200 8e5 20 12 8.1e-6
InexactALM 200 8e5 173.3 12 3.5e-6
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Table 5.3: Comparison of the ALM-CoRUTV and InexactALM methods for
synthetic data recovery for the case r(L) = 0.05× n and s = 0.1× n2.

n r(L) ‖S‖0 Methods r(L̂) ‖Ŝ‖0 Time Iter. ξ

1000 50 1e5 ALM-CoRUTV 50 1e5 0.7 14 9.1e-6
InexactALM 50 1e5 4.5 13 4.4e-6

2000 100 4e5 ALM-CoRUTV 100 4e5 4.1 14 8.9e-6
InexactALM 100 4e5 29.2 13 5.5e-6

3000 150 9e5 ALM-CoRUTV 150 9e5 10.9 14 9.3e-6
InexactALM 150 9e5 83.9 13 6.8e-6

4000 200 16e5 ALM-CoRUTV 200 16e5 23.2 14 9.5e-6
InexactALM 200 16e5 189.4 13 7.8e-6

CoR-UTV requires a prespecified rank ` to perform the factorization.
Thus, we set ` = 2k, as a random start, and q = 1 (one step of a power
iteration). Judging from the results in Tables 5.2 and 5.3, we make several
observations on ALM-CoRUTV:

– It successfully detects the exact numerical rank k of the input matrix in
all cases.

– It provides the exact optimal solution, having the same number of
iterations for the first test case, while it requires one more iteration for
the second challenging test case, compared to InexactALM.

– It outperforms InexactALM in terms of runtime, with speedups of up to
8.6 times.

In summary, ALM-CoRUTV exactly recovers the low-rank and sparse ma-
trices from a grossly corrupted matrix at a much lower cost compared to
InexactALM. However, we expect ALM-CoRUTV to be faster on multicore and
accelerator-based computers, since CoR-UTV can be computed with minimum
communication cost.

5.3.4.2
Background Modeling in Surveillance Video

We apply ALM-CoRUTV to two surveillance videos introduced in [58] (The
first and third video described in Section 4.3.3.2). In order for CoR-UTV,
used in ALM-CoRUTV, to approximate the low-rank component of real data, we
determine the prespecified rank ` by making use of the bound in (3-16). We
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set ` = k+ p, where k is the minimum value satisfying (3-16), and p = 2 is an
oversampling parameter. Again, we set q = 1 for CoR-UTV.

Some frames of the surveillance videos with recovered foregrounds and
backgrounds are displayed in Figure 5.12. We only show the results of
ALM-CoRUTV since those produced by InexactALM are visually identical. As
can be seen the proposed ALM-CoRUTV can successfully recover the low-rank
and sparse components of the videos. Table 5.4 presents the numerical results.
In both examples, ALM-CoRUTV outperforms InexactALM in terms of runtime.

Figure 5.12: Background modeling. Images in columns 1 and 4 are frames
of the surveillance video of an airport and a escalator, respectively. Images in
columns 2 and 5 are recovered backgrounds L∗, and columns 3 and 6 correspond
to foregrounds S∗ by ALM-CoRUTV.

Table 5.4: Numerical results for real matrix recovery.

Dataset InexactALM
Time Iter. ξ

ALM-CoRUTV
Time Iter. ξ

Airport hall
25344× 200

15.4 28 7.4e-6 5.1 28 7.1e-6

Escalator
20800× 200

11.9 28 8.5e-6 4.2 28 6.2e-6

Yale B01
32256× 64

4.2 26 7.6e-6 2.1 26 8.6e-6

Yale B02
32256× 64

4.2 26 6.5e-6 2.1 26 8.3e-6

5.3.4.3
Shadow and Specularity Removal From Face Images

In this experiment, we use face images taken from the Yale B face
database [34]. The recovered images are displayed in Figure 5.13. From this
figure, we observe that the shadows and specularities have been effectively
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Figure 5.13: Removing shadows and specularities from face images. Images
in columns 1 and 4 are face images under different illuminations. Images
in columns 2 and 5 are are recovered images after removing shadows and
specularities by the ALM-SOR-SVD method, and images in columns 3 and 6
correspond to the removed shadows and specularities.

extracted in the sparse components by ALM-CoRUTV. Table 5.4 summarizes the
numerical results.

We conclude that ALM-CoRUTV can successfully recover the face images
under different illuminations from the dataset studied two times faster than
InexactALM.



6
Randomized Subspace Methods

This chapter develops two novel subspace methods using randomization
collectively called randomized subspace methods (RSMs) to detect anomalies
in Internet Protocol (IP) networks [52]. We first describe the PCA-based
subspace method and its application for network anomaly detection. Next,
we present our work.

The PCA-based subspace method, discussed in Section 6.2, focuses on the
link traffic covariance matrix to detect network anomalies; first, the covariance
matrix is formed. Second, its SVD is computed. Third, the normal and
anomalous subspaces of the traffic data are separated using a specific number of
singular vectors. Finally, a statistical test, theQ-statistic, is applied to diagnose
anomalies in the anomalous subspace. The randomized subspace methods,
described in Section 6.3, on the other hand, do not form the covariance
matrix of the link traffic; using randomized sampling techniques, they obtain
approximate bases for the range of the traffic data and, accordingly separate
the normal and anomalous subspaces of the data by using a specific number
of these bases. The variances captured by the bases are computed, and the
Q-statistic follows to detect anomalies in the anomalous subspaces.

6.1
Data Model

Based on the structure of a network and the flow of data obtained
by network tomography [90], we can model the link traffic as a function
of the origin-destination (OD) flow traffic and the network-specific routing.
Specifically, the relationship between the link traffic Y ∈ Rm×t and OD flow
traffic X ∈ Rn×t, for a network with m links and n OD flows may be written
as

Y = RX, (6-1)
where t is the number of snapshots and R ∈ Rm×n is a routing matrix. The
entries of R, i.e., Ri,j, are assigned a value equal to one (Ri,j = 1) if the OD
flow j traverses link i, and are assigned a value equal to zero otherwise.

The network traffic model that takes into account the traffic anomalies
and the measurement noise over the links can be expressed by
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Y = R(X + A) + V, (6-2)

where R ∈ Rm×n is a fixed routing matrix, X ∈ Rn×t is the clean traffic matrix,
A ∈ Rn×t is the matrix with traffic anomalies and V ∈ Rm×t denotes the link
measurement noise samples.

6.2
PCA-Based Subspace Method for Anomaly Detection

Subspace methods are powerful tools to decompose a given data matrix
Y into two components such as Y = Ŷ+Ỹ, where, in signal processing terms,
Ŷ and Ỹ are referred to as the signal subspace and noise subspace, respectively
[42, 75]. They have many applications in IP networks anomaly detection [56],
statistical process control and multidimensional fault identification [27, 46],
face recognition [70], and system identification [55].

The seminal paper by Lakhina et al. [56] was the first that used PCA-
based subspace method to detect traffic anomalies in IP networks. Given a
matrix of link traffic data Y ∈ Rm×t, where m ≤ t, the approach performs a
normal-plus-anomalous matrix decomposition such that Y = Ŷ + Ỹ, whereŶ
is the modeled traffic and Ỹ is the anomalous or residual traffic. Then, it seeks
anomalies in the anomalous subspace Ỹ. The modeled traffic represented by
Ŷ is the projection of Y onto the normal subspace S, and the residual traffic
modeled by Ỹ is the projection of Y onto the anomalous subspace S̃, both by
making use of a selected number of principal components of Y. To be specific,
the modeled traffic is obtained by

Ŷ = PPTY = ĈY, (6-3)

and the residual traffic is obtained by

Ỹ = (I−PPT )Y = C̃Y, (6-4)

where P = [w1,w2, ...,wr] is formed by the first r singular vectors W of
the covariance of the centered traffic data Σ̂ = 1

t−1(Y − µ)(Y − µ)T , where µ
contains the mean of Y, and Σ̂ = WΛWT is a singular value decomposition.

Typically, a traffic anomaly results in a large change to the residual traffic
Ỹ [56]. To detect abnormal changes in Ỹ, a statistic referred to as the Q-
statistic [47] is applied by computing the squared prediction error (SPE) of
the residual traffic:

SPE = ‖Ỹ‖2
2 = ‖C̃Y‖2

2. (6-5)
The network traffic is considered to be normal if

SPE ≤ Qβ, (6-6)
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where Qβ is a threshold for the SPE defined as

Qβ = θ1

[cβ√2θ2h2
0

θ1
+ 1 + θ2h0(h0 − 1)

θ2
1

] 1
h0
, (6-7)

where
h0 = 1− 2θ1θ3

3θ2
2
, (6-8)

and
θi =

m∑
j=r+1

λij, for i = 1, 2, 3, (6-9)

with λj denoting the j-th singular value of Σ̂ and cβ is the 1− β percentile in
a standard normal distribution.

The singular vectors of Σ̂ (or principal components of Y) maximize the
variance of the projected data. Thus, the j-th singular value of Σ̂ (or the
variance captured by the j-th PC) can be expressed as λj = Var{(wj

TY)T}
[50]. Note that, each column in Y, Yi ∈ Rm.

6.3
Randomized Subspace Methods for Anomaly Detection

Randomized subspace methods (RSMs), namely Randomized Basis for
Anomaly Detection (RBAD) and Switched Subspace-Projected Basis for
Anomaly Detection (SSPBAD) [52], separate normal and anomalous subspaces
of a traffic matrix Y by using the randomized sampling scheme [19, 39], and
seek traffic anomalies in the anomalous subspace. In contrast to the works
in [6, 43, 56], the RSMs do not form the covariance matrix from the traffic
data and consequently obviate the computation of the SVD for the subspace
separation. In RSMs first, a set of orthonormal basis Q ∈ Rm×m whose range
approximates the range of Y is constructed using randomization (See Tables
6.1 and 6.2). Next, the normal and anomalous components of Y are formed as
follows:

Ŷ = PPTY = ĈY, (6-10)
and

Ỹ = (I−PPT )Y = C̃Y, (6-11)
where P = [q1,q2, ...,qr] contains the first r columns of Q. In words, the
modeled traffic Ŷ is the projection of Y onto the normal subspace SQ spanned
by {q1, ...,qr}, and the residual traffic Ỹ is the projection of Y onto the
anomalous subspace S̃Q, a subspace orthogonal to SQ, i.e., S̃Q = S⊥Q . In
order to detect abnormal behavior in the anomalous component using the Q-
statistic [47], the variances captured by the orthonormal basis must be known.
The variances are computed as follows

ΛQ = Var{(QTY)T}. (6-12)
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The Q-statistic then is used to diagnose traffic anomalies. In the proposed
approaches, the orthonormal bases obtained and the variances captured serve
as surrogates to the basis of principal components and the singular values (used
in the Q-statistic), respectively, used in the PCA-based approach [27,56].

6.3.1
Randomized Basis for Anomaly Detection (RBAD)

To separate normal and anomalous subspaces as described in (6-3)
and (6-4), RBAD first computes the product B = YΦ through a random
matrix Φ ∈ Rt×m, e.g., drawn from a standard Gaussian distribution. A QR
factorization is then performed on B such as QR = B. Once the basis Q is
obtained, the subspaces are separated as described in (6-10) and (6-11). Next,
the variances captured by Q are calculated as described in (6-12). Finally,
to detect abnormal behavior in the anomalous component, the Q-statistic is
applied. The integer q corresponds to the number of steps of power iterations
used to improve the accuracy of the basis [39,71]. A pseudocode for RBAD is
given in Table 6.1.

Table 6.1: Pseudocode for the proposed RBAD technique.

Input: Traffic matrix Y ∈ Rm×t, integers r, q (e.g., q = 1 or q = 2).
Output: Anomalies in Y.

1: Generate a random matrix Φ ∈ Rt×m;
2: Compute B = (YYT )qYΦ;
3: Perform a QR factorization: B = QR;
4: Separate the subspaces with rank r: Y = Ŷ + Ỹ;
5: Compute the variances: ΛQ = Var{(QTY)T};
6: Apply the Q-statistic to Ỹ: if SPE > Qβ → anomalies;
7: return Anomalies in Y

6.3.2
Switched Subspace-Projected Basis for Anomaly Detection (SSPBAD)

The proposed SSPBAD technique first forms the product B1 = YTB2 by
means of a random matrix B2 ∈ Rm×m. Next, T2 is updated by B1 such that
B2 = YB1. A QR factorization is then performed on B2 such as QR = B2 to
construct the orthonormal basis for the range of Y. This orthonormal basis,
a surrogate to the basis of principal components used in [27, 56], is employed
to separate normal and anomalous subspaces as described in (6-10), (6-11).
Subsequently, the variances captured by Q are computed as described in
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(6-12). To detect traffic anomalies in the anomalous component, the Q-statistic
follows.

To increase robustness of the algorithm for detecting anomalies, we
employ different random matrices B2 as in [51], [17]. The random matrices
generated include

– a matrix with i.i.d Gaussian entries i.e., N (0, 1),

– a matrix whose entries are i.i.d. random variables drawn from a Bernoulli
distribution with probability 0.5,

– a Markov matrix whose entries are all nonnegative and the entries of
each column add up to 1,

– a matrix whose entries are independently drawn from {-1, 1}.

Therefore, SSPBAD switches among different random matrices and
chooses the best one in order to obtain the maximum number of traffic
anomalies. A pseudocode for SSPBAD is given in Table 6.2.

Table 6.2: Pseudocode for the proposed SSPBAD technique.

Input: Traffic matrix Y ∈ Rm×t and integer r.
Output: Anomalies in Y.

1: Generate four random matrices B2 ∈ Rm×m;
2: for each random matrix do
3: Compute B1 = YTB2;
4: Update B2 = YB1;
5: Perform a QR factorization: B2 = QR;
6: Separate the subspaces with rank r: Y = Ŷ + Ỹ;
7: Compute the variances: ΛQ = Var{(QTY)T};
8: Apply the Q-statistic to Ỹ: if SPE > Qβ → anomalies;
9: end for

10: Choose the random matrix with maximum number of anomalies;
11: return Anomalies in Y

The computational cost for either RSMs is O(tm2) flops, the same order
as the PCA-based subspace method. However, the operations of RSMs include
matrix-matrix multiplications and a QR factorization, which can be organized
to take advantage of the modern computers, an advantage over PCA-based
subspace method.
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6.4
Simulations

In this section, we verify the proposed methods on synthetically generated
data and compare the results with those of PCA [56] and robust PCA
[9,14,60,93].

The data matrix Y is generated according to the model in (6-2) with
dimensions m = 120, n = 240, t = 640. The low-rank matrix X is formed by
a matrix multiplication UVT , where U ∈ Rn×r and V ∈ Rt×r have Gaussian
distributed entries N (0, 1/n) and N (0, 1/t), respectively and r = 0.2×m. The
routing matrix R is generated by entries drawn from a Bernoulli distribution
with probability 0.05. The sparse matrix of anomalies has s = 0.001 × mt

non-zero entries drawn randomly from the set {−1, 1}, and the noise matrix V
has independent and identically distributed (i.i.d) Gaussian entries with zero
mean and variance σ2. We set the confidence limit 1−β = 99.5% for the value
of the Q-statistic for the approaches studied.

In Figure 6.1, we compare the variances captured by the orthonormal
bases of the proposed approaches with those of the principal components since
they play a crucial role in the statistical test (the Q-statistic) used to detect
anomalies. As can be seen, returned variances by RBAD and SSPBAD are
very close to those returned by the SVD.
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Figure 6.1: A comparison of variances for PCA, RBAD, SSPBAD.

Figure 6.2 compares the detection rate against the number of basis
for different approaches. The detection rate combines false-alarm rate and
detection probability into one measure and obviates the need for showing these
two probabilities in one versus the other manner [96]. As can be seen, the
proposed RBAD and SSPBAD outperform PCA when the measurement noise
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has a higher variance, due to brittleness of PCA to grossly corrupted entries.
Furthermore, robust PCA [9, 14, 60, 93] performs poorly. The reason is that,
since we consider measurement noise V in our data model (6-2), by increasing
the rank, these noise samples contaminate the matrix of outliers returned by
RPCA and as a result, the abnormal patterns of the network (anomalies)
cannot be recovered.
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Figure 6.2: A comparison of detection rate for PCA, RBAD, SSPBAD and
RPCA. Variance of the measurement noise σ2 = 0.1

6.5
Concluding Remarks

In this chapter we have proposed RBAD and SSPBAD, two novel random
subspace methods to detect traffic anomalies in IP networks. Both approaches
form normal and anomalous subspaces of the traffic data through randomized
orthonormal bases constructed for the range of the data. A statistical test
is then applied and detects anomalies in the network traffic measurements.
Simulations show that RBAD and SSPBAD outperform PCA and RPCA.
Further advantages of RBAD and SSPBAD over PCA and RPCA are that their
operations include only matrix-matrix multiplications and QR factorizations,
which can be organized to exploit modern computers.



7
Conclusions and Future Work

This chapter summarizes the contributions of this dissertation, and
presents some brief remarks on directions for extensions and future work.

7.1
Summary of Contributions

In this dissertation, we have presented three different algorithms based on
randomization for low-rank matrix approximation. Recently, new formulations,
methods and analyses for approximating an input matrix by one of lower
rank, based on randomized sampling paradigm have been devised. Randomized
methods offer advantages over their traditional counterparts: (i) they are
computationally more efficient since they work on a reduced-size version
of the input matrix rather than the matrix itself, and (ii) they can be
organized to exploit modern computational platforms. Continued research on
low-rank matrix approximation methods is fueled by numerous applications in
science and engineering in which low-rank matrices arise. We have studied the
proposed methods in image reconstruction and robust PCA problems, however
they can be applied by researchers to other areas outside the scope of this work.
This dissertation offers several novel contributions:

– Randomized Rank-Revealing UZV Decomposition. In Chapter 3 we pre-
sented RRR-UZVD, a randomized algorithm that approximates a given
low-rank matrix. In addition to be computationally efficient, RRR-
UZVD’s operations only involve matrix-matrix multiplications and QR
decompositions. This allows the algorithm to be highly parallelizable on
modern architectures. We showed that RRR-UZVD is rank-revealing,
and applied it to reconstruct a low-rank image as well as to solve the
robust PCA problem.

– Subspace-Orbit Randomized Singular Value Decomposition. In Chapter 4
we introduced SOR-SVD, an efficient algorithm that provides a rank-k
approximation to an input matrix. We provided a detailed theoretical
analysis of SOR-SVD, i.e., lower bounds on the singular values and up-
per bounds on the error of the low-rank approximation. To best of our
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knowledge, this is (unlike R-SVD) the first randomized SVD algorithm
based on two-sided projections with a complete mathematical analysis.
SOR-SVD can exploit modern computational platforms better by ex-
posing higher levels of parallelism than R-SVD. We demonstrated the
effectiveness of SOR-SVD through experiments on synthetic data as well
as real data in computer vision applications of background/foreground
separation in surveillance video and shadow and specularity removal from
face images.

– Compressed Randomized UTV Decompositions. In Chapter 5 we pro-
posed CoR-UTV, an efficient rank-revealing algorithm based on random-
ized sampling, which provides a rank-` approximation to a given low-rank
matrix. We provided theoretical analysis for CoR-UTV, and studied the
algorithm in image reconstruction and low-rank-plus-sparse matrix de-
composition applications. CoR-UTV’s operations involve matrix-matrix
multiplications and QR and QRCP algorithms. This enables the algo-
rithm to readily take advantage of advanced computational platforms.

– Randomized Subspace Methods. In chapter 6 we proposed RSMs, namely
RBAD and SSPBAD, to diagnose anomalies in IP networks. The advan-
tages of the proposed methods over the PCA-based method are that (i)
they do not form the covariance of the link traffic data and, as a re-
sult, avoid computing an SVD, (ii) they show better performance, and
(iii) they can be organized to take advantage of advanced computational
environments.

7.2
Future Directions

This research can be extended in a variety of ways, and new algorithms
can be developed along the line of this work.

With regard to SOR-SVD and CoR-UTV, our analysis is specialized
to the case where the test matrix is standard Gaussian. However, there are
matrices drawn from another distributions such as subsampled randomized
Hadamard transform (SRHT) that employing them may lead to potential
benefits in terms of arithmetic and communication costs as well as the quality
of error bounds.

Implementing RRR-UZVD, SOR-SVD, and CoR-UTV on multicore and
accelerator-based computers can be a subject of another work where a detailed
study of communication costs is carried out.
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The RRR-UZVD, SOR-SVD, and CoR-UTV all require at least two
passes through data to factor a given matrix. However, in some applications
it is only possible to make one pass over the data. Thus, redesigning these
algorithms (or developing new algorithms based on these algorithms) in order
to visit the data only once is desired.

With respect to RBAD and SSPBAD, (i) a detailed analysis of these
methods can be developed considering the distributional assumption of the
test matrices, which is standard Gaussian. (ii) Analogous to the argument
given for SOR-SVD and CoR-UTV, test matrices with other distributions can
be examined in these methods.



8
Appendix

8.1
Proofs for Chapter 3

Proof of Theorem 3.1.
To prove the first bound (3-10), let W ∈ Rm×m and D ∈ Rn×n be two

matrices with orthonormal columns. Obviously, A and WAD have the same
singular values [83]. Let B be a submatrix of WAD:

B = W1AD1, (8-1)

where W1 ∈ Rk×m contains the first k rows of W, and D1 ∈ Rn×k contains
the first k columns of D, with singular values β1 ≥ β2 ≥ ... ≥ βk. Thus

BBT = W1MMTWT
1 , (8-2)

where M = AD1 is anm×k matrix. Hence BBT is a k×k principal submatrix
of the m ×m Hermitian matrix WMMTWT . Let α1 ≥ α2 ≥ ... ≥ αk be the
singular values of M. Therefore the eigenvalues of MMT are given as follows

α2
1 ≥ α2

2 ≥ ... ≥ α2
k ≥ α2

k+1 = ... = α2
m = 0. (8-3)

From the well-known formulas relating the eigenvalues of a Hermitian matrix
with the eigenvalues of a principal submatrix [92], we get

α2
1 ≥ β2

1 ≥ ... ≥ α2
k ≥ β2

k . (8-4)

Now we form MTM whose nonzero eigenvalues coincide with those of MMT :

MTM = DT
1 ATAD1. (8-5)

Hence MTM is a k × k principal submatrix of the n × n Hermitian matrix
DTATAD. Thus

σ2
1 ≥ α2

1 ≥ ... ≥ σ2
k ≥ α2

k, (8-6)
and consequently

σ2
1 ≥ α2

1 ≥ β2
1 ≥ ... ≥ σ2

k ≥ α2
k ≥ β2

k . (8-7)

By substituting W1 and D1 in (8-1), with UT
1 and V1 in (3-9), respectively,
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then we have
σk(Z) ≤ σk. (8-8)

To prove the second bound (3-11), let the matrix ÂUZV have an SVD
such as ÂUZV = ÛΣ̂V̂T , where Û and V̂ have orthonormal columns, and Σ̂
contains the singular values σ̂is. We write ÂUZV = ÛkΣ̂kV̂T

k + Û0Σ̂0V̂T
0 , and

by the argument in the proof of (3-10), we have

σk+1 = ‖ATU0‖2 ≥ σ̂k+1 = ‖ÂT
UZVÛ0‖2. (8-9)

We also have
σ̂k+1 = ‖ÂT

UZVÛ0‖2 ≤ ‖ÂT
UZVU2‖2. (8-10)

This relation holds since U2 is an approximation to Û0. In practice, a com-
bination of the power method and column permutation techniques proposed
results in a U2 that spans the null space of Â. As a result

σ̂k+1 ≈ ‖ÂUZVTU2‖2. (8-11)

By substituting ÂUZV (3-9) into (8-11), it follows

σ̂k+1≈ ‖
[
V1 V2

] ZT
k HT

GT ET

UT
1

UT
2

U2‖2

≈ ‖[H E]‖2.

(8-12)

To prove the third bound (3-12), with a similar argument, we have

σk+1 = ‖AV0‖2 ≥ σ̂k+1 = ‖ÂUZVV̂0‖2. (8-13)

And accordingly
σ̂k+1 ≈ ‖ÂUZVV2‖2. (8-14)

By substituting ÂUZV (3-9) into (8-14), it follows that

σ̂k+1≈ ‖
[
U1 U2

] Zk G
H E

VT
1

VT
2

V2‖2

≈ ‖[GT ET ]T‖2.

(8-15)

This completes the proof.

8.2
Proofs for Chapter 4

8.2.1
Proof of Theorem 4.2

We first rewrite the term in the left-hand side of (4-9):
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‖A−Q1MQT
2 ‖2

F = ‖A−Q1QT
1 AQ2QT

2 + Q1QT
1 AQ2QT

2 −Q1MQT
2 ‖2

F

= ‖A−Q1QT
1 AQ2QT

2 ‖2
F + ‖QT

1 AQ2 −M‖2
F .

(8-16)
By Theorem 2.1, the result in (4-9) immediately follows.

According to Theorem 2.1, Ak is the best low-rank approximation to
A, whereas according to (4-9) (Theorem 4.2), Q1MkQT

2 is the best restricted
(within a subspace) low-rank approximation to A with respect to the Frobenius
norm. This leads to the following result

‖A−Ak‖F ≤‖A−Q1MkQT
2 ‖F

≤‖A−Q1QT
1 AkQ2QT

2 ‖F .
(8-17)

The second relation holds because Q1QT
1 AkQ2QT

2 is an undistinguished re-
stricted Frobenius norm approximation to A.

To prove (4-10), we calculate

‖A−Q1QT
1 AkQ2QT

2 ‖2
F

= trace
(
(A−Q1QT

1 AkQ2QT
2 )T (A−Q1QT

1 AkQ2QT
2 )
)

= trace
(
(A−AkQ2QT

2 + AkQ2QT
2 −Q1QT

1 AkQ2QT
2 )T

× (A−AkQ2QT
2 + AkQ2QT

2 −Q1QT
1 AkQ2QT

2 )
)

= ‖A−AkQ2QT
2 ‖2

F + ‖AkQ2QT
2 −Q1QT

1 AkQ2QT
2 ‖2

F+

2trace
(
(A−AkQ2QT

2 )T (AkQ2QT
2 −Q1QT

1 AkQ2QT
2 )
)

= ‖A−AkQ2QT
2 ‖2

F + ‖Ak −Q1QT
1 Ak‖2

F

+ 2trace
(
(I−Q2QT

2 ) AkQ2QT
2 (A−AkQ2QT

2 )T︸ ︷︷ ︸
0

)
.

(8-18)

Combining the last relation in (8-18) with equation (8-17) gives

‖A−Q1MkQT
2 ‖F ≤ ‖A−AkQ2QT

2 ‖F + ‖Ak −Q1QT
1 Ak‖F . (8-19)

Writing A = Ak + A0, and applying the triangle inequality gives equation
(4-10).

To prove (4-11), we observe that

‖A−Q1MQT
2 ‖2 ≤‖A−Q1MkQT

2 ‖2

≤‖A−Q1QT
1 AkQ2QT

2 ‖2

=‖A0 + Ak −Q1QT
1 AkQ2QT

2 ‖2

≤‖A0‖2 + ‖Ak −Q1QT
1 AkQ2QT

2 ‖2.

(8-20)

We write the second term of the last equation as:
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‖Ak −Q1QT
1 AkQ2QT

2 ‖2

= ‖Ak −Q1QT
1 Ak + Q1QT

1 Ak −Q1QT
1 AkQ2QT

2 ‖2

≤ ‖Ak −Q1QT
1 Ak‖2 + ‖Q1QT

1 (Ak −AkQ2QT
2 )‖2

≤ ‖Ak −Q1QT
1 Ak‖F + ‖Ak −AkQ2QT

2 ‖F .

(8-21)

Plugging this into equation (8-20) yields (4-11).
The last relation in (8-21) holds due to the unitary invariance property

of the `2-norm and, furthermore, to the relation that for any matrix Π,
‖Π‖2 ≤ ‖Π‖F .

8.2.2
Proof of Lemma 4.6

According to Lemma 4.5, we have

Q2QT
2 = Q̃Q̃T . (8-22)

Thus
Q1QT

1 AQ2QT
2 = Q1QT

1 AQ̃Q̃T . (8-23)
We now write

AQ̃Q̃T = A(Q̃1 Q̃2 Q̃3)Q̃T = U


Σ1 0 0
0 Σ2 0
0 0 Σ3

VT [Q̃1 Q̃2 Q̃3]

︸ ︷︷ ︸
S

Q̃.

(8-24)
We now write S as:

S =



(Σ1 0 0)VT Q̃1 (Σ1 0 0)VT (Q̃2 Q̃3)
0 0

Σ1 0

0 Σ2



T

VT Q̃1


0 0

Σ1 0

0 Σ2



T

VT (Q̃2 Q̃3)


We observe that the matrix (Σ1 0 0)VT Q̃1 is a submatrix of

Q1QT
1 AQ2QT

2 . By relations in equation (4-21), we have

V


I
0

W1

 = Q̃1R̃11. (8-25)

and accordingly
‖R̃11‖2 =

√
1 + ‖W1‖2

2. (8-26)
By substituting Q̃1 of (8-25) into (Σ1 0 0)VT Q̃1,
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(Σ1 0 0)VT Q̃1 = (Σ1 0 0)VTV


I
0

W1

 R̃−1
11 = Σ1R̃−1

11 , (8-27)

and by Remark 4.4 it follows that

σj(ÂSOR) = σj(Q1QT
1 AQ2QT

2 ) ≥ σj(Σ1R̃−1
11 ). (8-28)

On the other hand, we also have

σj = σj(Σ1R̃−1
11 R̃11) ≤ σj(Σ1R̃−1

11 )‖R̃11‖2. (8-29)

Plugging the last relation into (8-28) and using (8-26), we obtain (4-22).

8.2.3
Proof of Theorem 4.7

To prove (4-23), according to the definition of W1 in equation (4-20), we
obtain

‖W1‖2 ≤
(
σ`−p+1

σk

)2
‖Ω2‖2‖Ω†1‖2. (8-30)

Taking this together with equation (4-22), yields the result in (4-23) for j = k.
To prove (4-24), we observe that when the power method is used, the

SOR-SVD computation starts off by setting T2 = Ω, and T2 is updated such
that

T2 = (ATA)qATT1 = (ATA)qATAΩ. (8-31)
By writing the SVD of A (2-1),

T2 = VΣ2q+2VTΩ = V


Σ2q+2

1 0 0
0 Σ2q+2

2 0
0 0 Σ2q+2

3



VT

1 Ω

VT
2 Ω

 = Q2R2. (8-32)

Consequently, the matrix X, defined in (4-19), is now defined as follows:

X =
[
Ω†1

Σ2q+2
1 0
0 Σ2q+2

2

−1

, X̃
]
. (8-33)

Forming T2X yields:

W1 = Σ2q+2
3 Ω2Ω†1Σ

−(2q+2)
1 . (8-34)

Thus
‖W1‖2 ≤

(
σ`−p+1

σk

)2q+2
‖Ω2‖2‖Ω†1‖2. (8-35)

Taking this together with equation (4-22), yields the result for j = k.
To prove Theorem 4.7 for any 1 ≤ j < k, since by Remark 4.4

σj(ÂSOR) = σj(Q1QT
1 AQ2QT

2 ), it is only required to repeat all previous
arguments for a rank j truncated SVD.
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8.2.4
Proof of Theorem 4.9

First, by plugging (4-30) and (4-42) into (4-10) and (4-11), for % = 2, F ,
we obtain

‖A− ÂSOR‖% ≤ ‖A0‖% +
√
k‖W1Σ1‖2σ1√
σ12 + ‖W1Σ1‖2

2

+
√
k‖D1Σ1‖2σ1√
σ12 + ‖D1Σ1‖2

2

. (8-36)

When the basic form of SOR-SVD is implemented, we write W1Σ1 as

W1Σ1 = Σ2
3Ω2Ω†1Σ−1

1 . (8-37)

where W1 is defined in (4-20). Thus

‖W1Σ1‖2 ≤
(σ2

`−p+1

σk

)
‖Ω2‖2‖Ω†1‖2. (8-38)

For D1Σ1, we write
D1Σ1 = Σ3Ω2Ω†1. (8-39)

where D1 is defined in (4-34). Thus

‖D1Σ1‖2 ≤ σ`−p+1‖Ω2‖2‖Ω†1‖2. (8-40)

Plugging (8-38) and (8-40) into (8-36), and dividing both the numerator and
denominator by σ1 gives the result in (4-43).

For the case when the power method is incorporated into the algorithm,
by using (8-34) we write W1Σ1 as

W1Σ1 = Σ2q+2
3 Ω2Ω†1Σ

−(2q+1)
1 . (8-41)

Consequently, we have

‖W1Σ1‖2 ≤
σ2
`−p+1

σk

(
σ`−p+1

σk

)2q
‖Ω2‖2‖Ω†1‖2. (8-42)

To get D1Σ1, we first need to obtain D1, equation (4-34), for the case
when the power method is employed. To this end, the procedure starts with
substituting T1 in equation (4-31) with

T1 = (AAT )qAΩ. (8-43)

By writing the SVD of A (2-1), we have

T1 = UΣ2q+1VTΩ = U


Σ2q+1

1 0 0
0 Σ2q+1

2 0
0 0 Σ2q+1

3



VT

1 Ω

VT
2 Ω

 = Q1R1. (8-44)

and consequently X is defined as:
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X =
[
Ω†1

Σ2q+1
1 0
0 Σ2q+1

2

−1

, X̃
]
. (8-45)

Forming T1X yields:

D1 = Σ2q+2
3 Ω2Ω†1Σ

−(2q+1)
1 . (8-46)

and we have
D1Σ1 = Σ2q+1

3 Ω2Ω†1Σ
−2q
1 . (8-47)

Accordingly, we have

‖D1Σ1‖2 ≤ σ`−p+1

(
σ`−p+1

σk

)2q
‖Ω2‖2‖Ω†1‖2. (8-48)

Substituting (8-42) and (8-48) into (8-36), and dividing both the numerator
and denominator by σ1 gives the result.

8.2.5
Proof of Proposition 4.11

To prove Proposition 4.11, we first present several key results that are
used later on.

Proposition 8.1 (Halko et al. [39]). For fixed matrices S and T, and a
standard Gaussian matrix G, we have

E‖SGT‖2 ≤ ‖S‖2‖T‖F + ‖S‖F‖T‖2.

Proposition 8.2 (Halko et al. [39]). Let h be a real valued Lipschitz function
on matrices:

|h(X)− h(X)| ≤ L‖X−Y‖F , for all X,Y

where L > 0. Draw a standard Gaussian matrix G. Then

P{h(G) ≥ Eh(G) + Lu} ≤ e−u2/2.

Proposition 8.3 (Halko et al. [39]). Let G ∈ R`−p×p be a Gaussian matrix,
where p ≥ 0 and `− p ≥ 2. Then for t ≥ 1,

P
{
‖G†‖2 ≥

et
√
`

p+ 1

}
≤ t−(p+1).
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Proposition 8.4 (Gu [36]). Let g(·) be a non-negative continuously differen-
tiable function with g(0) = 0, and let G be a random matrix, then

Eg(‖G‖2) =
∫ ∞

0
g′(x)P{‖G‖2 ≥ x}dx.

We first define the following function

g(x) ,

√√√√ α2x2

1 + β2x2 ,

whose derivative with respect to x is defined as

g′(x) = α2x

(1 + β2x2)2

√
α2x2

1 + β2x2

.

where α, β > 0.
Next, for the Gaussian matrix G ∈ Rm×n, we define a function h(G) =

‖G‖2. By Proposition 8.1, it follows that

E(h(G)) ≤
√
m+

√
n <
√
m+

√
n+ 3 , ε.

By definition of g(x), Proposition 8.4, and Proposition 8.2, for x = u−ε,
we have

P{‖G‖2 ≥ x} ≤ e−u2/2.

We can rewrite equation (4-45) as follows

E


√√√√ α2‖G‖2

2
1 + β2‖G‖2

2

 = E(g(‖G‖2)) =
∫ ∞

0
g′(x)P{‖G‖2 ≥ x}dx

≤
∫ ε

0
g′(x)dx+

∫ ∞
ε

g′(x)P{‖G‖2 ≥ x}dx

≤

√√√√ α2ε2

1 + β2ε2 +
∫ ∞
ε

α2x

(1 + β2x2)2

√
α2x2

1 + β2x2

e(x−ε)2/2dx

=

√√√√ α2ε2

1 + β2ε2 + α2

(1 + β2ε2)2

√
α2ε2

1 + β2ε2

∫ ∞
0

(u+ ε)−u2/2du︸ ︷︷ ︸
ε
√
π/2+1

.

We now must find a ν > 0 such that√√√√ α2ε2

1 + β2ε2 +
α2(ε

√
π/2 + 1)

(1 + β2ε2)2

√
α2ε2

1 + β2ε2

≤

√√√√ α2ν2

1 + β2ν2 ,

which leads to



Chapter 8. Appendix 110

ν2 − ε2 ≥1 + β2ν2

1 + β2ε2 × (ε
√
π/2 + 1)×


√

α2ν2

1 + β2ν2√
α2ε2

1 + β2ε2

+ 1

 .

The right-hand side of the inequality approaches the maximum value as
β approaches ∞. Thus ν must satisfy

ν2 − ε2 ≥ ν2

ε2 (ε
√
π/2 + 1).

which results in

ν ≥ ε2√
ε2 − (ε

√
π/2 + 1)

.

The inequality is satisfied when ν =
√
m+

√
n+ 7 = ε+ 4.

8.2.6
Proof of Proposition 4.13

According to Proposition 8.3, for any x > 0, we have

P
{
‖G†‖2 ≥ x} ≤

(
p+ 1
e
√
`
x
)−(p+1)

.

With similar arguments to those in the proof of Proposition 4.11, for a
constant C > 0 to be determined later on, we have

E


√√√√ α2‖G†‖2

2
1 + β2‖G†‖2

2

 = E(g(‖G†‖2)) =
∫ ∞

0
g′(x)P{‖G†‖2 ≥ x}dx

≤
∫ C

0
g′(x)dx+

∫ ∞
C

g′(x)P{‖G†‖2 ≥ x}dx

≤

√√√√ α2C2

1 + β2C2 +
∫ ∞
C

α2
(
p+ 1
e
√
`
x
)−(p+1)

(1 + β2x2)2

√
α2x2

1 + β2x2

dx

=

√√√√ α2C2

1 + β2C2 + α2C2

(p− 1)(1 + β2C2)2

√
α2C2

1 + β2C2

∫ ∞
C

(
p+ 1
e
√
`
x
)−(p+1)

︸ ︷︷ ︸(
p+ 1
e
√
`
C

)−(p+1)

.

Likewise, we seek ν > 0 such that

√√√√ α2C2

1 + β2C2 +
α2C2

(
p+ 1
e
√
`
C
)−(p+1)

(p− 1)(1 + β2C2)2

√
α2C2

1 + β2C2

≤

√√√√ α2ν2

1 + β2ν2 .
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The solution satisfies

ν ≥ C2√
C2 − C2

p− 1

(
p+ 1
e
√
`
C
)−(p+1)

.

The value ν = 4e
√
`

p+ 1 satisfies this inequality for C =( e
√
`

p+ 1

)( 2p
p− 1

)1/(p+1)
.

8.2.7
Proof of Theorem 4.14

We only prove Theorem 4.14 for j = k, as is the case for Theorem 4.7.
Theorem 4.14 can be proved for other values of 1 ≤ j < k by referring to The-
orem 4.14 for a rank j truncated SVD. Since Ω1 and Ω2 are independent from
each other, to bound expectations we in turn take expectations over Ω2 and Ω1:

E(σk(ÂSOR)) = EΩ1

(
EΩ2

[
σk(ÂSOR)

])

= EΩ1

EΩ2

 σj√
1 + ‖Ω2‖2

2‖Ω1
†‖2

2

(
σ`−p+1
σj

)4




≥ EΩ1

 σk√
1 + ν2

1‖Ω1
†‖2

2γ
4
j

 ≥ σk√
1 + ν2γ4

k

.

(8-49)

The second line follows from Theorem 4.7, equation (4-23), and the last line
from Proposition 4.10, and Proposition 4.12. The result in (4-49), likewise,
follows by substituting (4-24) into the second line of equation (8-49).

8.2.8
Proof of Theorem 4.15

Similar to the proof of Theorem 4.14, we first take expectations over Ω2

and next over Ω1. By invoking Theorem 4.9, Propositions 4.11, and Proposition
4.13, we have
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E‖A− ÂSOR‖% = EΩ1EΩ2‖A− ÂSOR‖%

= ‖A0‖% + EΩ1EΩ2


√√√√ α2‖Ω2‖2

2‖Ω1
†‖2

2

1 + β2‖Ω2‖2
2‖Ω1

†‖2
2

+

√√√√ η2‖Ω2‖2
2‖Ω1

†‖2
2

1 + τ 2‖Ω2‖2
2‖Ω1

†‖2
2


≤ ‖A0‖% + EΩ1


√√√√ α2ν2

1‖Ω1
†‖2

2

1 + β2ν2
1‖Ω1

†‖2
2

+

√√√√ η2ν2
1‖Ω1

†‖2
2

1 + τ 2ν2
1‖Ω1

†‖2
2


≤ ‖A0‖% +

√√√√ α2ν2
1ν

2
2

1 + β2ν2
1ν

2
2

+

√√√√ η2ν2
1ν

2
2

1 + τ 2ν2
1ν

2
2
≤ ‖A0‖% + (α + η)ν.

(8-50)
Plugging values of α and η defined in Theorem 4.9, and ν into the last
inequality gives the results.
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