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Abstract

Multi-input and multi-output (MIMO) and orthogonal frequency division multiplexing

(OFDM) have attracted significant attention, and become promising techniques for high

data rate wireless communication systems. They have been widely studied and employed

for 4G systems such as WiFi, DVB-T, WiMAX and LTE-A. Hence, the performances of

such systems are critical to practical applications including online gaming, files transfer

and high quality video streaming et al.. The thesis have studied low-complexity channel

estimation and detection techniques to improve the reliability of the wireless links or

increase the spectral efficiency at low cost as follows.

(1) MIMO-OFDM systems over slowly varying channels. Conventional comb-type

uniform pilot allocation (UPA) for MIMO-OFDM systems employed by many standards

obtains reliable channel estimates in the sense that the pilots occupy the subcarriers only

for channel estimation without any further benefit. To make better use of pilots for MIMO-

OFDM systems to acquire an additional performance gain, a novel receiver based dy-

namic pilot allocation (DPA) scheme is proposed with the aid of a feedback link. The

DPA inserts pilots into most faded subcarriers at expense of moderate MSE performance

degradation in channel estimation.

(2) Narrow band MIMO systems. High spectral efficiency can be achieved by a large

size of transmit and receive antennas, but the BER performance of conventional linear

and successive interference cancellation (SIC) receivers cannot be comparable to max-

imum likelihood (ML) receivers. Although one alternative method (real-valued sphere

decoder) can approach the performance of ML receivers with near SIC complexity at

high SNR, it cannot efficiently process phase shift keying (PSK) modulation. On the

other hand, the complex-valued sphere decoder can process PSK, but with complicated



enumeration. Hence, a SIC based complex-valued sphere decoder is proposed with prob-

abilistic tree pruning. The proposed complex-valued SD can reduce the tree span and

save the complexity induced by enumeration schemes. Additionally, the basic principles

of complex-valued sphere decoder can be naturally extended to an instantaneous union

bound estimation for ML receivers. Its complexity is significantly reduced. However, the

initial radius and candidates bound for the union bound estimation have not been studied,

which have significant influences on the search complexity. Hence, a channel statistics

based initial radius is derived based on the Rayleigh-Ritz theorem and the probability den-

sity function (PDF) of the channel matrix. The candidates bound can also be computed

by the initial radius or the updated radius to reduce the tree span as the sphere decoder

does.

(3) OFDM systems over rapidly time-varying channels. Inter-carrier interference (ICI)

becomes the bottleneck for the OFDM systems over rapidly time-varying channels. The

complexity of equalization for such scenarios will be high if a full matrix inversion is em-

ployed in the receivers, because the number of subcarriers for existing standards is beyond

several hundred. To avoid a full matrix inversion, two novel matched filter (MF) based

ICI cancellation algorithms have been proposed to mitigate the dominating ICI coeffi-

cients inside the banded channel matrix. In addition, a multi-segmental iterative channel

estimation technique splits one OFDM symbol into several small segments by partial fast

Fourier transform (PFFT), and obtains the channel impulse response estimates for seg-

ments. One can linearly interpolates the time-varying channels between segments with

low complexity. It is found that the MF based ICI cancellation algorithms, incorporating

multi-segmental iterative channel estimation are robust to the time variation.
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Introduction
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1.5 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Overview of Previous Work on MIMO and OFDM

Systems

Wireless communication has become one of the fastest growing industries during the last

few decades. Over 2 billion users are involved and make it one of largest research and

business fields [1]. With the development of mobile devices, many technical challenges

have arisen such as video streaming, online-gaming and real-time video meeting. Hence,

the 3rd and 4th generations of cellular systems such as WiMAX [2], LTE, and LTE-

Advanced [3] have been deeply studied and deployed in many developing and developed

countries. However, a higher quality of service is required for the current systems, that is,

higher data rate, higher spectral efficiency and more reliable link. These features must be

provided with lower cost (reduced size of equipment and less energy consumption etc.).

L. Li, Ph.D. Thesis, Department of Electronics, University of York

1

2013



CHAPTER 1. INTRODUCTION 2

For instance, MIMO-OFDM has been employed in LTE-Advanced. A tradeoff between

complexity and performance may be required in the sense that the suboptimal detection

methods have lower complexity at the expense of poorer performance compared to ML re-

ceivers. In addition, hundreds of subcarriers have been exploited in such systems, which

makes the receiver design more complicated than narrow-band MIMO systems. Also,

the wireless channels results in the distortion and superposition of the transmitted sig-

nals from multiple transmit antennas. Hence, lower-complexity and more robust channel

estimation and detection techniques are critical to wireless communication systems.

To obtain a higher data rate, MIMO techniques are widely used in most current wire-

less communication systems [2, 3]. There are three significant advantages of multi-

antenna systems: (1) energy efficiency. The signal to noise ratio (SNR) is improved;

(2) diversity gain. The fading effect can be compensated for the replica of signals over

different uncorrelated channels; (3) multiplexing gain. The data rate can be increased

by transmitting independent data streams through multiple transmit antennas. The the-

oretical research on MIMO was pioneered by [4], which describes that the capacity for

single user communication in fading channels can significantly increases using multiple

antennas. Although the theoretical analysis on the capacity of MIMO channels has been

established, the more practical algorithms to achieve the capacity are still waiting for fur-

ther study. Prior to the analytical work, the Bell Lab space time (BLAST) receivers have

been proposed in [5] and [6]. It shows that an enhanced spectral efficiency 20 bits/Hz/s

can be achieved. The advantage of multiple antennas techniques is to transmit or receive

several signals carrying same information to combat with the faded channels. Hence, the

fading can be beneficial in multi-antenna systems rather than detrimental in the single-

antenna systems. The utilization of multi-antenna techniques has been extended in terms

of space-time coding (STC) [7,8], which achieves a higher diversity than the spatial mul-

tiplexing technique at the expense of capacity loss [9]. In other words, a fundamental

tradeoff between diversity gain and multiplexing gain may exist. In [10], the diversity

and multiplexing tradeoff has been well discussed to evaluate the performance for ex-

isting schemes and possibly new schemes, and it concludes that the diversity gain and

multiplexing gain can be simultaneously achieved. However, the achievable data rate can

be much lower than the capacity of MIMO channels, once the diversity gain is realized [9].

For space-time block codes (STBC), a general framework has been studied in [11]. Fur-

thermore, the coding gain of STC can be further improved using space-time trellis codes
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CHAPTER 1. INTRODUCTION 3

in [7, 12–14]. For spatial multiplexing, linear detection cannot realize any receive diver-

sity, and successive interference cancellation (SIC) based receivers can only exploit cod-

ing gain [15, 16]. Hence, the approximate ML receivers (sphere decoder (SD)) have been

thoroughly investigated to extract full receive diversity and achieve the optimum tradeoff

between the complexity and performance. The SD is originally based on [17] to solve a

Non-deterministic Polynomial-time hard (NP-hard) problem, but the authors in [18, 19]

studied the SD further for MIMO channels, which can obtain near-ML performance with

significant complexity reduction. In [20], the complexity of the proposed complex-valued

SD is close to that of the conventional SIC receiver at high signal to noise ratio (SNR).

Additionally, the expected complexity of Fincke and Pohst-SD has been studied in [21],

which can be considered as an indicator for the complexity of the Schnorr and Euchner

(SE)-SD. Furthermore, the authors have presented an exact performance analysis of ML

detection with different modulation schemes in [22], which also give an insight into SD

in bit error rate (BER).

Although the performance of SD is significantly improved, there is still a large gap

between the achievable capacity of SD and the capacity of MIMO channels. Iterative

detection and decoding (IDD) has attracted significant attention within the last 20 years

after Turbo Codes [23] appeared, because of the near-capacity performance. In [24–27],

the effectiveness of the turbo principle has been validated in different fields. The authors

in [28] proposed a low complexity list sphere decoder (LSD) based IDD technique to

reach the capacity of MIMO channels. The basic principles of SD can also be extended

to the instantaneous union bound estimation for ML receivers, which will be discussed in

Chapter 4.

OFDM as a prevailing modulation scheme has been investigated for decades and

adopted in many recent wireless communication standards such as the Digital Video

Broadcasting (DVB) based schemes [29, 30] and some 4G based cellular wireless com-

munication systems [2, 3]. The OFDM systems have been first studied in [31–33], and

the authors pointed out the fundamental principles. Furthermore, OFDM can provide

an effective mean of converting the frequency-selective channel into multiple frequency-

flat channels and eliminating the inter-symbol interference with a cyclic-prefix [34, 35].

Hence, the design of the receiver for OFDM systems over a slowly time-varying chan-

nel becomes simple. This is because the orthogonality between subcarrier will be not
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destroyed if the cyclic prefix is longer than the channel impulse response [36]. To miti-

gate the detrimental effects caused by the channels, the channel state information (CSI)

is needed for coherent detection in OFDM systems [37]. Although differential mod-

ulation techniques do not require channel estimation, it leads to lower data rates and

noticeable performance loss of 3 dB compared to coherent detection [38]. Hence, the co-

herent detection is more preferred, and channel estimation techniques have been broadly

investigated. For example, the pilot-symbol-aided channel estimation (PACE) is a most

common approach used in OFDM systems. The PACE can be performed using Least

Squares (LS) estimation, and then one can interpolate the channel in frequency or time

domain or in both domains. Several common interpolation schemes have been well dis-

cussed in [37, 39–41]. Furthermore, adaptive filter based channel estimation for OFDM

systems has been studied in [42]. Compared to single antenna OFDM systems, the PACE

for MIMO-OFDM becomes more complex. This is because the signals from multiple

transmit antennas are superimposed. To mitigate the effects of inter-antenna interference

(IAI) for channel estimation, the following methods were proposed. The STBC and space

frequency block code (SFBC) [43–45] have been employed for MIMO-OFDM channel

estimation, but the channel must remain almost unchanged during several time periods or

across several subcarriers. In [46,47], a superimposed pilots based LS channel estimation

for MIMO-OFDM systems has been thoroughly investigated. The correlation of received

pilot signals and original pilots are used to obtain channel estimates, and the prior as-

sumption about the channel is not needed. However equispaced pilot allocation must be

employed to avoid significant mean square error (MSE) performance degradation. The

authors in [48] proposed another scheme to place null subcarriers to avoid IAI, which

can be easily integrated with interpolation techniques for SISO-OFDM systems. A sim-

ilar scheme has been adopted by WiMAX [2]. However, these techniques are based on

fixed pilot allocation (equispaced and equipower) in the absence of any prior knowledge

of channels. Although the optimum MSE performance can be achieved using equispaced

pilots [49–51], this pilot pattern cannot significantly improve the performance of interest

such as SER and capacity. Hence, dynamic pilot allocation (DPA) for SISO-OFDM and

MIMO-OFDM systems has been studied in [52–55] to insert the pilots into deep faded

subcarriers at the expense of moderate MSE performance degradation. The detailed dis-

cussion of DPA will be presented in the following chapters.

The high mobility of OFDM systems is a major issue, which has been investigated in
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many works. The inter-carrier interference (ICI) of OFDM systems brought by the high

mobility has a detrimental effect on the channel estimation and equalization. In [56, 57],

the authors exploit the banded channel matrix in the frequency domain by a time-domain

window, which can maximize signal to interference plus noise ratio (SINR) or signal to

interference ratio (SIR) of desired subcarriers. The ICI cancellation can be performed in

a serial or block form based on the banded channel matrix. Two pre-equalizers in [58,59]

mitigate the effects of time variations to obtain an equivalent diagonal channel matrix.

One has developed a partial FFT method to reduce the dimension of equalizer, and the

other has formulated the pre-equalizer by minimizing ICI power beyond the diagonal.

The ICI is modelled using derivatives of the channel amplitude, and iterative decision

feedback equalization (DFE) is performed to obtain a single tap equalizer in frequency

domain [60]. A similar idea is implemented in [61] to obtain the diagonal matrix using

mean values of transmit symbols based on log-likelihood ratio (LLR) values from the

channel decoder. In [62], the authors propose a MF-SIC scheme for the banded channel

matrix, with iterative SIC-based single-burst channel estimation (SBCE). Another method

is to approximate the symbol estimates using the sequential LSQR algorithm with selec-

tive parallel interference cancellation (PIC), which is based on the banded structure of the

modified channel matrix in the time or the frequency domain [63]. Some other iterative

cancellation techniques are also presented in [64,65] employing a novel LLR criterion or

a novel cancellation order. Compared to these cancellation techniques, a low-complexity

maximum a posteriori probability (MAP) based detection method for mobile OFDM can

be found in [66] with successively reduced search space, which can be treated as a vari-

ation of interference cancellation with a MAP criterion. In Chapter 5, two novel joint

receiver designs will be presented for OFDM systems over rapidly time-varying channels

to combat the high mobility using iterative detection and channel estimation.

1.2 Contributions

In the previous section, an overview of fundamental techniques is presented for MIMO

and OFDM systems. It can be found that high spectral efficiency must be achieved with

low cost algorithms. Given this principle, major contributions of this thesis are summa-

rized as follows:
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• The conventional pilot allocation in PACE for MIMO-OFDM systems is fixed, but

its performance will not be improved significantly with the increasing number of

pilots in fixed positions. Two similar optimized pilot allocation schemes for SISO-

OFDM and Alamouti based MISO-OFDM have been proposed in [52, 53]. Addi-

tionally, these methods are only designed for linear receivers with a single-receive

antenna. Hence, the optimized pilot allocation for MIMO-OFDM systems is re-

quired to be investigated. To extend the use of DPA to MIMO-OFDM systems with

a feedback link, a low-complexity optimized pilot allocation search strategy namely

MIMO iterative pilot search (MIPS) has been developed. The search in the space

domain is implemented antenna by antenna, and the search in the frequency domain

is similarly performed subcarrier by subcarrier. The SER metrics of choosing the

optimum pilot allocation for different MIMO-OFDM receivers (linear, SIC, ML)

have been derived based on SINR and minimum Euclidean distance, respectively.

For a limited feedback channel, the feedback overhead of DPA for MIMO-OFDM

systems is much higher than that for SISO-OFDM systems. Thus a stack vector

quantization (SVQ) technique has been proposed to reduce the overhead of DPA

for MIMO-OFDM systems. Simulation result demonstrate that DPA, with a feed-

back channel or a limited feedback channel, can significantly improve the BER

performance at expense of moderate MSE degradation for MIMO-OFDM systems.

Furthermore, a discussion is presented to validate a selection diversity realized by

DPA that cannot be achieved by uniform pilot allocation (UPA).

• Although the complexity of a real-valued SD with a real-valued enumeration

scheme is moderate compared to a conventional complex-valued SD, it cannot ef-

ficiently process phase shift keying modulation schemes, and must search double

the number of detection layers. The complex-valued SD does not have such draw-

backs. Furthermore, the conventional real-valued or complex-valued SD requires

a relatively large radius to enumerate candidates first and then starts examining

these enumerated branches. This procedure is very inefficient. A SIC based search

strategy has been developed to reach a full branch first and then enumerate fewer

possible candidates. With the aid of probabilistic tree pruning, it covers a smaller

number of candidates than the conventional complex-valued SD in the sense that

the candidates obtained by the enumeration is further reduced for a particular de-

tection layer. Hence, the proposed complex-valued SD can reach the ML solution
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much faster than the conventional ones.

• Compared to the conventional SD, the LSD requires more computational efforts,

because more branches are involved in the search. Its complexity varies signifi-

cantly with the number of transmit antenna, the order of modulation and SNR val-

ues, which are undesirable for the hardware implementation. For further reduction

of complexity in LSD, the basic principles of SIC based complex-valued SD have

been extended to the LSD, but the search is proceeded within several separate sub-

tree search namely scatter list generation produced by the proposed complex-valued

SD above. Additionally, the remaining branches within the radius can be filled by

the ML solution in lower detection layers to construct several new full branches.

These full branches can be ordered or pruned according to the full path metrics, the

process of which is called ML based ordering. Hence, the list generation can be

performed more efficiently than the single tree search, and this generation scheme

suits pipeline implementation in hardware.

• The instantaneous union bound for ML receivers has been derived from the real-

valued SD. For the conventional real-valued SD based union bound estimation, the

initial radius and the candidates enumeration have not been considered. However,

the initial radius and the enumeration is very important for complexity reduction.

Thus a channel statistics based initial radius is obtained by the Rayleigh-Ritz theo-

rem and the cumulative distribution function (CDF) of the channel matrix, and the

lower and upper bounds of enumeration can be determined by the radius. The over-

all complexity of the union bound estimation is reduced by introducing the initial

radius and the candidates enumeration.

• The high mobility of OFDM systems results in ICI, which degrades the perfor-

mance of the receivers and places an obstacle on channel estimation. several con-

ventional methods for such scenarios use the banded channel matrix in the fre-

quency domain or the time domain to reduce the complexity of equalizers. How-

ever, their complexity and performance are still not satisfactory due to employing

matrix inversion and residual ICI inside the band. Two proposed joint matched

filter based ICI cancellation algorithms with multi-segmental channel estimation

(MSCE) have been applied to OFDM systems over fast time-varying channels. Be-

cause these two algorithms are based on the matched filter with one or multiple

feedback candidates for ICI cancellation, their complexity is reduced owing to no
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matrix inversion required. For multi-segmental channel estimation, the received

signals during one OFDM symbol periods is split into multiple segments by partial

fast Fourier transform (PFFT). Hence, the channel estimation accuracy is improved

by linear interpolation with multiple segments rather than one segment in single

burst channel estimation.

1.3 Thesis Outline

The thesis is organized as follows:

• In Chapter 2, fundamentals of MIMO and OFDM systems are introduced. Firstly,

the channel modelling based on Jakes’ model is presented, and system models for

OFDM and MIMO-OFDM systems are formulated as well as pilot based channel

estimation for these two systems. Secondly, the detection methods for MIMO sys-

tems including zero-forcing (ZF) detection, minimum mean square error (MMSE)

detection, SIC, and ML detection are described in detail. The extrinsic informa-

tion transfer chart (EXIT) chart for iterative behaviours of detection and decoding

is also presented. Finally, equalization given the banded channel matrix for OFDM

systems over doubly selective channels is discussed.

• Chapter 3 presents a joint channel estimation and detection design with DPA for

MIMO-OFDM systems over slowly time-varying channels. For a DFT channel es-

timator, the channel estimation errors variance corresponding to a particular pilot

allocation is derived. This variance is used for SINR and minimum Euclidean dis-

tance calculation, which are used for finding the optimum pilot allocation. MIMO

iterative pilot search (MIPS) algorithm is then proposed to reduce the complexity of

the pilot allocation search. Stacked vector quantization (SVQ) is proposed to reduce

the overhead of DPA for MIMO-OFDM systems with a limited feedback channel.

Simulation results of DPA and UPA for MIMO-OFDM systems are illustrated to

verify the SER performance improvement at the expense of MSE degradation and

several feedback bits.

• In Chapter 4, an efficient complex-valued SD is proposed based on a SIC based
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search strategy and probabilistic tree pruning. Additional conditions for complex

SE enumeration are presented to ensure that all possible candidates are covered in

the search. To extend the basic principles of SD to LSD, a scatter list generation

method is proposed as well as an ML based ordering. Also, a low-complexity in-

stantaneous union bound for ML receivers is estimated based on the real-valued SD,

with a channel statistic initial radius and lower and upper bounds for enumeration.

BER performance and complexity of the proposed complex-valued SD and the cor-

responding LSD are demonstrated, and compared with that of other complex-valued

SDs. The numerical results show the advantages of the real-valued SD based instan-

taneous union bound over other real-valued SD based methods in terms of FLOPS

and root mean square error (RMSE).

• Chapter 5 proposed two novel MF based ICI cancellation algorithms with multi-

segmental iterative channel estimation. The first one, MF-PIC mitigates the ICI

inside the band in one shot. The second one, a dimension reduced multi-feedback

MF based SIC (MBMF-SIC) algorithm sequentially cancels the ICI inside the band

with the aid of SINR ordering. Two generation schemes for multi-feedback candi-

dates are also discussed. Simulation results demonstrate the superiority of the two

MF based ICI cancellation algorithms in the complexity and the BER performance

compared to other ICI cancellation algorithms.

• Conclusions are drawn and a brief discussion of future research is presented in

Chapter 6.

1.4 Notations

[A]m,n the element in mth row and nth column of the matrix A

am the mth vector

Am the mth matrix

ℜ real part

ℑ imaginary part

IN N ×N identity matrix

()∗ complex conjugate

()T , ()H matrix transpose and Hermitian transpose
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E expectation operator

Cm×n space of complex valued matrix of size m by n

Rm×n space of real valued matrix of size m by n

diag{a} a diagonal matrix whose diagonal elements are based on the elements from the

vector a

D(A) a column vector which is created from the diagonal elements of the matrix A

()† pseudo inverse

⊗ Kronecker product

⊙ element-wise multiplication between two matrices
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2.1 Introduction

This chapter presents and discusses fundamentals of MIMO and OFDM systems, some of

which are incorporated in the following chapters for comparison or as the motivation of

ideas. Firstly, we will introduce the basic concepts of OFDM and MIMO systems as well
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as channel modelling. Secondly, pilot-based channel estimation techniques are discussed.

Finally, the data detection for MIMO systems is covered, which can be naturally extended

to other systems such as OFDM systems over time-varying channel, cooperative MIMO

systems. This is because the channel matrices for these systems are similar to that of

MIMO channels.

2.2 Channel Modelling

Channel estimation techniques for OFDM systems are primarily investigated in the fol-

lowing chapters. Hence, we introduce the time-varying fading channel generated by the

Jakes model [67] in this section, and then discuss these models. Channel modelling has

been studied for decades, and various channel models have been formulated in different

ways. However, Clarke’s and its simplified version (Jakes’ model) were proposed and

are widely used in wireless communications since the 1960s [67, 68], due to their sim-

plicity. However, the weakness of Jakes’ model is the difficulty of generating multiple

uncorrelated channels [69]. Furthermore, the signals produced by Jakes’ model are not

wide-sense stationary [70]. Here we only discuss Jakes’ model and point out some modi-

fications made to Jakes’ model in [69–72]. The improved model proposed in [72] is used

for the following simulation.

2.2.1 Original Reference Model

Clarke’s reference model considers several incoming rays with random path gains, angles

and initial phases, which arrive at the mobile receiver simultaneously. The mathematical

expression of Clarke’s model is given by [67, 68]

g(t) = E0

N∑

n=1

Cn exp (j (wdt cos an + φn)), (2.1)

where E0 is a scaling factor, Cn, an, φn, for the nth propagation path, denote the random

path gains, incoming angles and initial phases, and wd is the maximum radian Doppler
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frequency shift, respectively [72]. Hence, a complex form of (2.1) can be rewritten as

g(t) = gr(t) + j gi(t)

= E0

N∑

n=1

Cn cos(wdt cos an + φn)

+ j E0

N∑

n=1

Cn sin(wdt cos an + φn).

(2.2)

The autocorrelation and cross-correlation functions of the channel simulator in (2.2) can

be given as [67]

Rgrgr(τ) = J0(wdτ)

Rgigi(τ) = J0(wdτ)

Rgrgi(τ) = 0

Rgigr(τ) = 0

Rgg(τ) = 2J0(wdτ)

R|g|2|g|2 = 4 + 4J2
0 (wdτ),

(2.3)

where Rxx(τ) = E{x(t)x∗(t + τ)} and J0(·) is the 0th order Bessel function of the first

kind. For normalization, let
∑N−1

n=0 E[C2
n] = 1 and E0 =

√
2. For Clarke’s model, the

PDF of the fading envelope |g| and the phase Θg(t) = arctan[gr(t), gi(t)] follow the

Rayleigh and the uniform distribution, respectively. The mathematical expressions of

PDF are given by

f|g|(x) = x exp

(
−x

2

2

)
, x ≥ 0

fΘg(t) =
1

2π
, θ ∈ [−π, π).

(2.4)

To reduce the number of low-frequency oscillators or propagation paths N needed for the

generation of (2.2), several important assumptions are made as follows [67]:

Cn =
1√
N

an =
2πn

N
, n = 1, 2, · · · , N

φn = 0, n = 1, 2, · · · , N.

(2.5)

Substituting (2.5) into (2.2), a new mathematical expression of Clarke’s model after rear-

rangement is given by

g(t) = gr(t) + j gi(t)

=
2√
N

M∑

n=0

an cos(wnt) + j
2√
N

M∑

n=0

bn cos(wnt),
(2.6)
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where N = 4M + 2, M denotes the reduced number of low-frequency oscillators, and

an =

{ √
2 cos β0, n = 0

2 cos βn, n = 1, 2, · · · ,M

bn =

{ √
2 sin β0, n = 0

2 sin βn, n = 1, 2, · · · ,M

βn =

{ π

4
, n = 0

πn

M
, n = 1, 2, · · · ,M

wn =

{
wd, n = 0

wd cos
2πn

N
, n = 1, 2, · · · ,M

.

(2.7)

From (2.6), we can observe that the number of low-frequency oscillators is reduced from

N to M + 1. Note that N = 4M + 2. Hence, Jakes’ model is a simplified Clark’s model

with fixed phase, amplitude and arrival angle for each propagation path, which lead the

simulation model to be deterministic. As mentioned above, the signals produced by (2.6)

are not wide-sense stationary. This is because the sums of fixed amplitude and random

phase sinusoids are not ergodic. Thus the time averages may or may not be equal to the

stochastic averages with these signals [70].

2.2.2 Modified Simulation Models

To solve the problem of generating multiple uncorrelated channels for frequency selective

channels and MIMO channels, the authors in [69] proposed to use Walsh-Hadamard code-

words to maintain the orthogonality between the propagation paths before the summation.

In [70], random phase shifts in low frequency oscillators have been introduced to remove

the non-stationary problem in Jake’s model and its derivatives [67, 69, 71]. However, the

random phase shifts cannot improve the mismatch between the second-order statistics of

these modified models and that of the reference model in (2.3). Furthermore, the second-

order statistics of the quadrature components and the envelope in the simulation models

does not match that in the reference model even with infinite number of sinusoid func-

tions [73]. To avoid these problems discussed above and generate multiple uncorrelated

channels with a small number of low-frequency oscillators, an improved Jakes’ model,

which reintroduces the randomness to the path gain, the Doppler frequency, and the ini-
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tial random phase, was proposed in [72] with good statistical properties. Here, the exact

derivation and mathematical expression of the improved Jakes’ model is not provided.

More details can be found in [72]. The improved simulation model will be used to gener-

ate the wide-sense stationary uncorrelated scattering Rayleigh fading channels for MIMO

and OFDM systems. In the following chapters, this improved simulation model will be

referred to as Jakes’ model for simplicity.

2.3 Introduction to OFDM

Orthogonal frequency division multiplexing (OFDM) is one promising multi-carrier tech-

nique adopted by many wireless communication standards. Thanks to fast Fourier trans-

form (FFT) algorithm, OFDM becomes more popular due to its simple implementation.

The basic idea of OFDM systems is to transmit symbols over multiple orthogonal subcar-

riers, so IFFT is performed with transmitted symbols at the transmitter, and FFT is per-

formed with received symbols at the receiver. The basic principles and details of OFDM

transmission was presented in [31–33]. Another advantage of OFDM is to convert a

frequency-selective wideband channel into several frequency-flat narrow band channels.

Thus the complexity of receiver for OFDM systems is much simpler than that of receivers

in single-carrier systems. However, OFDM systems will be sensitive to channel variation,

which induce inter-carrier interference (ICI) by destroying the orthogonality between sub-

carriers. The rest of the section is structured as follows. In Subsection 2.3.1, the basic

principles of OFDM systems is presented. Subsection 2.3.2 discusses the insertion of

cyclic-prefix (CP) to mitigate the inter-symbol interference (ISI) in OFDM systems and

the system model of OFDM systems over quasi-static channels. ICI in OFDM systems

over time-varying channels is formulated in Subsection 2.3.3.

L. Li, Ph.D. Thesis, Department of Electronics, University of York 2013



CHAPTER 2. FUNDAMENTAL TECHNIQUES 17

2.3.1 Basic Principles of OFDM

Defining s(k) as the symbol transmitted over the kth subcarrier, and x(n) as the received

symbol at the nth time index, the output of IFFT at the transmitter is given by

x(n) =
1√
Ns

Ns−1∑

k=0

s(k)ej2πkn/Ns for n = 0, 1, . . . , Ns − 1, (2.8)

where the quantity n, k denote the time index in an OFDM symbol period and subcarrier

index, respectively, and the number of subcarriers denotesNs. Hence, we do not introduce

the multi-path channel effects and noise. Thus the received OFDM symbol at the nth time

r(n) = x(n). In the receiver, the output of FFT at the kth subcarrier is given by

y(k) =
1√
Ns

Ns−1∑

n=0

r(n)e−j2πkn/Ns. (2.9)

Substituting (2.8) into (2.9), equation (2.9) after rearrangement becomes:

y(k) =
1

Ns

Ns−1∑

n=0

Ns−1∑

q=0

s(q)ej2πqn/Nse−j2πkn/Ns, Ns − 1

=
Ns−1∑

n=0

Ns−1∑

q=0

s(q)ej2πn(q−k)/Ns

=
1

Ns
s(k)Ns +

Ns−1∑

q=0,q 6=k

s(q)

Ns−1∑

n=0

ej2πn(q−k)/Ns

︸ ︷︷ ︸
0

= s(k) for k = 0, 1, . . .Ns.

(2.10)

From (2.10), the received symbol y(k) = s(k) is not affected by the symbols from other

subcarriers. To explain the orthogonality between subcarrier clearly, power spectrum of

the output of FFT in (2.10) is plotted in Fig. 2.1, where TOFDM denotes the period of one

OFDM symbol. This plot implies that the waveforms of different subcarriers are over-

lapped, but for one particular subcarrier frequency, the sidelobes from other subcarriers

are equal to zero. In other words, the orthogonality between subcarriers is maintained.

2.3.2 Cyclic-Prefix

According to the discussion in Subsection 2.3.1, the orthogonality can be maintained

without the distortion brought by the multipath channels. However, it may not be true for
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Figure 2.1: Power spectrum of baseband signals of the output of FFT at the receiver,

TOFDM = 0.0625s

real wireless communication. In this subsection, we will discuss the effects of multi-path

channels on OFDM systems. The received signal in a discrete form, with a multi-path

channel and noise, can be expressed as

r(n) =
L−1∑

l=0

htl(n, l)x(n− l) + z(n), (2.11)

where the quantity htl(n, l) denotes the channel impulse response for the nth time index

and the lth channel path, and the quantity z(n) denotes AWGN noise at the nth time index.

Additionally, the channel for each path is assumed to be quasi-static htl(n, l) = htl(l) for

n = 0, 1, . . . , Ns − 1, which implies that the channel remain constant for one OFDM

symbol period. From (2.11), x(−l) = 0 for the first received OFDM symbol. However,

it may not be true for the following received OFDM symbols, that is, x(−l) 6= 0. In

other words, the signals from the previous OFDM symbols interfere with the current

received OFDM symbols. Hence, Inter-symbol Inteference (ISI) exists to jeopardizes the

orthogonality among subcarriers. Thus Guard interval is required to be inserted into the

OFDM symbol. There are two different ways to protect the OFDM symbol from ISI. One

is the zero padding (ZP) that appends zeros [74]. The other is CP [33], which copies the

last several symbols x(n), n = Ns − L, . . . , Ns − 1 and inserts them at the beginning
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of the OFDM symbol at the transmitter as shown in Fig. 2.2. Hence, the period of

OFDM symbol becomes Ns + L at least, where L denotes the number of channel paths.

Hence, the ISI from the previous OFDM symbols only affect the samples in the CP, which

implies that the orthogonality between subcarriers is not affected. Furthermore, perfect

synchronization and channel statistical information known to receivers are assumed in the

remainder of the thesis.

time

TailCP

TsTCP

Figure 2.2: The cyclic prefix of OFDM symbol

With the use of CP, the received signal r(n) after the FFT becomes [33] :

y(k) =

L−1∑

l=0

r(n)e−j2πkn/Ns

= hdf (k)s(k) + v(k),

(2.12)

where the quantities hdf (k) =
∑Ns−1

n=0 htl(l)e
−j2πlk/Ns , s(k) ,y(k), and v(k) denote the kth

subcarrier’s channel frequency response, the transmitted symbol over the kth subcarrier,

received symbol over the kth subcarrier, and the additive white Gaussian noise (AWGN)

after the FFT for the kth subcarrier, respectively. Note that the number of channel paths

equals L, so the only first L columns of discrete Fourier transform (DFT) matrix will

be used in a matrix form. Defining y = [y(0), . . . , y(k), . . . , y(Ns − 1)]T as a received

symbol vector, FL as a truncated Ns-point unitary DFT matrix with first L columns,

htl = [htl(0), . . . , htl(l), . . . , htl(L− 1)]T as the channel impulse response during the ith

OFDM symbol, s = [s(0), . . . , s(k), . . . , s(Ns − 1)]T as a transmit symbol vector, and

v = [v(0), . . . , v(k), . . . , v(Ns−1)]T as the noise vector, equation (2.12) can be rewritten

in the following matrix form:

y = diag{FLhtl}s + v. (2.13)

Hence, we can use this simplified system model in (2.13), if OFDM systems inserts the

CP, which is longer than the length of the multipath channel.
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2.3.3 Inter-Carrier Interference for OFDM Systems

For quasi-static channels, the channel impulse response remains constant during one

OFDM symbol period, which does not introduce any inter-carrier interference, because

the orthogonality among subcarriers is perfectly maintained under the quasi-static as-

sumption in (2.12). However, it cannot be true for the high-speed vehicular channels. In

these scenarios, the channels will vary rapidly. Here, we will detail the ICI caused by the

rapid varying channel in OFDM systems. We assume that the kth subcarrier is the desired

one and omit the noise for simplicity, so (2.12) becomes [56]:

y(k) =
1

Ns

Ns−1∑

n=0

L−1∑

l=0

Ns−1∑

q=0

htl(n, l)s(q)e
j2π(qn+ql)/Nse−j2πkn/Ns

= hdf (0, k)s(k)︸ ︷︷ ︸
desired signal

+
Ns−1∑

q=0,q 6=k

hdf (k − q, q)s(q)
︸ ︷︷ ︸

ICI components

,
(2.14)

where hdf (k − q, q) = 1
Ns

∑Ns−1
n=0

∑L−1
l=0 htl(n, l)e

−j2π((k−q)n+ql)/Ns , and the quantity

htl(n, l) denotes the channel impulse response for the nth time index in one OFDM

symbol and the lth channel path. If let d = k − q and k = q, hdf (d, k) =

1
Ns

∑Ns−1
n=0

∑L−1
l=0 htl(n, l)e

−j2π(dn+kl). As described in [56], the quantities in hdf (d, k)

d and k can be interpreted as “Doppler” index and the subcarrier index, respectively. We

can also rewrite equation (2.14) in a matrix form:

y = FHtlF
Hs+ v, (2.15)

where

Htl =




htl(0, 0) 0 · · · · · · htl(0, 2) htl(0, 1)

htl(1, 1) htl(1, 0) · · · · · · htl(1, 3) htl(1, 2)
...

...
. . .

...
...

...

htl(L− 1, L− 1) htl(L− 1, L− 2)
...

. . . 0 0
...

...
... · · · ...

...

0 0 0 · · · htl(Ns − 1, 1) htl(Ns − 1, 0)




,

(2.16)

The ICI induced by the time-varying channel in (2.14) cannot be considered as noise

for simplicity, because the performance of channel estimation and equalization will be

significantly affected. In the following subsections, several equalization techniques will

be presented to mitigate ICI via the band assumption of the channel matrix.
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2.4 Pilot-Based Channel Estimation for OFDM Systems

over Quasi-static Channels

Compared to non-coherent detection, coherent detection can achieve a higher data rate

and a better performance at the price of acquiring accurate channel estimates [37]. Thus,

the channel estimates become necessary. According to (2.13), the system model becomes

y = diag{FLhtl}s + v. (2.17)

Because the orthogonality between subcarriers is maintained, (2.17) can be rewritten in

another form:

y = diag{s}hdf + v, (2.18)

where hdf = [hdf (0), . . . , hdf (k), . . . , hdf (Ns − 1)]T , and the quantity hdf (k) is defined

similarly to (2.12). Hence, the system model in (2.18) is used for pilot-based channel

estimation in the following subsections.

2.4.1 Fundamental Pilot Allocation for OFDM systems

Due to the orthogonality between subcarriers in OFDM systems, different pilot alloca-

tion schemes can be adopted as in [39, 75–77]. In what follows, some fundamental pilot

allocation schemes will be explained.

Block Type Pilot Allocation

The block type pilot allocation is to insert pilots periodically into all subcarriers in the

frequency domain, so the channel frequency response for each subcarrier can be estimated

[39, 75]. The diagram of block type pilot allocation is plotted as Fig. 2.3. Note that

the quantity tp denotes the time sampling period of pilot symbols, which must be much

smaller than the inverse of Doppler frequency (fd) or coherence time. Hence, the block

type pilot allocation is designed for the frequency selective channel. It may employ more

pilots, if the channel variations between consecutive OFDM symbols increases.
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Frequency

Time

tp

Figure 2.3: Block-type pilot allocation

Comb-Type Pilot Allocation

The idea behind the comb-type pilot allocation is similar to the block type except that it

combats the time variations of the channels between OFDM symbols. The diagram of

the comb-type pilot allocation is illustrated in Fig. 2.4. The pilots are inserted in several

particular subcarriers across all the time. Let fp denote the frequency sampling period of

pilot symbols, which must be much smaller than the coherence bandwidth for the reliable

channel estimates.

Lattice-Type Pilot Allocation

Compared to the above allocation schemes, the pilots are scattered over the time and

the frequency domain to keep track of the frequency selectivity and time variation of the

channels. Both tp and fp must be much smaller than the coherence time and the coherence

bandwidth, respectively. The diagram of lattice-type pilot allocation is illustrated in Fig.

2.5. A better tradeoff between the overhead of pilots and performance can be achieved

using lattice type compared to the other conventional pilot allocation schemes. Because it

does not insert pilots across all the time compared to comb-type pilot allocation and does
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Figure 2.4: Comb-type pilot allocation

not insert pilots either in every subcarrier compared to block-type pilot allocation. Thus

the lattice-type pilot allocation can estimate the less selective channels in the time and the

frequency with the moderate number of pilots.

Frequency

Time

fp

tp

Figure 2.5: Lattice-type pilot allocation
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2.4.2 Least-Squares Channel Estimation

According to (2.18), the solution of the LS estimation can be expressed as [78]

ĥdf = (diag{s}Hdiag{s})−1diag{s}Hy = diag{s}−1y. (2.19)

The MSE of LS channel estimation can be given by [78]

MSELS = E{(hdf − ĥdf )
H(hdf − ĥdf )}

=
σ2
v

σ2
s

,
(2.20)

where σ2
v and σ2

s denote the noise variance and the signal power, respectively. We can

observe that with the reduction of σ2
v the MSE performance will be consistently improved.

But it may suffer noise enhancement, that is, the signal power σ2
s is too small in the

deep faded channels. Hence, the MSE performance of LS channel estimation will be

significantly degraded.

2.4.3 MMSE Channel Estimation

According to (2.19) and [79], the MMSE estimate using the rough channel estimate ĥdf

obtained by LS channel estimation is given by h̃df = Wĥdf , where the weight matrix W

denotes the MMSE filter. The MMSE filter can be represented by [79]

W = Rhdf ĥdf
R−1

ĥdf ĥdf
(2.21)

where the matrices Rhdf ĥdf
= E

{
hdf ĥ

H
df

}
and Rĥdf ĥdf

= E{ĥdf ĥ
H
df} denote the cross-

correlation matrix between the real channel and the LS channel estimate in the frequency

domain and the corresponding autocorrelation matrix. The MMSE channel estimate is

given by

h̃df = Wĥdf = Rhdf ĥdf
R−1

ĥdf ĥdf
ĥdf = Rhdf ĥdf

(Rhdfhdf
+
σ2
v

σ2
s

I)−1ĥdf (2.22)

Additionally, with the use of typical wide-sense stationary uncorrelated scattering model

and white Gaussian noise assumption, the elements of Rhdf ĥdf
and Rhi

fh
i
f

can be ex-

pressed as [37]

E{hdf (n, k)ĥ∗df (n′, k′)} = E{hdf (n, k)h∗df (n′, k′)} = rf(k − k′)rt(n− n′), (2.23)
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where k and k′ denote two different subcarriers’ indices, and n and n′ denote time

indices. Note that ĥdf (n, k) = hdf (n, k) + v(n, k)/s(n, k) according to (2.19) and

E{hdf (n, k)(v(n′, k′)/s(n′, k′))∗} = 0 , so the cross-correlation between hdf (n, k) and

hdf (n
′, k′) can be simplified as

E{hdf (n, k)ĥ∗df (n′, k′)} = E{hdf (n, k)(h∗df (n′, k′)∗ + v∗(n′, k′)/s∗(n′, k′))}
= E{hdf (n, k)h∗df (n′, k′)}+ E{hdf (n, k)(v(n′, k′)/s(n′, k′))∗}

= E{hdf (n, k)h∗df (n′, k′)}
(2.24)

For an exponential power delay profile, the mathematical expression of the frequency-

domain correlation is given by [77]

r∆f(k) =
1

1 + j2πτmax∆f
, (2.25)

where ∆f = (k−k′)/Ns is the spacing between two subcarriers, and τmax denotes the root

mean square delay spread. For a uniform power delay profile, the frequency correlation

can be calculated by [37]

rf (∆f) =

L−1∑

l=0

σ2
l e

−j2π∆fl (2.26)

where σ2
l denotes the average power of the lth path. Referring to Jakes’ model, the time

correlation for the fading channel is described by

rt(∆t) = J0(2πfd∆t), (2.27)

where fd denotes the maximum Doppler frequency, and ∆t = (n − n′)(Ns + L). Note

that we assume the length of CP equals the length of multipath. The function J0(·) is the

0th-order Bessel function of the first kind and rf(0) = rt(0) = 1.

2.4.4 Interpolation techniques for OFDM systems

According to the pilot allocation schemes discussed above, the pilots will be inserted in

the time or frequency domain to estimate the channels for a particular time instant or sub-

carriers. However, the channels for data symbols are unknown to the receiver except the

pilot channel estimates. The interpolation techniques are needed to estimate the channels

between subcarriers or time slots. The interpolation techniques for the time domain are
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similar to that for the frequency domain, so we will only discuss the interpolation tech-

niques in the frequency domain. The interpolation can be naturally extended to the time

domain with straightforward modifications. The interpolation is performed based on the

channel estimates obtained by LS or MMSE channel estimation as previously described.

Linear Interpolation

Linear interpolation is a simple method to outperform piecewise constant interpolation

[80], which estimates the channels between two pilots with the aid of linear approxima-

tion. The optimal number of pilots for a given BER can be determined in advance for

OFDM systems with numerical evaluation as in [81]. According to (2.13), the channel

estimate of the dth subcarrier using linear interpolation between the pth and (p+1)th pilot

subcarriers is given by

ĥdf (d) = ĥdf (p
Ns

Np
+ d) 0 ≤ d <

Ns

Np
− 1

=
(ĥdf (p+ 1)− ĥdf (p))d

Ns/Np
+ ĥdf (p),

(2.28)

where ĥdf (p) denotes the channel estimate of the pth pilot obtained by LS or MMSE

estimation, and the quantity d denotes the desired subcarrier index between the pth and

the (p + 1)th pilot. Fig. 2.6 shows a diagram of linear interpolation in the frequency

domain.

Second-order Interpolation

For second-order interpolation, the MSE performance will be better than that of the lin-

ear interpolation with complexity increase, and the idea behind it is similar to the linear

interpolation except that it employs a second-order approximation. Hence, a similar math-

ematical expression is defined as [75]

ĥdf (d) = ĥdf (p
Ns

Np
+ d) 0 ≤ d <

Ns

Np

= c1ĥdf (p− 1) + c0ĥdf (p) + c−1ĥdf (p+ 1),

(2.29)

where c1 =
α(α−1)

2
, c0 = −(α − 1)(α + 1) and c−1 =

α(α+1)
2

, α = d
Ns

, and the quantity d

denotes the desired subcarrier index between the pth and the (p+ 1)th pilot as (2.28).
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Figure 2.6: Diagram of linear interpolation using LS channel estimation for pilots (Np =

8) over a Multipath (L = 4) Rayleigh fading channel with Ns = 32, SNR= 30 dB

DFT-based Interpolation

The DFT-based interpolation technique is the output of the Fourier transform of the chan-

nel impulse response, which is clearly illustrated by a block diagram in Fig. 2.7. The

DFT-based interpolation effectively removes the effects of noise outside the maximum

channel delay spread or the length of multipath channel L, where htl(l) denotes the chan-

nel impulse response for the lth path. The implementation of the DFT-based interpolation

is also straightforward compared to the linear or second-order interpolation, but the length

of multipath channel must be known to the receiver. Symbol 1 is used for pilots in the

following derivation. Referring to (2.18), the system model based on pilot subcarriers can

be rewritten as

ypilot = diag{Xs}FLhtl︸ ︷︷ ︸
hdf

+Xv

= XFLhtl +Xv,

(2.30)

where ypilot = Xy, and X denotes a particular pilot allocation matrix, which is a diagonal

matrix with zero diagonal elements for data subcarrier and 1s for pilots as follows. So

only pilot subcarriers will be extracted, and zeros are allocated to the data subcarriers.
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The symbol vector s used in the previous equations can be omitted.

X =




1 0 . . . 0

0 0 . . .
...

...
...

. . .
...

0 0 . . . 1


 (2.31)

Using LS channel estimation in (2.19), the channel frequency responses corresponding

to pilot subcarrier can be obtained by

ĥ
pilot

df = X−1ypilot, (2.32)

where ĥ
pilot

df = [ĥdf (0), 0, . . . , ĥdf (p), 0, . . . , ĥdf(Np − 1)]T . Thus, the estimate of the

channel impulse response can be computed using IFFT:

ĥtl = FHĥ
pilot

df . (2.33)

If the length of multipath is known to the receiver, the vector ĥtl will be truncated, that

is, ĥtl = [ĥtl(0), . . . , ĥtl(l), . . . , ĥtl(L − 1)]T . So the channel estimate after FFT in the

frequency domain becomes

h̃df = Fĥtl. (2.34)

From (2.33) and (2.34), the DFT based interpolation technique only requires FFT and

IFFT computation as well as the length of multipath, so it is a very common approach

used in channel estimation for OFDM systems.

LS/MMSE
freq. channel
estimation
for pilots

ĥdf (0)

ĥdf (p)

ĥdf (Np − 1)

0

0

0

0

N-point IFFT N-point FFT

ĥtl(0)

ĥtl(L− 1)

0

0

h̃df (0)

h̃df (1)

h̃df (k)

h̃df (Ns − 1)

Frequency
domain

Time domain Frequency
domain

ĥtl(l)

Figure 2.7: Block diagram of DFT-based Interpolation
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MMSE Interpolation

Compared to other interpolation techniques, MMSE interpolation may be the most effec-

tive way to estimate the channels between pilots with the aid of statistical information on

the channels such as the channel correlation and SNR, as well as additional computation

of the matrix inversion. However, it can achieve an excellent performance as compared to

linear, second-order and DFT-based interpolation [51, 75]. Modifying (2.22), the MMSE

interpolation follows as [37, 40, 41]

h̃df = R
hdf ĥ

pilot

df
(R

h
pilot

df h
pilot

df
+
σ2
v

σ2
s

XINs)
−1ĥ

pilot

df , (2.35)

where

R
h

pilot

df h
pilot

df
= E{Xhdfh

H
dfX

H} = XE{hdfh
H
df}XH = XRhdfhdf

XH

R
hdf ĥ

pilot

df
= E{hdf ĥ

H
dfX

H} = XE{hdf ĥ
H
df} = XRhdf ĥdf

.
(2.36)

According to (2.23) and (2.25), the autocorrelation matrix in (2.36) can be obtained for

the exponential power delay profile. The autocorrelation function for other power delay

profile can be found in [37].

2.4.5 Decision Directed Channel Estimation

Another channel estimation method is decision directed channel estimation [82], which

employs the training sequences for the initial channel estimation, and then uses the de-

tected symbols using the previous channel estimate in the (n−1)th OFDM symbol period

to estimate the nth channel estimate. This method can achieve very high data rate at the

expense of introducing an additional processing delay. The block diagram of decision

directed channel estimation is illustrated in Fig. 2.8. We do not detail further on this

method, which is easily integrated with LS or MMSE channel estimation.

2.4.6 Simulation Results

For the simulations, we consider an uncoded OFDM system with the number of sub-

carrier Ns = 64, and the number of pilots Np = 8 (uniformly placed). The signal is
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ŝ
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Figure 2.8: Block diagram of decision directed channel estimation for OFDM systems,

where (n− 1) denotes the previous OFDM symbol period

modulated by QPSK. The channel is generated using Jakes’ model with a normalized

Doppler frequency fdTOFDM = 10−4, the length of which is L = 4 with an exponential

power delay profile suggested by [83]. Furthermore, the channel taps for different delays

are independent from each other. The BER and MSE performance for different frequency

domain interpolation techniques are illustrated in Fig. 2.9 and 2.10 including linear inter-

polation, second-order interpolation, DFT-based interpolation, MMSE interpolation and

decision directed channel estimation [39, 75, 82]. The MMSE detector is employed at

the receiver, and the channel frequency responses of pilot subcarriers are estimated by

LS estimation. The decision directed channel estimation send pilots across subcarriers

in every 8 OFDM symbols. Although decision directed channel estimation has an excel-

lent performance compared to other interpolation techniques, it introduce an additional

processing delay in OFDM systems, and is relatively sensitive to channel variations be-

tween OFDM symbols. We can also observe that the MMSE interpolation outperforms

other techniques in the BER and MSE performance except decision directed channel es-

timation, but it requires statistical information on channels such as frequency correlation

and SNR, and matrix inversions must be performed for each OFDM symbol. The perfor-

mance of DFT channel estimation is worse than that of MMSE with 4 dB loss in the MSE

performance, but these two channel estimators perform almost identically in the BER per-

formance. Furthermore, the DFT channel estimation only requires the information on the

length of multipath channel and implementation of FFT and IFFT. Other techniques in-

cluding piecewise constant, linear and second-order interpolation experience error floors

in BER and MSE, respectively. The error floors of BER are caused by the unreliable

channel estimates over non-pilot subcarriers acquired by these interpolation techniques.

Hence, the DFT interpolation may achieve an attractive tradeoff between complexity and

performance.
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2.5 Pilot-Based Channel Estimation for MIMO-OFDM

Systems Over Quasi-static Channel

Due to the difficulty of allocating pilots for MIMO-OFDM channel estimation compared

to single transmit antenna, the techniques used in SISO-OFDM cannot be simply ex-

tended to the MIMO case. Note that the superposition of signals from multiple transmit

antennas makes decoupling pilot signals difficult. To eliminate the effects of inter-antenna

interference, we discuss three different schemes in this subsection. Firstly, superimposed

pilot allocation was investigated to exploit the correlation between pilot signals and re-

ceived signals to estimate the channel over pilot subcarriers, but the pilots must be equi-

spaced [46, 47] across the subcarriers to maintain an acceptable MSE performance. This

is because the MSE is minimized with phase-shift orthogonal pilots from different trans-

mit antennas [84]. Additionally, the transmit antenna sends a pilot at one subcarrier, and

the others remain silent (null subcarrier), which is similar to the comb-type pilot alloca-

tion [48]. Finally, STBC or SFBC is also employed to implement the channel estimation

for comparison.

We consider an uncoded spatial multiplexing MIMO-OFDM system with Ns subcar-

riers, Nt transmit and Nr receive antennas, where Nt ≤ Nr, as shown in Fig. 2.11. In

Fig. 2.11, the modulated symbols from the modulators (MOD) and pilots are inserted into

data subcarriers and pilot subcarriers via pilot allocation. The output of pilot allocation

is then passed through IFFT and appended with CP for transmission. At the receiver,

the CP is removed and the truncated received signals without CP are then passed through

FFT. The pilots are used for channel estimation (CE), and the detection is performed with

the estimated channels. The transmitted symbols are recovered through the demodulators

(DEMOD) with the output of detection. The received signals are organized in a NrNs×1

vector y = [y1, . . . ,yi, . . . ,yNr ]
T expressed by

y = Hdfs + v, (2.37)
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where Hdf is a NrNs ×NtNs matrix:

Hdf =




H11
df H21

df . . . HNt1
df

H12
df H22

df . . .
...

...
... H

ij
df

...
...

...
. . .

...

H1Nr
df H2Nr

df . . . HNtNr
df




. (2.38)

The matrix H
ij
df is aNs×Ns diagonal matrix in Hdf that represents the frequency selective

channel between the ith transmit antenna and the jth receive antenna, so the channel

frequency response similar to (2.13) is given as

H
ij
df = diag{FLh

ij
tl } = diag{hij

df}

i = 1, 2, . . . , Nt, j = 1, 2, . . . , Nr,
(2.39)

where diag{} represents a diagonal matrix constructed by the corresponding vec-

tor. The vector h
ij
tl denotes the length L channel impulse response vector h

ij
tl =

[hijtl (0), h
ij
tl (1), . . . , h

ij
tl (L− 1)]T between the ith transmit antenna and the jth receive an-

tenna, which is modelled as a tapped delay line. Each entry in the vector can be mod-

elled as an independent identically distributed (i.i.d.) complex Gaussian random variable

with CN (0, σ2
hij
tl (l)

). Additionally, the channel is assumed to experience quasi-static fad-

ing, which implies that the channel is constant during one OFDM symbol and varies

OFDM symbol by OFDM symbol based on Jakes’ model. The power delay profile for

any transmit and receive antenna pair is the same. Given the prior assumptions, the cor-

relation matrix can be represented as Rc = FLE{hij
tlh

ijH

tl }FL. Hence, the kth subcar-

rier’s channel frequency response hijdf (k) can be also modelled as CN (0, σ2
hij
df (k)

), where

σ2
hij
df (k)

=
∑L−1

l=0 σ
2
hij
tl (l)

= 1. The matrix FL is the first L columns of the Ns × Ns DFT

matrix.

2.5.1 Superimposed Pilot-Based Channel Estimation

Superimposed Pilot-Based Channel Estimation is not a straightforward approach com-

pared to the following two schemes, which is inflexible in the pilot allocation and difficult

to extend to the arbitrary number of transmit antennas. But it can save the subcarriers

occupied by the pilots as depicted in Fig. 2.12. In other words, this method estimates
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Figure 2.11: Block diagram of a MIMO-OFDM system

the MIMO-OFDM channel without employing additional pilots in the frequency domain,

which improves the spectral efficiency. The simplified version can be found in [47]. The

extension to more transmit antenna has been discussed in [85]. Equation (2.39) can be

Frequency

Anatenna

Pilot

Data

Null

Figure 2.12: The superimposed pilot allocation

rewritten in a discrete form as

hijdf (k) =
L−1∑

l=0

hijtl (l)W
k,l
Ns
, (2.40)

where W k,l
Ns

= e−j2πkl/Ns . We only consider the two transmit antenna case for simplicity.

Thus, the received signal of the kth subcarrier for one particular receive antenna can be
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expressed as

yj(k) =

2∑

i=1

hijdf (k)si(k) + vj(k). (2.41)

Substituting (2.40) into (2.41), equation (2.41) can be rewritten in a matrix form:

yj =

2∑

i=1

XiFLh
ij
tl + vj

= [X1FL X2FL]


 h

1j
tl

h
2j
tl


+ vj

= Ah
j
tl + vj

(2.42)

where the matrixXi denotes the diagonal matrix only containing pilot symbols in its diag-

onal elements, the rest of which are zeros, A = [X1FL,X2FL], and h
j
tl = [h1jT

tl ,h2jT

tl ]T .

The MSE cost function is required to be minimized:

J (hj
tl) = ‖yj −Ah

j
tl‖2. (2.43)

Hence, the channel impulse response estimates ĥ
j
tl can be obtained by LS estimation. That

is

ĥ
j
tl = A†yj, (2.44)

where (·)† denotes the pseudo-inverse of a matrix. The advantages of this superimposed

pilots based channel estimation is high spectral efficiency, low complexity (the pseudo-

inverse of A† can be pre-computed.), and no priori knowledge about channels and noise

required. However, the pilot symbols should satisfy the following condition [85]:

FH
LXiXi′F

H
L =





0L×L, i 6= i′

cIL×L, i = i′
(2.45)

where c is a constant, and the quantity i and i′ denote the ith transmit antenna and the i′th

transmit antenna, respectively. According to (2.42), the matrix size of A increases with

the number of transmit antenna. Furthermore, if we assume pilots for any transmit antenna

are all ones for simplicity, the pilots must be uniformly placed. Otherwise, the condition

in (2.45) cannot be satisfied. In other words, the pilot symbols must be re-designed for

different pilot patterns. The optimum pilots designs for MIMO-OFDM systems have been

discussed in [47, 84–86]. However, the superimposed pilot allocation can improve spec-

tral efficiency, because the pilots can be inserted into the same subcarriers for different

transmit antennas.
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2.5.2 Comb-Type Channel Estimation

The comb-type channel estimation for MIMO-OFDM systems is similar to these tech-

niques employed in a single antenna scenario, due to the comb structure in the frequency

and space domain. The diagram of such pilot allocation is illustrated in Fig. 2.13, which

effectively eliminates the effects of inter-antenna interference using additional null sub-

carriers. Hence, these advanced techniques discussed in Section 2.4 can be naturally ex-

tended to MIMO-OFDM systems, because the pilot pattern for each pair of transmit and

receive antenna is similar to that of SISO-OFDM systems. Furthermore, the positions

of pilots can be readily placed in the frequency and space domain compared to superim-

posed pilot allocation. In other words, the number of degrees of freedom are significantly

greater, so the frequency diversity may be exploited for data subcarriers. However, the

comb-type channel estimation over very frequency selective channels requires more pi-

lots in the sense that the more null subcarrier are employed, which reduces the spectral

efficiency.

Frequency

Antenna

Pilot

Data

Null

Figure 2.13: The diagram of comb-type pilot allocation

2.5.3 STBC and SFBC based Channel Estimation

STBC and SFBC can be used in the channel estimation for MIMO-OFDM systems with

the assumption that the channels remain constant in the time or frequency domain during

several OFDM symbols. The STBC and SFBC schemes discussed in this subsection are

based on Alamouti scheme [8]. The 2×2 MIMO-OFDM example is provided to illustrate

the idea. The STBC based channel estimation for the kth subcarrier of jth receive antenna
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at the nth and the (n + 1)th time index can be expressed as


 yj(n, k)

yj(n+ 1, k)


 =


 s1(n, k) s2(n + 1, k)

s∗2(n + 1, k) −s∗1(n+ 1, k)




 h1jdf (n, k)

h2jdf (n, k)


+


 vj(n, k)

vj(n+ 1, k)


 ,

(2.46)

where j = 1, 2. Note that the channels in two OFDM symbols are assumed to be constant

in (2.46). In a matrix form, equation (2.46) can be rewritten as

yj(k) = S(k)hj
df (k) + vj(k), (2.47)

where si(n, k) = si(n + 1, k), i = 1, 2. Hence, the channel frequency response for the

kth subcarrier at the nth and (n + 1)th time slot can be estimated using LS estimation by

ĥ
j
df (k) = S−1(k)yj(k). (2.48)

For SFBC,


 yj(n, k)

yj(n, k + 1)


 =


 s1(n, k) s2(n, k)

s∗2(n, k + 1) −s∗1(n, k + 1)




 h1jdf (n, k)

h2jdf (n, k + 1)


+


 vj(n, k)

vj(n, k + 1)


 ,

(2.49)

and

yj(n) = S(n)hj
df (n) + vj(n), (2.50)

where si(n, k) = si(n, k + 1), i = 1, 2. The channel estimation for SFBC is omitted due

to the similarity to that for STBC. Note that STBC and SFBC based channel estimation

can be naturally extended to more transmit and receive antennas scenarios, which requires

that the channel remains constant during more OFDM symbols or across a large number of

subcarriers. The assumption may not be practical in some scenarios, and the performance

will be significantly affected if the channels becomes more selective.

2.5.4 Simulation Results

In the simulations, we choose a 2 × 2 MIMO-OFDM system with Ns = 128 subcarri-

ers and Np = 16 pilots for each transmit antenna. For comb-type channel estimation,

we employ 8 pilots and 8 null subcarriers for fair comparison. The channel length is

L = 8 with normalized Doppler frequency fdTOFDM according to Jakes’ model. The MSE
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Figure 2.14: MSE performance of 2× 2 MIMO-OFDM system with Ns = 128, Np = 16

over frequency selective slowly varying channels (L = 8, fdTOFDM = 10−4)
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Figure 2.15: MSE performance of 2× 2 MIMO-OFDM system with Ns = 128, Np = 16

over frequency flat rapidly varying channels (L = 1, fdTOFDM = 10−2)

performance is provided to illustrate the advantages of these techniques. MMSE interpo-

lation is employed for channel estimation between pilots. In Figs. 2.14 and 2.15, the
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MSE performance is plotted over time and frequency selective channels. We can observe

that superimposed pilot based channel estimation and comb-type channel estimation can

work in these scenarios. However, STBC can only work in the slowly varying channel

scenario, and the error floor becomes more obvious with a normalized Doppler frequency

fdTOFDM = 10−2 in Fig. 2.15. Compared to STBC, SFBC can work in frequency flat

channels with a higher Doppler frequency fdTOFDM = 10−2. Both STBC and SFBC must

follow the channel invariance assumption, so it may not be a good option for general sce-

narios. In Fig. 2.16, the MSE performance over a frequency selective rapidly varying
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Figure 2.16: MSE performance of 2× 2 MIMO-OFDM system with Ns = 128, Np = 16

frequency selective rapidly varying channel (L = 8,fdTOFDM = 10−2)

channel is depicted. Both STBC and SFBC encounter error floors, and comb-type and su-

perimposed pilot based channel estimation outperform them significantly. Furthermore,

comb-type channel estimation work better than superimposed pilot based channel estima-

tion with the same number of pilots, which implies they have the same number of data

subcarriers.

Figs. 2.17, 2.18 and 2.19 plot the BER performance of MMSE detection with different

MIMO-OFDM channel estimation techniques. The BER performance of STBC or SFBC

based channel estimation can only work in the scenarios, which are not very selective

in the time domain (fdTOFDM = 10−4) or the frequency domain (L = 1). The curves
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Figure 2.17: BER performance of 2 × 2 MIMO-OFDM system with Ns = 128, Np = 16

over frequency selective slowly varying channels (L = 8, fdTOFDM = 10−4)

of BER performance for STBC and SFBC based channel estimation almost agree with

the curves of MSE performance. However, superimposed pilots based channel estimation

and comb-type channel estimation is more robust to the selectivity of channels. In other

words, the BER performance of these two techniques is promising over different channels.

As discussed above, superimposed pilots based channel estimation requires re-design of

pilot symbols for different transmit antennas and different subcarriers. Hence, the pilot

patterns of superimposed channel estimation is not flexible compared to that of comb-type

channel estimation. The BER performance of comb-type channel estimation is slightly

better than that of superimposed one. We employ the comb-type channel estimation in

Chapter 3 to design the dynamic pilot allocation.
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Figure 2.18: BER performance of 2 × 2 MIMO-OFDM system with Ns = 128, Np = 16

over frequency selective slowly varying channels (L = 1, fdTOFDM = 10−2)
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Figure 2.19: BER performance of 2 × 2 MIMO-OFDM system with Ns = 128, Np = 16

over frequency selective slowly varying channels (L = 8, fdTOFDM = 10−2)

L. Li, Ph.D. Thesis, Department of Electronics, University of York 2013



CHAPTER 2. FUNDAMENTAL TECHNIQUES 42

2.6 Detection Techniques for MIMO Systems with Spa-

tial Multiplexing

Multi-antenna systems have been investigated for several decades, and is one promising

technique to significantly improve the spectral efficiency and the reliability. Multiple an-

tennas have been adopted by several current wireless communication standards such as

WiMAX, LTE and LTE-A [2, 3], and successfully deployed in some countries for broad-

band wireless access. In this subsection, MIMO with spatial multiplexing configuration

has been discussed including several conventional detection algorithms and iterative pro-

cessing. Spatial multiplexing techniques can substantially maximize the data rate by send-

ing multiple independent data streams simultaneously through multiple transmit antennas.

The capacity of MIMO channels may be achieved using Spatial multiplexing. The details

about the capacity of MIMO channels can be found in [4].

2.6.1 MIMO System Model

The block diagram of a MIMO system with Nt = 4 transmit antennas and Nr = 4 re-

ceive antennas has been depicted in Fig. 2.20. The channels between transmit and receive

antennas are assumed to be independent frequency flat fading. The channel can be rep-

resented by H ∈ CNt×Nr . Defining the transmit symbol vector s = [s1 . . . si . . . sNt ]
T ∈

CM×1, the received signal y = [y1 . . . yj . . . yNr ]
T , and the AWGN noise vector v =

[v1 . . . vj . . . vNr ]
T , the system model can be written as

y = Hs+ v, (2.51)

where E{ssH} = σ2
sINt×Nt . Note that each element in the AWGN noise vector is assumed

to be a zero-mean circular symmetric complex Gaussian variable, which implies that the

phase rotation of v will not affect its statistical properties, and E{vvH} = σ2
vINr×Nr .
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Figure 2.20: A 4× 4 MIMO system model

2.6.2 Linear ZF Detection

Linear ZF detection is a common approach in MIMO detection, due to the simplicity of

implementation without any a priori knowledge of noise statistics as compared to MMSE

detection. The mathematical expression of ZF filter is given by

WZF = (HHH)−1HH (2.52)

Thus the symbol estimate of ZF detection can be written as

ŝZF = WZFy = s+ (HHH)−1HHv = s+ ṽZF. (2.53)

From (2.53), we can observe that the performance of ZF detection is mainly affected by

ṽZF = (HHH)−1HHv. Using SVD, the post-detection noise power can be decomposed

as [78]

E{‖ṽZF‖2} =
Nt∑

i=1

σ2
v

σ2
s,i

, (2.54)

where the quantity σ2
s,i denotes the equivalent signal power of the ith transmit antenna at

the receiver. The noise enhancement effect will be enlarged if σ2
s,i becomes small, which

implies that the signals from the ith transmit antenna experience the null channel. In

other words, the ith singular value of H is close to zero. In the following subsection,

the MMSE detection will be presented, and the noise enhancement will be reduced by

introducing statistical information of the noise.
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2.6.3 Linear MMSE Detection

Linear MMSE detection is based on the minimum mean square error criterion, which

maximizes the SINR after detection. The linear MMSE filter is given by

WMMSE = (HHH+ σ2
vINr)

−1HH . (2.55)

Hence, the output of linear MMSE detection can be evaluated as

ŝMMSE = WMMSEy = (HHH+σ2
vINr)

−1HHy = s̃+(HHH+σ2
vIN)

−1HHv = s̃+ṽMMSE.

(2.56)

Similar to ZF detection using SVD, the post-detection noise power can be expressed as

[78]

E{‖ṽMMSE‖2} =
Nt∑

i=1

σ2
vσ

2
s,i

(σ2
v + σ2

s,i)
. (2.57)

From (2.57), the noise enhancement is significantly reduced. If the equivalent signal

power σ2
s,i becomes small, the mean square error E{‖ṽMMSE‖2} will be close to zero.

Hence, the noise enhancement in MMSE filter is less critical compared to that in ZF filter.

2.6.4 SIC Detection

Successive interference cancellation is a suboptimal non-linear method compared to ML

detection, but the performance is much better than the linear counterparts such as ZF and

MMSE detection. The main idea is to detect the data stream of each transmit antenna

after mitigation of previously detected data streams [6]. The order of cancellation can be

determined by different criteria including SINR, SNR and channel norm based ordering.

Although the order of cancellation cannot improve the diversity order of SIC detection,

which is lower bounded by Nr − Nt + 1, but the performance gain can be acquired due

to coding gain [15, 16]. It can achieve an attractive tradeoff between complexity and

performance. The conventional SIC is given by

yk = y −
k−1∑

j=1

hj ŝj , (2.58)

where yk denotes the received signals after the k−1th cancellation, and hj denotes the jth

column vector of H after ordering. Note that the subscript k denotes the kth cancellation
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order rather than the notation of the kth transmit antenna. For the kth data stream, the

MMSE detection must be re-designed based on the remaining interference. The MMSE

detection for the kth data stream can be written as

Wk = (HH
k̄ Hk̄ + σ2

vINr)
−1HH

k̄ , (2.59)

where the quantity Hk̄ denotes the remaining column vectors of H after the (k − 1)th

cancellation. Hence, the estimated symbol for the kth ordered transmit antenna is given

by

ŝk = wkyk, (2.60)

where the vector wk denotes the kth row vector of MMSE matrix in (2.59). Note that the

quantity ŝk can not only be used for hard-decision cancellation, but also for log-likelihood

ratio (LLR) computation for soft cancellation [87]. However, the quantity ŝk may not be

estimated correctly in some cases, which means ŝk 6= sk. It will have a detrimental effect

on SIC detection namely error propagation [88,89]. The detection ordering is an effective

way to reduce the error propagation, and ensures that the symbols with the highest power

are detected first. There are three different ordering techniques discussed as follows

SINR Ordering

The cancellation order can be obtained according to the post-detection signal to interfer-

ence plus noise ratio (SINR). The kth post-detection SINR can be evaluated as

γk =
σ2
s |wkhk|2

σ2
s

∑
j 6=[1,k−1] |wkhj|+ σ2

v‖wk‖2
, (2.61)

where the quantity γk denotes the SINR, and the vector hk denotes the kth column vector

of H. The MMSE criterion can maximize the post-detection SINR. Hence, we choose

a particular transmit antenna corresponding to the highest SINR for detection from the

remaining undetected transmit antennas j, which implies that the ordering process will be

performed before each detection until all transmit antennas are detected.
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SNR Ordering

For SNR ordering, the interference term is omitted for simplicity. The mathematical

expression of SNR γ′k can be written as

γ′k =
σ2
s

σ2
v‖wk‖2

(2.62)

The process of ordering can be performed similarly to the SINR ordering without the

interference term.

Channel Norm based Ordering

The SINR ordering can improve the performance of SIC detection at the expense of com-

plex implementation. It may be impractical for MIMO systems with a large number of

transmit and receive antenna pairs. The channel norm based ordering only considers the

power of channels experienced by the transmit antennas instead of exploiting the SINR or

SNR. Thus the complexity of such ordering becomes moderate even for massive MIMO

systems at the price of performance degradation. The ordering process can be performed

as maxj=[k,Nt] ‖hj‖. Simply speaking, the process of channel norm ordering is to choose

the transmit antenna with maximum channel norm from the remaining transmit antennas

for detection. Fig. 2.21 plots the BER performance with different ordering techniques.

The channel norm ordering has the poorest performance among these ordering techniques.

The SINR ordering outperform the SNR ordering in the case of 4× 4 MIMO system with

8PSK modulation. We also plot the MMSE detection as a reference to illustrate that the

SIC receiver works much better than the MMSE counterpart.

2.6.5 ML Detection

Maximum likelihood (ML) detection [90] is the optimum approach to detect the symbols

from multiple transmit antennas without iterative processing. In other words, ML detec-

tion can be considered as MAP detection without the aid of a priori information. Defining

C as a set of constellation points, and Nt as the number of transmit antennas , the ML

L. Li, Ph.D. Thesis, Department of Electronics, University of York 2013



CHAPTER 2. FUNDAMENTAL TECHNIQUES 47

2 4 6 8 10 12 14 16 18
10

-3

10
-2

10
-1

10
0

E
b
N

0
 (dB)

B
E

R

 

 

MMSE

Channel norm ordering

SNR ordering

SINR ordering

Figure 2.21: The BER performance of SIC detection with different ordering techniques

4× 4 MIMO with 8PSK

metric can be expressed as

ŝML = argmin
s∈CNt

‖y −Hs‖2. (2.63)

where the quantity CNt denotes all combinations of transmit symbols. The ML criterion

calculates all combinations of transmit symbols, and chooses one particular combination

with the minimum Euclidean distance. Because the ML metric in (2.63) will test every

possible constellation point combination, its complexity will increase exponentially with

the number of transmit antennas. Hence, the application of ML detection will be pro-

hibitive for high order modulation and a large number of transmit and receive antennas.

However, the performance of ML detection, with 4× 4-MIMO and 16QAM modulation,

is much better than that of the linear and SIC detection as plotted in Fig. 2.22. The uncor-

related Rayleigh fading channels are used in the simulation. Additionally, MMSE filter

obtains initial symbol estimates for SIC detection. In the next subsection, an alternative

method sphere decoder is discussed, because of the much lower complexity and near-ML

performance.
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MIMO with 16QAM

2.6.6 Sphere Decoder

The sphere decoder (SD) [18] is one of the most promising detection methods to reach

a near-ML performance with much less implementation complexity. The idea behind it

is to reduce the number of possible combinations of constellation points tested by the

ML metric using a radius in the lattice. There are several different ways of implementing

such ideas. In general, The SDs can be categorised into two main groups according to

the representation of the system model: real-valued SD, and complex-valued SD. How-

ever, there are no significant differences between these two types of SDs except the pre-

processing techniques and enumeration. In this subsection, we briefly discuss the main

idea of SDs in terms of real-valued SD and complex-valued SD. Furthermore, the search

strategy can also be considered as one of the very fundamental principles to categorize

them into depth-first search (DFS) SD and breadth-first search (BFS) SD . In each cat-

egory, various SDs have been discussed and investigated such as Schnorr-Echner (SE)

enumeration based SD, sequential Fano decoders, Fincke and Pohst (FP) based SD and

the M-algorithm [17, 19, 91–93]. Additionally, some hybrid methods employing SIC and

parallel interference cancellation (PIC) can also be considered as a variation of the sphere
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decoder. e.g. , fixed complexity sphere decoder [94, 95].

Basic ideas

For simplicity, the SD is constructed in a real-valued form:

ȳ = H̄s̄ + v̄, (2.64)

where

ȳ =


ℜ(y)
ℑ(y)


 s̄ =


ℜ(s)
ℑ(s)


 v̄ =


ℜ(v)
ℑ(v)


 , (2.65)

and

H̄ =


 ℜ(H) −ℑ(H)

−ℑ(H) ℜ(H)


 ∈ R2Nr×2Nt . (2.66)

Using a similar metric as ML detection in (2.63), the following equivalence is exploited

as

argmin
s̄

‖ȳ− H̄s̄‖2 = argmin
s̄

(̄s− ˆ̄s)T H̄TH̄(̄s− ˆ̄s) (2.67)

where ˆ̄s denotes the LS solution of (2.64). Using a QR decomposition of H̄, (2.67) is

constrained by a sphere radius, which is expressed by

(̄s− ˆ̄s)T H̄TH̄(̄s− ˆ̄s) = (̄s− ˆ̄s)T R̄T R̄(̄s− ˆ̄s) = ‖R̄(̄s− ˆ̄s)‖2 ≤ r2SD, (2.68)

where R̄ denotes an upper triangular matrix. Note that the complexity of SD is signifi-

cantly affected by the radius r2SD, which can be determined by the distribution of the noise

v̄ or the Euclidean distance obtained by the current best candidate transmit vector. The

method discussed above employs a LS solution to define the SD metric, but an additional

complexity will be involved with a matrix inversion. Hence, the system model can be

re-defined as

ȳ = H̄s̄+ v̄ (2.69)

Q̄H ȳ = Q̄HQ̄R̄s̄+ Q̄H v̄ (2.70)

˜̄y = R̄s̄+ ˜̄v (2.71)

The problem of finding the candidate transmit vector corresponding to the minimum Eu-

clidean distance can be reformulated as a tree search problem as illustrated in Fig. 2.23.
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Each arrow represents a constellation point, and the dashed ones correspond to the dis-

carded constellation points, the partial Euclidean distances or partial weights of which are

beyond the radius r2SD. The mathematical expression of SD is given by

ˆ̄sSD = argmin
s̄

‖˜̄y − R̄s̄‖2 = argmin
s̄

Nt∑

i=1

∣∣∣∣∣
˜̄yi − r̄i,is̄i −

i−1∑

j=1

r̄i,j s̄j

∣∣∣∣∣

2

, (2.72)

where r̄i,j denotes the (Nt− i+1, Nt−j+1)th element of R̄. Based on the tree structure,

different search strategies can be employed for SD. The various ways of performing the

search strategy will be presented:

1. Depth-first search [17, 19, 91]: The DFS corresponds to searching down the branch

in Fig. 2.23 to reach the bottom first, and the search proceeds upward and downward

until all available branches within the radius are accessed. Note that the current op-

timum branch accessed by DFS may be replaced by the new branches with a lower

cost. In other words, the branches accessed by DFS are also discarded simultane-

ously once the new better branches are obtained. The metric of choosing the branch

is based on the minimum cost at each detection layer. The complexity of DFS will

converge to that of the decision feedback equalizer (DFE) at high SNR values, if

the ML solution is identical to the DFE in the initial search. Because no branch

has lower cost than that of the ML solution, the search will be completed much

faster than other cases. For example, the ML solution is not obtained in the initial

search. However, the complexity of DFS at low SNR values will be significantly

increased due to a large number of suboptimal branches which are required to be

pruned. Since the number of branches accessed by DFS is varying, the complexity

of DFS does not remain constant.

2. Breadth-first search strategy [93]: The BFS will search all available branches down-

ward simultaneously in each layer, if the available branches are inside the radius.

Additionally, several best branches with lower costs will be reserved, and then these

reserved branches will be extended to the next layer accordingly. The search pro-

cess is repeated until the bottom layer is reached. In Fig. 2.23, the 4th layer is the

bottom layer. Unlike DFS, the search of BFS will not proceed upward, because all

available branches inside the radius in each layer have been tested in BFS. Thus

the complexity of BFS is relatively constant compared to DFS only keeping a fixed
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number of branches tested in each layer, and it is also insensitive to the SNR val-

ues. The BFS can be performed with fixed complexity, which is suitable for pipeline

implementation. Other search strategies such as Best-first search [96] will not be

discussed further, because they are similar to BFS. The idea behind it is to reserve a

sorted list of branches and search down the best branches even if they are not in the

same layer, so it requires much more memory to keep such sorted lists, and order

them for new added best branches.

root

layer 1

layer 2

layer 3

layer 4

r
2

SD

branch

A full path

Figure 2.23: The tree structure of sphere decoder

Channel Matrix Preprocessing

SD requires QR decomposition of the channel matrix to construct a tree structure, so QR

decomposition can be considered as a preprocessing technique. The advanced prepro-

cessing technique can achieve a significant complexity reduction with negligible perfor-

mance loss. The preprocessing techniques based on the receive signals y have been well

discussed [97, 98], but they must be implemented for each symbol. Hence, the sorted

QR decomposition (SQRD) only based on H has been presented in [99]. The column

based sorted version is similar to channel norm ordering, and the QR decomposition is

performed on the basis of ordered H, i.e. , HP = QR, where P is a permutation ma-

trix corresponding to the channel norm ordering. Simplified sorted QR decomposition

(SQRD) has been proposed in [100]. A more complicated SQRD based on H was pro-

posed in [101] to further reduce the complexity of search in SDs at the expense of a neg-

ligible performance loss, which can be referred to as MMSE-SQRD. The mathematical
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expression of MMSE-SQRD is given by

 H

αINt×Nt


P =


 Q1 Q2

Q3 Q4




 R̃

0Nr×Nt


 (2.73)

where α denotes σn

σs
. Thus (2.69) becomes

ˆ̄y = ˜̄R˜̄s + ˆ̄v, (2.74)

where ˆ̄y = QH
1 ȳ, ˜̄s = PT s̄, ˆ̄v = −αQH

3 s̄ + QH
3 v̄. Note that the detection ordering

brought by the permutation matrix P is required to be reversed after the detection. We

plotted the curves of the number of visited nodes or branches against SNR using SQRD

and MMSE-SQRD. MMSE-SQRD can save significant computational efforts compared

to SQRD, so MMSE-SQRD is employed for SDs in Chapter 4.
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Figure 2.24: The number of visited nodes (branches) comparison between SQRD and

MMSE-SQRD with conventional SE-SD over 4× 4 MIMO-8PSK

2.6.7 Complex-valued Sphere Decoder

In the previous subsections, the basic ideas of SD has been reviewed. The system model

for the real-valued SD (2.74) can be naturally extended to the complex-valued SD by
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replacing the real-valued elements in the matrices and vectors by the complex-valued

elements. That can be rewritten as

z = Rs+ v (2.75)

where z ∈ CNr×1, s ∈ CNt×1, v ∈ CNr×1, and R ∈ CNr×Nt denotes a complex upper tri-

angular matrix, where ri,j locates in the (Nt−i+1)th row and the (Nt−j+1)th column of

the matrix R. The main difference between the real-valued SD and the complex-valued

SD is the enumeration scheme, which is used to find the candidates for each detection

layer. For real-valued SD, the search is only performed in the real domain rather than

the complex domain. Hence, it is simpler than that of complex-valued SD. This sub-

Q

I

rSD
ri,iδi

γ

γ

γ

θ

a

b

c

Figure 2.25: An example of computation coordinate bound using trigonometric function

for the ith layer and 16QAM.

section demonstrates a complex-valued enumeration namely computation of coordinate

bound (CCB) or complex SE enumeration. This bound was first proposed in [28], and

an improved version was presented in [102], which separates the constellation points into

groups located on one or multiple concentric rings and computes the phase bound based

on the current sphere radius and previously detected symbols ŝk and ri,k. In this case,

these constellation points can be tested according to the bound in (2.78) to determine

whether they are in the circle of NC points. The constellation points smi = γeθm can be

represented in polar coordinates, where the quantity smi denotes the mth candidate con-

stellation point at layer i, and 0 ≤ θm < 2π. Note that the quantity γ will be different
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in different concentric rings as shown in Fig. 2.25. This figure illustrates that the phase

bound of the constellation points for one particular concentric ring can be determined by

the sphere radius. The red curves correspond to the phase bounds of concentric rings.

According to (2.72) and (2.75), the null-cancelling point for the ith layer can be defined

as

δi =

(
zi −

i−1∑

k=1

ri,kŝk

)/
ri,i. (2.76)

With the aid of trigonometric function, we thus calculate the phase bound of θm as Fig.

2.25

cos(θm − θδi) =
1

2γ|δi|

(
γ2 + |δi|2 −

r2SD

r2i,i

)
= ψ (2.77)

where rSD denotes the sphere radius. In Fig. 2.25, a specific example of CCB has been

presented. If the previous detected symbols ŝk are perfect, the equivalent sphere radius

rSD

ri,i
can be used to compute the phase bound (red curves) with the trigonometric function

cos θ = a2+b2−c2

2ab
, where a = γ, b = |δi|, and c = rSD

ri,i
. The vector with possible candidates

s̃i in layer i for a given concentric ring can be categorized as

s̃i =





∅, ψ > 1,

smi , m = 1, 2, . . . ,M, and ψ < −1
smi , θm ∈ [θδi − arccos(ψ), θδi + arccos(ψ)],

and − 1 ≤ ψ ≤ 1,

(2.78)

where 0 ≤ arccos(ψ) ≤ π. From (2.78), no constellation points in one concentric ring

will be included for the candidates if ψ > 1, which implies that the phase bound is too

small to cover any constellation points except δi. For ψ < −1, the corresponding phase

bound [θδi−π, θδi+π] to include all constellation. For−1 ≤ ψ ≤ 1, only the constellation

points inside the bound can be used for the search. However, the phase bound described

above may eliminate some candidates, which should be included in the search. This is

because the phases of the constellation points are between 0 and 2π, and the corresponding

phase bound may not locate within [0, 2π]. Thus the mismatch between the phases of

constellation points and the phase bound must be fixed to avoid missing candidates.
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2.6.8 Soft Processing for MIMO Systems

The detection algorithms discussed above are all based on the hard decision, the output

of which can also be used for the channel decoder with significant performance loss. To

compensate the performance loss, the soft LLRs given receive signals y are required.

Linear Detection and Soft Interference Cancellation

For simplicity, we use BPSK as the modulation scheme to present the idea of linear de-

tection and soft interference cancellation. The same principle can be extended to other

modulation schemes accordingly as described in [103]. Further details on soft interfer-

ence cancellation can be found in [87, 104]. Defining Hm̄ as the channel matrix omitting

the m column vector, ŝm̄ as the estimated soft symbol vector omitting the mth symbol,

and s̃m̄ = sm̄ − ŝm̄ as the residual symbol vector, the output of MMSE detection for the

mth transmit antenna can be found as

zm = wm(y −Hm̄ŝm̄) = wm(hmsm +Hm̄s̃m̄ + v)

= µmsm + ηm,
(2.79)

where µm = wmhm, ηm = wm(Hm̄s̃m̄ + v), and wm denotes the mth row vector of

the MMSE matrix. For the interference cancellation case, the vector wm is required

to be re-calculated after each soft interference cancellation, which is similar to the hard

interference cancellation. Accordingly, the definition of LLR for themth transmit antenna

symbol is given by

L(sm) = ln
Pr(sm = +1|zm)
Pr(sm = −1|zm)

(2.80)

= ln
Pr(zm|sm = +1)Pr(sm = +1)

Pr(zm|sm = −1)Pr(sm = −1) (2.81)

= ln
exp(− 1

σ2
ηm

(|zm − µms
+
m|2))

exp(− 1
σ2
ηm

(|zm − µms−m|2))
+ La(sm) (2.82)

=
1

σ2
ηm

(|zm − µms
−
m|2 − |zm − µms

+
m|2) + La(sm) (2.83)

where La(sm) denotes the apriori LLR for sm, and σ2
ηm = wm(Hm̄E{s̃s̃}HH

m̄+σ2
nI)wm

H

and Pr(zm|sm = +1) = 1
πσ2

ηm
exp(− 1

σ2
ηm
|zm − µmsm|2). Note that if we omit the term
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Hm̄ŝm̄ and let ηm = wm(Hm̄sm̄ + v) in (2.79), the procedure described above will re-

duce to the conventional MMSE detection without soft interference cancellation. The soft

symbols ŝ can be obtained by

ŝm =
∑

+1,−1

smPr(sm|zm)

= Pr(sm = +1|zm)− Pr(sm = −1|zm)

=
exp(L(sm))

exp(L(sm)) + 1
− 1

exp(L(sm)) + 1

= tanh(
L(sm)

2
),

(2.84)

where Le1(sm) = L(sm)− La(sm) denotes extrinsic LLR.

MAP Detection

Encoder Π Modulation S/P

Detector Decoder

Π

bk
sm

yn
Le1

(bk)
Π−1

Le2
(bk)

uk ck

Le1
(ck)

Le2
(uk)

Le2
(ck)

Figure 2.26: Iterative Detection and Decoding Structure

Maximum a priori probability detection, which considers the probability of all com-

binations of all bits, is an optimum detection method for MIMO systems. Hence, the

complexity of MAP detection will increase with the number of transmit antennas and the

order of modulation schemes. We review the conventional MAP detection in this subsec-

tion, the idea of which can be employed for the list sphere decoder in the later section.

The block diagram for iterative detection and decoding (IDD) is illustrated in Fig. 2.26.

As discussed above, the definition of LLR with extrinsic LLR Le2(bk̄) without the desired

kth bit from the channel decoder can be written by modifying (2.80):

L(bk) = ln
Pr(bk = +1|y,Le2(bk̄))

Pr(bk = −1|y,Le2(bk̄))
, (2.85)

L. Li, Ph.D. Thesis, Department of Electronics, University of York 2013



CHAPTER 2. FUNDAMENTAL TECHNIQUES 57

where

Pr(bk = +1|y,Le2(bk̄)) (2.86)

=

|C|M∑

i=1

Pr(bk = +1,b
(i)

k̄
|y,Le2(bk̄)) (2.87)

=

|C|M∑

i=1

Pr(bk = +1|b(i)

k̄
,y,Le2(bk̄))Pr(b

(i)

k̄
|y,Le2(bk̄)). (2.88)

and the quantity b
(i)

k̄
corresponds to the ith particular bit combination neglecting the de-

sired kth bit. Using Bayes’ rules, the first term in (2.88) can be written as

Pr(bk = +1|y,b(i)

k̄
,Le2(bk̄))

=
Pr(y|bk = +1,b

(i)

k̄
,Le2(bk̄))Pr(bk = +1)

Pr(bk = +1)Pr(y|b(i)

k̄
, bk = +1,Le2(bk̄) + Pr(bk = −1)Pr(y|b(i)

k̄
, bk = −1,Le2(bk̄)

=
Pr(y|bk = +1,b

(i)

k̄
,Le2(bk̄))Pr(bk = +1)

Pr(y|b(i)

k̄
,Le2(bk̄)

(2.89)

Accordingly, the second term in (2.88) becomes:

Pr(b
(i)

k̄
|y,Le2(bk̄)) =

Pr(y|b(i)

k̄
,Le2(bk̄))Pr(b

(i)

k̄
)

∑|C|M
i=1 Pr(b

(i)

k̄
)Pr(y|b(i)

k̄
,Le2(bk̄))

(2.90)

=
Pr(y|b(i)

k̄
,Le2(bk̄))Pr(b

(i)

k̄
)

Pr(y|Le2(bk̄))
(2.91)

Hence, the conditional probability given y and Le2(bk̄) in (2.86) can be expressed as

Pr(bk = +1|y,Le2(bk̄))

=

|C|M∑

i=1

Pr(y|bk = +1,b
(i)

k̄
,Le2(bk̄))Pr(bk = +1)

Pr(y|b(i)

k̄
,Le2(bk̄))

· Pr(y|b(i)

k̄
,Le2(bk̄))Pr(b

(i)

k̄
)

Pr(y|Le2(bk̄))

(2.92)

The probability for bk = −1 can also be obtained similarly, so the LLR in (2.85) is given

by

L(bk) = ln

∑|C|M
i=1 Pr(y|bk = +1,b

(i)

k̄
,Le2(bk̄))Pr(b

(i)

k̄
)

∑|C|M
i=1 Pr(y|bk = −1,b(i)

k̄
,Le2(bk̄))Pr(b

(i)

k̄
)︸ ︷︷ ︸

Le1 (bk)

+ ln
Pr(bk = +1)

Pr(bk = −1)︸ ︷︷ ︸
Le2 (bk)

, (2.93)

where Le1(bk) and Le2(bk) denote the extrinsic LLR from the MAP detection and channel

decoder, respectively. Note that Le2(bk) = La1(bk). For non-iterative MAP detection, the
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term Pr(b
(i)
k ) is unknown, and every bit in bi

k̄
is assumed to be equally probable. So (2.93)

can be reduced to an ML solution. Because we assume the channel is zero-mean circular

symmetric complex Gaussian, the probability Pr(y|bk = +1,b
(i)

k̄
,Le2(bk̄))Pr(b

(i)

k̄
) can be

computed as

Pr(y|bk = +1,b
(i)

k̄
,Le2(bk̄))Pr(b

(i)

k̄
) =

1

(πσ2
n)

M
e−‖y−Hs

(i)

k+
‖2/σ2

n+ln(Pr(b
(i)

k̄
))

(2.94)

Let ξk+ = −‖y−Hs
(i)
k+‖2/σ2

n+ln(Pr(b
(i)

k̄
)) and sik+ denote a symbol vector corresponding

to the ith bit combination with the kth bit +1, we therefore can reformulate Le1(bk) in

(2.85) as

Le1(bk) = ln(

|C|M∑

i=1

eξ
(i)

k+ )− ln(

|C|M∑

i=1

eξ
(i)

k− ). (2.95)

With the Max-log approximation, (2.95) becomes

Le1(bk) ≈ max
i
ξ
(i)
k+ −max

i
ξ
(i)
k−. (2.96)

Note that the computation of Pr(b
(i)

k̄
)) can be simplified further with logarithm computa-

tion. It is then easily found that

Pr(b
(i)

k̄
) =

|C|M∏

k′ 6=k,k′=1

Pr(bk′ = b
(i)
k′ ), (2.97)

where Pr(bk′ = ±1) =
e±Le2 (bk′ )

1 + e±Le2 (bk′ )
=

e−Le2 (bk′ )

1 + e−Le2 (bk′ )
)eLe2 (bk′ )bk′/2 = Ak′e

Le2 (bk′ )bk′/2.

Thus,

ln(Pr(b
(i)

k̄
)) = ln(

|C|M∏

k′ 6=k,k′=1

Ak′e
Le2 (bk′ )bk′/2) = ln(

|C|M∏

k′ 6=k,k′=1

Ak′e
∑|C|M

k′ 6=k,k′=1
Le2 (bk′ )bk′/2)

= ln(

|C|M∏

k′ 6=k,k′=1

Ak′) + ln(e
∑|C|M

k′ 6=k,k′=1
Le2 (bk′ )bk′/2) ≈ 1

2

|C|M∑

k′ 6=k,k′=1

Le2(bk′)bk′ .

(2.98)

We can observe that MAP detection will test |C|M bit combinations even with the Max-log

approximation, so it is quite prohibitive in practice. The complexity of MAP detection

will increase with the number of transmit antennas M and order of modulation |C| as

shown in (2.97) and (2.98).
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List Sphere Decoder

In the previous subsections, we have reviewed an optimum detection method, i.e. , the

MAP detector for MIMO systems, which has exponentially increasing complexity. In

most cases, applications of such optimum detection methods may be quite constrained

by the size of the system. Hence, a near-optimum method will be discussed in this sub-

section, namely, the list sphere decoder (LSD), the idea of which is very similar to the

conventional SD, but that generates a list of possible candidates based on the Euclidean

distance for MAP detection rather than only one output. From (2.97) and (2.98), all s
(i)

k+/−

and b
(i)

k̄
, ∀i will be calculated. In LSD, only the L most significant candidates having rel-

atively smaller Euclidean distance will be calculated. Thus the mathematical expression

becomes

Le1(bk) = ln(

L∑

l=1

eξ
(l)

k+ )− ln(

L∑

l=1

eξ
(l)

k− )

≈ max
l
ξ
(l)

k+ −max
l
ξ
(l)

k−

(2.99)

Because the size of the list is much smaller than the number of all possible bit combina-

tions, one of the terms ξ
(l)

k+ or ξ
(l)

k− in (2.99) may be missing. In other words, the candidate

symbol vectors in the list do not cover all probabilities for the particular kth bit, which

equals +1 or −1. No LLR can be computed for this particular bit. In [28], this kind of

problem was fixed by introducing the ML solution with a given LLR magnitude (e.g. 8),

so it becomes the ML solution for this particular bit. However, it will suffer a noticeable

performance loss. Other techniques in [105, 106] have been discussed to alleviate the

negative effects brought by the LSD.

2.7 Extrinsic Information Transfer Chart

The extrinsic information transfer chart was examined in [107], and a tutorial of this anal-

ysis tool for iterative techniques has been presented in [108]. For iterative techniques,

the two decoders or one detector and one decoder exchange their extrinsic information

between each other to improve the reliability of the transmitted information. However,

this iterative process consisting of two decoding components with extrinsic information
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exchange is not easy to analyse. The EXIT chart can provide an indicator of the perfor-

mance and the iterative behaviour of the extrinsic information, so the design of channel

coding and detection using iterative process can be visualized with the EXIT chart. Ac-

cording to [108], the mutual information described above can be evaluated by

I(L; x) = 1−
∫ +∞

−∞
Pr(L|x = +1) log2(1 + e−L)dL

= 1− E{log2(1 + e−L)}

≈ 1− 1

N

N∑

n=1

log2(1 + e−xnLn),

(2.100)

where Ln denotes the LLR of a given n sample, xn denotes ±1. Due to the ergodicity, an

accurate estimate of the mutual information can be evaluated with a large numberN of xn

even for non-Gaussian and unknown distribution. It will be very useful for IDD in MIMO

systems, because the distribution of the MIMO detector output may not be Gaussian. In

addition, a large interleaver is required to guarantee the statistical independence between

information bits. The block diagram of the mutual information estimates I(Le1 ; x) and

I(La1 ; x) of the MIMO detector is plotted in Fig. 2.27. Note that we omit the modulation

block, and use the notation La1 as the a priori input of the MIMO detector, which is

interchangeable for the extrinsic output Le2 of the channel decoder. Furthermore, the

quantity σ2
a can be computed by J−1(I(Lad ; x)) in the Appendix of [109], where Lad

denotes the desired mutual information for I(La1 ; x).

2.7.1 Application of EXIT Charts

In this subsection, Several EXIT charts of detectors and decoders have been plotted. De-

noting Ie and Ia as the mutual information of extrinsic information and a priori informa-

tion, respectively, the subscripts 1 and 2 denote the detector and the decoder. In Fig. 2.28,

the EXIT chart of the convolutional code with different constraint length K and coding

rate R is plotted. We can observe that the convolutional code with lower rate has rela-

tively flat curves, which implies that the quantity Ie2 can reach 1 (the right end of the EXIT

chart) with moderate increase of Ia2 , but with more parity bits. In other words, the perfor-

mance of lower rate convolutional code will be better than the higher rate counterparts at

the expense of transmission efficiency. The constraint length can only change the shapes

of the curves, the area under which may not be affected. Hence, the capacity achieved
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Figure 2.27: The block diagram of mutual information estimates
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Figure 2.28: EXIT charts of convolutional code with different rate R and different con-

straint length K.

with such convolutional codes using the other decoding component will be the same, be-

cause the areas of the tunnel between two decoding components are the same. The area

property of EXIT chart is well discussed in [109]. The area property can be considered
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as one particular representation of Shannon’s capacity theorem. Additionally, Fig. 2.29

illustrates an EXIT chart of 4 × 4-4QAM spatial multiplexing MIMO system with IDD

at the receiver, and the exchange of soft information between two decoding components

(Max-log-MAP and half rate convolutional code with constraint length 3) is illustrated by

the trajectory. This mechanism is very similar to the turbo engine. Two components take

extrinsic information from the other component as a priori information. If two curves of

two decoding components intersect, the high error probability will appear. According to

the EXIT chart, several possible improvements of decoding components may be made to

reduce the error probability such as reshaping the curves of decoding components. The

most straightforward method is increasing the SNR in Fig. 2.29. Also, by introducing a

lower rate outer code or more powerful code (turbo code or LDPC code), the curves will

become relatively flat, so the intersection can be removed at this particular SNR value.

Another common approach is to reshape the curves of the inner code. In Fig. 2.29, the

curve of Max-log MAP (inner code) can be reshaped using another rate one precoder as

discussed in [110]. Thus the EXIT chart is a reliable analysis tool to evaluate the per-

formance of IDD, and visualize iterative behaviours of different channel codes for code

design.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
a1

/I
e2

I e1
/I a2

 

 

convolutional code R=1/2, K=3
Max-logMAP E

b
/N

0
=3.8dB

Trajectory E
b
/N

0
=3.8dB

Max-logMAP E
b
/N

0
=8dB

Trajectory E
b
/N

0
=8dB

Figure 2.29: EXIT charts of 4 × 4-4QAM MIMO system with Max-log MAP detection

and a half rate convolutional code with constraint length 3
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2.8 Equalization for OFDM Systems over Doubly Selec-

tive Channels

For rapidly time-varying channels, the orthogonality between subcarriers in OFDM sys-

tems will be destroyed, which makes the signals from the neighbour subcarriers interfere

with the signals of the desired subcarrier namely inter-carrier interference (ICI). In our

thesis, we only consider the ICI caused by the rapidly varying channel. In Subsection

2.3.3, ICI has been discussed in a mathematical derivation. In the following, we will

review some existing techniques to combat ICI with dimension reduced processing, and

compare some of them in BER performance and implementation complexity. As de-

scribed in (2.15), the system model can be represented in a simple form as

y = Hdfs + v. (2.101)

where Hdf = FHtlF
H . [Hdf ]d,k = hdf (d − k, k) =

1
N

∑N−1
n=0

∑L−1
l=0 h(n, l)e

−j 2π
N

(lk+(d−k)n).

D + 1 D

D + 1

Figure 2.30: The illustration of the banded frequency channel structure
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2.8.1 Banded Channel Structure and Window Techniques

The banded channel structure assumption has been considered as one of the most effective

approaches to reduce the complexity of equalization for OFDM systems over rapidly

varying channels. Based on this assumption, the signal of the desired subcarrier is only

affected by several neighbour subcarriers, because the power of signals outside the band

is significantly lower than the signals inside the band. The equivalent banded frequency

channel matrix is plotted as Fig. 2.30. The shaded area represents the desired subcarriers,

and the subcarriers inside the shaded area will be employed for detection. Basically,

the banded structure is an approximation to the original frequency channel matrix, so

the banded structure can be obtained by several window techniques described in [56,

57] such as Hamming window, Blackman window, and the rectangular window. Here

we review one optimum window technique, which maximizes the signal power inside

the band against the interference power outside the band. For simplicity, we denote the

original frequency channel matrix as Hdf , the time channel matrix as Htl, and F as the

DFT matrix, respectively. The notations ‖‖F and ‖‖2 return the Frobenius norm and the

2-norm of the matrix. Furthermore, vec() corresponds to a conversion from a matrix to a

vector, and ⊗ is Kronecker product. According to the well-known property below [111],

‖A‖F = ‖vec(A)‖2.
vec(AXB) = (BT ⊗Avec(X)),

(2.102)

The matrices C(β) and diag(b) denote the window in the frequency domain and the time

domain. Note that diag(b) is a diagonal matrix based on b. Using the property in (2.102),

the desired signal power (the power of the elements in the shaded area in Fig. 2.30) inside

the band can be rewritten in another form as follows:

‖PDC(β)Hdf‖2F = ‖vec(PDF︸ ︷︷ ︸
FD

diag(b)︸ ︷︷ ︸
B

FHFHtlF
H

︸ ︷︷ ︸
H̃

)‖22

= ‖H̃T ⊗ FDvec(B)‖22,
(2.103)

where PD is the shading matrix to obtain the desired subcarriers inside the band with the

size of 2D + 1 as plotted in Fig. 2.30, and FD = PDF.

PD =




ID+1 0 0

0 0 0

0 0 ID


 , (2.104)
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As we know in (2.103), the diagonal matrix B mainly contains zeros. Hence, the Kro-

necker product can be simplified as

H̃T ⊗ FDvec(B) =




FD⊙H̃1b

FD⊙H̃2b

...

FD⊙H̃Nb.




(2.105)

where the operation ⊙ denotes the element-wise multiplication between two matrix.

h̃k = [h(0, k) . . . h(n, k) . . . h(Ns − 1, k)]T , and H̃k = [h̃k, . . . , h̃k︸ ︷︷ ︸
2D+1

]T , and h(n, k) =

∑L−1
l=0 htl(n, l)e

−j 2π
N

(l+n)k. Hence, the time-domain window vector b for the kth subcar-

rier can be represented as

‖FD ⊙ H̃kb‖22 = bH(FD ⊙ H̃k)
H(FD ⊙ H̃k)b

=
∑

m,n

bmbn
∑

‖d‖≤D

(
L−1∑

q=0

h(n, q)e−j 2π
N

qk)

· (
L−1∑

p=0

h(m, p)e−j 2π
N

pk)∗e−j 2π
N

dn(e−j 2π
N

dm)∗,

(2.106)

where the quantity d denote the subcarrier index inside the shading area, the quantities

m and n denote the time indices in one OFDM symbol, and the quantities p and q de-

note the path indices. If we assume the channels of different paths are uncorrelated

(E{htl(n, p)h∗tl(m, q)} = 0), the equation (2.106) can be simplified as [56, 57]

‖FD ⊙ H̃kb‖22 =
∑

m,n

bnb
∗
m

∑

‖d‖≤D

(

L−1∑

q=0

h(n, q)e−j 2π
N

qk)

(
L−1∑

p=0

h(m, p)e−j 2π
N

pk)∗ · e−j 2π
N

(n−m)d

=
∑

m,n

bnb
∗
m

∑

‖d‖≤D

L−1∑

l=0

h(n, l)h∗(m, l) · e−j 2π
N

(n−m)d

= bH(A⊙ R̃)b.

(2.107)

where [A]m,n =
sin(

π

Ns
(2D + 1)(n−m))

Ns sin(
π

Ns
(n−m))

, and R̃ = E{htl(l)h
H
tl (l)} de-

notes the autocorrelation matrix of the channels. Note that htl(p) =

[htl(0, l), . . . , htl(n, l), . . . , htl(Ns − 1, l)]T . Equation (2.107) is similar to the problem
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formulation in [56,57], which is the maximization of the desired signal power. Hence, the

problem becomes the maximization of bH(A⊙ R̃)b using the optimum b. Furthermore,

equation (2.107) to find the optimum window b for different subcarriers are the same.

Thus, the optimum time domain window b can be obtained using eigen-decomposition

in one shot. However, this optimum window design requires channel statistical in-

formation such as channel autocorrelation matrix for each independent channel path,

Doppler frequencies. Furthermore, performance degradation may occur if the channel

autocorrelation function is not matched to the prior assumption. Although the window

techniques can only partially reduce the error floor of OFDM systems employing the

banded structure, it can be easily integrated with any OFDM systems. Fig. 2.31 and Fig.

2.32 illustrate several MSE and BER curves employing different windows with serial

linear equalization discussed in Subsection 2.8.2. The performance of the eigenfilter or

eigen-decomposition based window is apparently better than others in MSE performance

and BER performance, where the quantity Tsa denotes the sample period.
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Figure 2.31: MSE performance with various windowing techniques over rapidly varying

channels with fdTsa = 0.03, N = 128, L = 8
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Figure 2.32: BER performance with various windowing techniques over rapidly varying

channels with fdTsa = 0.03, N = 128, L = 8

2.8.2 Serial Equalization and Block Equalization

With the use of the banded channel matrix, two different linear equalization methods

have been proposed in [56, 57, 112]. The one in [56] performs MMSE filtering subcarrier

by subcarrier, and the other one in [57, 112] uses LDLH factorization to process the

entire OFDM symbol in one shot. The serial equalization for OFDM systems is similar

to MMSE detection with soft interference cancellation for MIMO systems discussed in

Subsection 2.6.8, so we only present the block equalization, and compare the performance

with a serial version. The steps of implementing block equalization follows as [112]

1. Fix the band size D and construct the banded matrix B = C(β)Hdf ;

2. M = BBH + σ2
n

σ2
s
INs . Note that the size of the main diagonal band in M becomes

wider 4D + 1 due to the autocorrelation calculation BBH ;

3. Obtain M−1 by LDLH factorization. Let LDLH = M. Assume M−1y = d.

Solve y = Md for d by y = LDLHd︸ ︷︷ ︸
f

, DLHd︸︷︷︸
g

= f , LHd = g, and finally obtain

d;
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4. Calculate symbol estimates ŝ in (2.101) by BHd.

Note that due to replacement of serial matrix inversions by LDLH factorization, the com-

plexity of the method described above is O(DN2
s ) compared to (28D2 + 24D + 5)Ns

complex operations for serial equalization, which is 1.75 and 2.5 times smaller than serial

equalization for the case of D = 2 and D = 4. It implies that the block equalization is

more efficient in a quite wide range of the normalized Doppler frequency fdTOFDM. In

Fig. 2.33, we compare the BER performance of block equalization with serial equaliza-

tion with the size ofD = ⌈fdTOFDM⌉+1. The performance of the block version is slightly

better than the serial one. Thus, the banded assumption is promising to reduce the com-

plexity of equalization for OFDM systems over rapidly varying channels, and maintain an

acceptable performance. We will investigate further the banded structure for equalization

and interference cancellation in Chapter 5.
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Figure 2.33: BER performance of serial equalization and block equalization over rapidly

varying channels with fdTsa = 0.01, N = 128, L = 8
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2.8.3 Partial Fast Fourier Transform based Equalization

As mentioned above, another dimension reduced processing namely partial fast Fourier

transform (PFFT) is discussed. The main idea is splitting one OFDM symbol into sev-

eral segments, and the channel in each segment is assumed to remain unchanged. At

the receiver side, the received signals pass through several partial FFTs. Unlike the con-

ventional FFT, the dimension of the received signal from the partial FFT is significantly

reduced from Ns to T . Hence, the complexity of filter design becomes moderate. For

PFFT, we split the received signals of the time domain into T segments, and each has M

samples. The output of PFFT for the tth segment can be rewritten in the following form:

yd(t) =
1√
Ns

tM−1∑

n=(t−1)M

r(n)e−j 2π
Ns

dn

=
1

Ns

tM−1∑

n=(t−1)M

L−1∑

l=0

htl(n, l)e
−j 2π

Ns
kl

︸ ︷︷ ︸
hdf (n,k)

·
Ns−1∑

k=0

ske
−j 2π

Ns
nke−j 2π

Ns
nd

=
1

Ns

Ns−1∑

k=0

sk

tM−1∑

n=(t−1)M

hdf (n, k)e
−j 2π

Ns
n(d−k),

(2.108)

where the quantity hdf (n, k) denotes the channel frequency response for the kth subcarrier

at time index n, and the desired subcarrier is denoted by d. We assume that the channel

remains constant during segment t, so (2.108) can be simplified as [58]

yd(t) =
Ns−1∑

k=0

skhdf (t, k)


 1

Ns

tNt−1∑

n=(t−1)Nt

e−j 2π
Ns

n(d−k)




︸ ︷︷ ︸
δd−k(t)

=

Ns−1∑

k=0

skhdf (t, k)δd−k(t),

(2.109)

where hdf (n, k) = hdf (t, k), n = (t− 1)M, (t− 1)M + 1, . . . , tM − 1, and

δd−k(t) =
1

Nt
e
j2π(d−k) 2t−1

2Nt sinc(
π(d− k)
Nt

), (2.110)
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where sinc() denotes the sinc function. By defining yd = [yd(0) . . . yt(T −1)]T , hdf (k) =

[hdf (0, k) . . . hdf (T − 1, k)]T , we have

yd =

Ns∑

k=1

diag(hdf (k))zd−ksk + vd, (2.111)

where the vector zk = [δk(0) δk(1) . . . δk(T − 1)]T , E{zk(t)z∗k′(t′)} =
σ2
n

T
e

−jπ(k−k′)(2t−1)
T sinc(π(k−k′)

2T
), if t = t′. For the dth subcarrier, the MMSE filter for PFFT

can be given as

wd = R−1
ydyd

diag(hdf (d))z0, (2.112)

and the symbol estimate is evaluated by

ŝd = wH
d yd. (2.113)

The filter design for PFFT is simple compared to the full matrix inversion, but the com-

plexity O(NsT
3) is not as low as the previous methods (serial and block equalization

for general scenarios). However, PFFT does not employ any other preprocessing before

equalization, and only splits one OFDM symbol into several segments using partial FFT,

so the structure of the OFDM system is similar to the conventional one. Furthermore,

the authors extended the idea to the distorted underwater acoustic channel with further

reduced complexity, and also to adaptive filtering in [58]. The PFFT based MMSE filter

is promising with an appropriate number of segments T , and has a relatively low error

floor in Fig. 2.33.

2.8.4 LSQR Equalization

In [113], an iterative method for solving sparse least squares problems has been well in-

vestigated, and several works based on LSQR algorithm for ICI equalization have been

proposed in [63, 114]. Because of the sparsity property (banded assumption for the chan-

nel matrix as Fig. 2.30), the LSQR algorithm can be performed with low complexity to ob-

tain the symbol estimates. In this subsection, the basic idea of the LSQR algorithm for ICI

equalization has been presented to broaden our view on equalization for OFDM systems.

As described in [114], the symbol estimates can be evaluated by argmins∈CNs ‖y−Hdfs‖,
which is equivalent to solving the equation HH

dfHdfs
i = HH

dfy. Hence, an approximate

solution ŝi for the above equation can be obtained by the following steps:
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1. Initialization: α1 = ‖HH
dfy‖, β1 = ‖y‖, u1 =

y

β1
, v1 =

HH
dfy

α1

2. Recursion: for j = 1, 2 . . . ,

αj+1 = ‖HH
dfuj − βjvj‖

βj+1 = ‖HH
dfvj − αjuj‖

uj+1 =
1

βj+1
(HH

dfvj − αjuj)

vj+1 =
1

αj+1
(HH

dfuj − βjvj)

3. Solve argminw ‖Bjw − β1e1‖ by QR decomposition, where Bj denotes a bidiag-

onal matrix having [α1 . . . αj ] as the main diagonal elements, and [β2 . . . βj+1] as

first subdiagonal elements, and e1 = [1 0 . . . 0]T .

4. Obtain an approximate solution after jth iterations: ŝj = [v1 . . .vj ]wj .

Hence, the LSQR algorithm for ICI equalization may be split into two blocks: (1) projec-

tion vector vj construction in step 1 and 2; (2) dimension reduced filter design wj . After

the jth iteration, the symbol estimates ŝj over the jth Krylov subspace can be extracted

by the vector wj . Its popularity is due to the low complexityO(Ns(2D+1)J), numerical

stability, and inherent regularization achieved by early termination of the iterative process.

However, the output of LSQR cannot be readily converted to LLR due to its recursive na-

ture, so its application to iterative detection and decoding is constrained. Furthermore, the

effects brought by ICI can be partially removed, and it can achieve a good performance

as compared to other techniques discussed above. Because of regularization, the number

of iterations J = 10 is relatively small in Fig. 2.33. We can observe that the BER per-

formance of the LSQR algorithm is slightly better than other approaches. Although the

processing dimension is reduced, the QR decomposition is still required in step 3, and the

optimum number of iterations is unknown. In other words, the complexity of the LSQR

algorithm is variable, which may not be suitable for hardware implementation.
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2.9 Summary

In this chapter, we have reviewed some fundamentals of MIMO and OFDM systems.

The quasi-static channel estimation for OFDM and MIMO-OFDM systems has been in-

vestigated, and we found that the comb-type pilot allocation for MIMO-OFDM may be

a good candidate for the dynamic pilot allocation in Chapter 3, and the optimum MSE

can be achieved using the MMSE criterion with uniform pilot allocation in the time or

frequency domain. Furthermore, the detection methods for MIMO systems have been

presented. The complexity of the optimum detection method (ML or MAP) is too high

to implement. Its alternatives such as sphere decoder (SD) and list sphere decoder (LSD)

still have room for further complexity reduction. Hence, the main target of MIMO de-

tection is achieving the optimum performance with moderate implementation complexity.

In Chapter 4, a novel complex-valued SD will be discussed to further reduce the com-

plexity and maintain the diversity of the ML receiver. Besides, equalization for ICI has

been reviewed in detail. The core of such equalization is based on dimension reduced

processing including window techniques, partial FFT and LSQR algorithm. Many stud-

ies have been presented in this field, but the removal of error floors, complexity reduction

of equalization, and a better banded assumption are worthy to investigate.
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3.1 Introduction

MIMO-OFDM has been adopted by many current wireless communication standards for

broadband wireless data transmission. The capacity of such systems is maximized by
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means of spatial multiplexing [5], and the inter-symbol interference caused by frequency

selective channels can be eliminated with a cyclic prefix (CP) [80]. However, coherent

receiver design requires accurate channel state information (CSI) to achieve a compara-

ble symbol error rate (SER) performance to that with perfect CSI [115]. Pilot-symbol-

aided channel estimation (PACE) is the most common approach exploited in OFDM sys-

tems. For MIMO-OFDM, the pilot allocation is more complicated than for single-input

single-output (SISO)-OFDM, because of the superposition of signals from multiple trans-

mit antennas. A number of methods have been proposed to estimate the channel in the

presence of inter-antenna interference. A superimposed pilot based channel estimation

technique [46], which is based on correlation of received pilot signals and original pilots

to obtain channel estimates, does not require the channel to remain constant in time or

frequency compared to STBC and SFBC discussed in Chapter 2. However, the pilots

must be equispaced (uniform pilot allocation (UPA)), and follow the particular condi-

tions [47, 84–86]. Alternatively, the transmit antenna sends its pilot over one tone, and

the others remain silent at this subcarrier, which is similar to WiMAX’s pilot scheme and

can be easily integrated with the conventional OFDM DFT-based channel estimation [48].

However, the techniques described above are normally designed for uniform pilot alloca-

tion (UPA), without any prior knowledge of the channels. Furthermore, these channel

estimators often concentrate on the mean square error (MSE) minimization of channel

estimates rather than SER optimization. Although the minimum MSE can be achieved

using UPA [49,50], MSE optimization is not equivalent to SER optimization. It has been

shown that the BER performance can be substantially improved through DPA or iterative

pilot search based DPA for SISO-OFDM and Alamouti-2× 1-OFDM systems [52, 53].

In this chapter, we develop a dynamic pilot allocation (DPA) algorithm for MIMO-

OFDM systems with spatial multiplexing. The main idea behind DPA is to allocate the

pilots to appropriate subcarriers for arbitrary numbers of transmit and receive antennas.

The contributions of this chapter can be summarised as follows. (1) A DPA algorithm for

different MIMO-OFDM receivers (linear, SIC, ML) is presented, and a low complexity

error approximation technique is applied to DPA for ML receivers; (2) A reduced com-

plexity DPA with MIPS is presented; (3) A SVQ scheme for DPA is proposed to reduce

the feedback overhead and the number of search trials, and the SVQ scheme is robust to

the delays and errors of the feedback channels; (4) A simulation study of the proposed

and existing algorithms for UPA and DPA.
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This chapter is organized as follows. Section 3.2 describes the MIMO-OFDM system

model with spatial multiplexing and the feedback channels. Section 3.3 describes a pi-

lot allocation framework and formulates a DFT-based channel estimation scheme. The

derivation of a DPA algorithm for linear, SIC, and ML receivers is then discussed, as

well as the MIPS algorithm in Section 3.4. Section 3.5 presents the SVQ scheme. The

simulation results are provided in Section 3.6, and Section 3.7 draws a summary.

3.2 MIMO-OFDM System Model with Spatial Multi-

plexing

In Subsection 2.5, the system model for MIMO-OFDM has been described in details.

Furthermore, the DPA algorithm require a feedback channel to convey the pilot allocation

indices. This typically introduces a delay of some OFDM symbol periods (eg. 20 OFDM

symbols) [116]. In other words, the pilot allocation indices sent by the receiver may be

mismatch to the current channels.

3.3 DFT-based Channel Estimation for MIMO-OFDM

Systems

In this section, the DFT-based channel estimation and pilot allocation for MIMO-OFDM

are discussed, and channel estimation errors for particular pilot patterns have been derived

for the following optimization metrics.

3.3.1 Pilot Allocation with Multiple Transmit Antennas

We consider a Nt × Nr MIMO scenario here, and a comb-type pilot pattern is utilized

for each antenna. The uniform pilot allocation (UPA) is depicted in Fig. 2.4. If a pilot is

allocated at the kth subcarrier for one antenna no other antenna allocates a pilot or data
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in this subcarrier [48]. Hence, inter-antenna interference can be avoided for channel es-

timation due to the null subcarrier assigned by other transmit antennas, and pilots can be

inserted into any subcarriers except occupied ones. This principle can be also applied to a

scenario with arbitrary numbers of transmit antennas except requiring more null subcar-

riers for transmit antennas. The ith transmit antenna pilot pattern can be represented by a

Ns × Ns diagonal matrix Pi in which 1s denote the pilot subcarriers, and zeros are used

for data or null subcarriers.

Pi =




1 0 . . . 0

0 0 . . .
...

...
...

. . .
...

0 0 . . . 1




i = 1, 2, . . . , Nt,
(3.1)

where Pi ∈ P , ‖P‖ =


 Ns − (i− 1)Np

Np


, tr{Pi} = Np, ∀ i, and P denotes the

set of all possible combinations of pilot allocation. The matrix in (3.1) represents one

particular example of a pilot allocation matrix for the ith antenna.

3.3.2 DFT-based Channel Estimation

Since the pilot subcarriers for the ith transmit antenna are interference free, we use 1 as

the pilot symbols in the pilot allocation matrix Pi to obtain the channel in the frequency

domain Ĥ
ij
df between the ith transmit antenna and the jth receive antenna. The received

pilot signals for the jth receive antenna can be described as

r
(pilot)
j = PiFLh

ij
tl +Pivj , (3.2)

where r
(pilot)
j = Pirj , and rj and vj denote the received signals and noise for the jth

receive antenna, respectively. The CIR can be computed using LS estimation [78], and

the channel frequency response (CFR) estimates can be obtained by transformation of the

CIR:

ĥ
ij
tl = (PiFL)

†r(pilot)
j = (FH

LPiFL)
−1FH

LPir
(pilot)
j ,

Ĥ
ij
df = diag(FL(F

H
LPiFL)

−1FH
LPir

(pilot)
j ),

(3.3)
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where L ≤ Np. After some manipulation with r
(pilot)
j , we obtain a mathematical expres-

sion for the CFR estimates by substituting (3.2) into (3.3)

Ĥ
ij
df = H

ij
df + diag(FL(F

H
LPiFL)

−1FH
LPivj) = H

ij
df +Ωij, (3.4)

where Ωij denotes the channel estimation errors between the ith transmit antenna and the

jth receive antenna. Hence, the covariance matrix of Ĥ
ij
df can be represented as

E{Ĥij
dfĤ

ijH

df } = E{Hij
dfH

ijH

df }+ E{ΩijΩ
H
ij} = E{Hij

dfH
ijH

df }+ σ2
vdiag(FL(F

H
LPiFL)

−1FH
L )

= INs + σ2
vΞij ,

(3.5)

where Ξij denotes the covariance matrix of the channel estimation errors, which is deter-

mined by one particular pilot allocation matrix Pi. Based on (3.4) and (3.5), the actual

channel H
ij
df can be approximated by the estimated channel Ĥ

ij
df as [117]

H
ij
df = (INs + E{ΩijΩ

H
ij})−1Ĥ

ij
df − Ω̃ij = (INs + σ2

vΞij)
−1Ĥ

ij
df − Ω̃ij, (3.6)

In order to obtain the covariance matrix of Ω̃ij , equation (3.4) can be transformed as

follows. Substituting (3.6) into (3.4), the expression becomes

Ωij − Ω̃ij = (INs + σ2
vΞij)

−1σ2
vΞijĤ

ij
df , (3.7)

so

Ω̃ij = Ωij − (INs + σ2
vΞij)

−1σ2
vΞijĤ

ij
df . (3.8)

It can be found that E{Ω̃ij} = 0, and the covariance matrix of Ω̃ij is given by

E{Ω̃ijΩ̃
H
ij} = σ2

vΞij − 2(INs + σ2
vΞij)

−1σ2
vΞijσ

2
vΞ

H
ij + (INs + σ2

vΞij)
−1σ2

vΞijσ
2
vΞ

H
ij

= (INs + σ2
vΞij)

−1σ2
vΞij .

(3.9)

From (3.6), the actual channel can be approximated by the estimated channel, which cor-

responds to one particular pilot pattern. In the following section, equation (3.6) will be

used to calculate the SINR or MSE and the corresponding SER estimates, which corre-

spond to different pilot patterns. Then, the optimum pilot pattern can be chosen based on

the SER estimates.
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3.4 Dynamic Pilot Allocation for MIMO Receivers and

MIMO Iterative Pilot Search

In this section, we derive DPA using (3.6) for different receivers with BPSK modulation.

The same strategy can also be extended to other receiver techniques such as [64] with

other modulation schemes.

3.4.1 Dynamic Pilot Allocation Algorithm for Linear and SIC Re-

ceivers

For linear and SIC receivers, the SINR is used for the SER estimates. Due to channel esti-

mation errors, inter-antenna interference and noise, the expression of the detected symbols

for the qth desired transmit antenna is obtained by substituting (3.6) into the system model

described in Subsection (2.5):

ŝq = Ŵq
linear

y = Ŵq
linear

(INrNs + σ2
vΞq)

−1Ĥ
q
dfsq︸ ︷︷ ︸

signals

− Ŵq
linear

Ω̃qsq︸ ︷︷ ︸
channel estimation error

− Ŵq
linear

d−1∑

i=1

(INrNs + σ2
vΞi)

−1σ2
vΞiĤ

i
df ŝi

︸ ︷︷ ︸
residual interference

+ Ŵq
linear

Nt∑

i=d
i 6=q

(INrNs + σ2
vΞi)

−1Ĥi
dfsi

︸ ︷︷ ︸
inter-antenna interference

− Ŵq
linear

Nt∑

i=1
i 6=q

Ω̃isi

︸ ︷︷ ︸
channel estimation error

+Ŵq
linear

v︸ ︷︷ ︸
noise

, q = 1, . . . , Nt

(3.10)

where Ĥi
df = [Ĥi1

df . . . Ĥ
ij
df . . . Ĥ

iNr
df ]T , Ξi = diag{Ξi1 . . .Ξij . . .ΞiNr}, Ω̃i =

[Ω̃i1 . . . Ω̃ij . . . Ω̃iNr ]
T , and the MMSE filter for the qth transmit antenna given on the

channel estimates in (3.3) can be given by

Ŵ
q
linear = (ĤqH

df Ĥ
q
df +

Nt∑

i=d
i 6=q

ĤiH

df Ĥ
i
df + σ2

vINs)
−1Ĥ

qH

df . (3.11)

Note that the value of d distinguishes the mathematical expressions of the linear re-

ceiver (d = 1) and the SIC receiver (d = q). Let (INrNs + N0Ξi)
−1 = Λi and
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(INrNs + N0Ξi)
−1σ2

vΞi = Λ̃i . Hence, the signal power γq
s for the qth transmit antenna

can be calculated according to (3.10), which is

γ
q
S = D(Ŵq

linear
ΛqĤ

q
dfĤ

qH

df ΛH
q Ŵ

qH

linear
), (3.12)

whereD() denotes the operation which extracts the diagonal elements of a matrix. Hence,

γ
q
S = [γqS(0), . . . , γ

q
S(k), . . . , γ

q
S(Ns − 1)]T . Similarly, the interference power for the qth

transmit antenna can be approximated by

γ
q
I = D(

d−1∑

i=1

Ŵq
linear

Λ̃iĤ
i
dfĤ

iH

df Λ̃
H
i Ŵ

qH

linear
+

Nt∑

i=d
i 6=q

Ŵq
linear

ΛiĤ
q
dfĤ

iH

df Λ
H
i Ŵ

qH

linear
). (3.13)

Similar to γ
q
S , γ

q
I = [γqS(0), . . . , γ

q
I (k), . . . , γ

q
I (Ns−1)]T . Accordingly, the power of noise

plus channel estimation errors can be given as

γ
q
N = D(

Nt∑

i=1

Ŵq
linear

Λ̃iŴ
qH

linear
+ σ2

vŴ
qH

linear
Ŵq

linear
), (3.14)

where γ
q
N = [γqN(0), . . . , γ

q
N(k), . . . , γ

q
N(Ns − 1)]T . Hence, the SINR for the kth subcar-

rier can be written as

SINRq(k) =
γqS(k)

γqN(k) + γqI (k)
, (3.15)

and the SER estimate of MPSK for the kth subcarrier can be obtained by [118]

Pq(k) ≈ 2Q(
√

2 SINRq(k) sin(π/M)), (3.16)

where Q denotes the Q-function, which is Q(a) = (2π)−1/2
∫∞
a
e−f2/2df [118]. Corre-

sponding to a particular pilot pattern matrix Pq, the average SER estimates for the data

subcarriers of the qth antenna can be represented as

Pq(Pq) ≈
2

Nd

Nd∑

k=1

Q(
√

2 SINRq(k) sin(π/M)), (3.17)

where the quantity Nd denotes the number of data subcarriers. Hence, the optimum pilot

allocation can be obtained by solving the following optimization problem:

Popt
q = argmin

Pq∈P
Pq(Pq). (3.18)

Note that the optimum pilot allocation for the transmit antennas would be obtained using

an exhaustive joint search in the space and frequency domains, but this is impractical for

any scenario.
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3.4.2 Dynamic Pilot Allocation for ML Receivers

To simplify the matrix representation for ML receiver, the ML receiver is efficiently im-

plemented subcarrier by subcarrier as described in (2.63). The SER estimates for ML

receivers at the kth subcarrier can be approximated in a looser form as [1, 22, 119]

P(k) ≤ Nr(|C| − 1)Q



√

1
Nt
d2min(H(k))

2σ2
v


 , (3.19)

where

d2min(H(k)) = argmin
s(k),s′(k)∈CNt

s(k)6=s′(k)

‖H(k)(s(k)− s′(k))‖2
Nt

. (3.20)

Note that the SER estimates for ML receiver cannot be easily approximated using

SINR as linear and SIC receivers. In the following, a special MSE based SER ap-

proximation is used. where y(k) = [y1(k), . . . , yj(k), . . . , yNr(k)]
T and s(k) =

[s1(k), . . . , sj(k), . . . , sNr(k)]
T denote the receive and transmit signal vectors correspond-

ing to the kth subcarrier. The channel matrix for the kth subcarrier is defined as H(k),

which is similar to the channel matrix H defined in (2.51). Equation (3.19) has been

verified as union bound in [1]. However, the complexity of the SER approximation is

too high. An alternative method using a lower bound approximation (LBA) of (3.20) is

considered in [119], but it suffers a performance loss. To obtain reliable SER estimates,

the method proposed in [120], which reduce the complexity of searching d2min(H(k)).

Equation (3.6) cannot be simply substituted into (3.19), so it must be reformulated as

hq(k) = (INt + σ2
vΞq(k))

−1ĥq(k)− ω̃q(k). (3.21)

where hq(k) = [hq1(k), . . . , hqj(k), . . . , hqNr(k)]
T denotes the qth column of H(k),

ω̃q(k) = [Ωq1(k), . . . ,Ωqj(k), . . . ,ΩqNr(k)]
T and Ω̃qj(k) denotes the kth diagonal ele-

ment of Ω̃qj , and Ξq(k) = diag(Ξq1(k), . . . ,Ξqj(k), . . . ,ΞqNr(k)) and Ξqj(k) denotes

the kth diagonal element of Ξqj . Substituting (3.21) into (3.19), we can obtain the SER

approximation for the qth transmit antenna as

Pq(k) ≈
Ns∑

k=1

Nr(M − 1)Q



√

1
Nt
d2min(H(k))

2σ2
v


 , (3.22)

Equation (3.22) is defined as the same as (3.16) for SER estimates. Hence, the optimiza-

tion problem of ML receiver is identical to that of the linear and SIC receivers in (3.18).

Note that the SER estimates of pilot and data subcarriers must be jointly optimized in

order to obtain acceptable channel estimates.
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3.4.3 Proposed MIMO Iterative Pilot Search

The MIPS algorithm proposes to reduce the complexity burden for optimum pilot al-

location using an iterative search in the space-frequency domain. It is developed from

the iterative pilot search for SISO-OFDM [53]. The main idea behind the iterative pilot

search is to search for the optimum position for the pth pilot while fixing the otherNp−1

pilots on particular subcarriers. The MIPS follows the same pattern for a given transmit

antenna q, but the pilot placement for other antennas must be considered. Furthermore,

the first allocated antennas have more available subcarriers to insert pilots compared to

the other antennas, so we perform the ordering with the aid of the SER estimates from

the previous OFDM symbol period Pi(n − 1), which corresponds to the pilot allocation

matrices P
opt
i (n − 1), i = 1, . . . , Nt. Hence, the antenna with the highest SER estimates

in the previous OFDM symbol is allocated first. In other words, it has more pilot alloca-

tion matrices to choose, so the SER performance has better chance to be improved. For

SIC receiver, the ordering is determined by detection ordering as discussed in Subsection

2.6.4, because the performance of first detected antenna is worse than the later detected

ones in most cases. The MIPS is performed as below:

Initialization: Set p = 1, q = 1.

1. Allocate Np pilots as the pilot pattern (Pq(n − 1)) to the qth transmit antenna, and

keep the pilot positions already allocated to the first Nt− q antennas (
∑q−1

i=1 Pi(n)).

2. Calculate the expected error probability using (3.17) or (3.22) if the pth pilot is

inserted in the kth unoccupied subcarrier while fixing the other Np − 1 pilots, until

all available subcarriers have been tested successively, where INs −
∑q−1

i=1 Pi(n)

represents the remaining available subcarrier for the ith transmit antenna.

3. Select the position giving minimum error probability for the pth pilot, set p = p+1

and update Pq(n). Go back to step 2. If p = Np, go to step 4.

4. The pilot allocation search for the qth antenna is complete; set q = q + 1, go back

to step 1. If q = Nt, go to step 5.

5. Terminate, and return Pq(n) and Pq(n).
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Note that the covariance matrix of the noise Ξi,i 6=q associated with a particular pilot

allocation must be used in step 2 for the calculation of the SER estimates. How-

ever the pilot allocation matrix Pi, i = q + 1, . . . , Nt, are unknown. We assume that

Ξi(n) ≈ Ξi(n− 1), i = q+1, . . . , Nt, in (3.15) and (3.21). The number of required trials

for a conventional exhaustive search are given by

Nt∏

i=1


 Ns − (i− 1)Np

Np


 , (3.23)

but the MIPS can significantly decrease the number of trials to

Nt∑

i=1

(Ns − iNp + 1)Np. (3.24)

For example, a moderate size 4 × 4 MIMO-OFDM system with Ns = 32 and Np = 4

for each antenna requires approximately 7 × 105 search trials for one OFDM symbol,

which makes the exhaustive search impractical for the scenarios considered. However,

the MIPS can find these optimum pilot patterns with 368 trials, which represents a sig-

nificant complexity reduction, and no matrix inversion is involved. This is because all

matrices are diagonal. In addition, most operations required in the search trials can be

pre-computed accordingly to further save the computational efforts. The exact algorithm

table is presented in Table 3.1.

3.5 Limited Feedback for Dynamic Pilot Allocation

Although the MIPS can reduce the complexity of finding an optimum pilot allocation, the

feedback payload is still high, and so is the number of search trials. The total number of

overhead bits is
∑Nt−1

i=0 log2(
Ns−iNp

Np
). For example, In a 2×2 MIMO-OFDM system with

Ns = 16 and Np = 4 for each transmit antenna, the receiver relay back at least 18 bits

per OFDM symbol. The amount of feedback can be reduced by treating each transmit an-

tenna separately as in [52] (unstacked vector quantization), but this cause significant per-

formance loss and does not reduce the number of feedback bits significantly. We therefore

propose a stacked vector quantization (SVQ) technique (which can create a codebook for

the pilot allocation of all transmit antenna) using the generalized Lloyd algorithm (GLA)

for feedback, as well as reducing the number of search trials. GLA is a non-uniform

L. Li, Ph.D. Thesis, Department of Electronics, University of York 2013



CHAPTER 3. DYNAMIC PILOT ALLOCATION WITH CHANNEL ESTIMATION IN

CLOSED-LOOP MIMO-OFDM SYSTEMS 83

Table 3.1: MIPS for the qth transmit antenna

Input: Pi(n), i = 1, . . . , q − 1, Ns, Np

Output: P
opt
q

1 P
opt
q ← Pq(n− 1)

Pi ← Pi(n), i = 1, . . . , q − 1

2 Pin ← 106

3 idx← the indices of the diagonal elements of Pq(n− 1) that contain pilots

4 repeat

5 Pout ← Pin

6 for p = 0 to Np − 1

7 Pq ← P
opt
q

8 Pq[idx[p]]← 0

9 Pin ← 1

10 for k ← 0 to Ns − 1

11 Pq = Pq +
q−1∑
i=1

Pi

12 if Pq[k] = 1

13 Pq = Pq −
q−1∑
i=1

Pi

14 then go back to 10

15 else Pq[k]← 1

16 Pq = Pq −
q−1∑
i=1

Pi

17 Pout = Pq given on Pq in (3.17) or (3.22)

18 end

19 if Pout < Pin then

20 Pin ← Pout

21 P
opt
q ← Pq

22 idx[p]← k

23 end

24 Pq[k]← 0

25 end

26 end

27 until Pin < Pout
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quantization method that attain the optimum quantization after several iterations based on

a pre-defined cost function [121, 122]. As stated earlier, the pilot allocation for all trans-

mit antennas is correlated over time and frequency, so it is possible to compress the set

of optimum pilot allocation into a codebook with a smaller size and fewer feedback bits

than the unstacked vector quantization. Hence, DPA with SVQ can achieve a better per-

formance and fewer feedback bits than the DPA with unstacked vector quantization [52].

Furthermore, the proposed SVQ can also be efficiently implemented using multi-stage

vector quantization schemes and correlation between OFDM symbols can be exploited

using predictive vector quantization schemes [123]. Furthermore, the SVQ jointly quan-

tizes the optimum pilot allocation set. Thus the approximation Ω̃i,i 6=q(n) ≈ Ω̃i,i 6=q(n− 1)

can be replaced by the actual Ω̃i,i 6=q(n) in the derivation of DPA, because the possible

pilot patterns of all transmit antennas are already known. The procedures for generating

a codebook for the transmit antennas can be summarised as follows.

1. Obtain the optimum pilot allocation set B = {xopt(1),xopt(2), . . .xopt(n)} for

all transmit antennas from N different channel realizations, where xopt(n) =

[D(P1(n))
T ,D(P2(n))

T , . . . ,D(PNt(n))
T ]T , andD() is the column vector created

from the diagonal elements of the matrix.

2. Randomly choose the initial codebook B0 from the set B, the size N0 of which is

determined by the number of feedback bits.

3. The matrices of B can be partitioned into different N0 different Voronoi regions

according to the minimum distance criterion.

4. Create a new codebook by choosing the center of mass of the Voronoi region.

5. Repeat steps (3) and (4) as necessary

6. Due to the binary structure of the matrices, the matrices in Bq may not be integer

after the qth iteration. In this case, the Np largest values will be set to one as pilot

positions, while zeros are used for the rest of the diagonal entries.

Note that each pilot pattern in the codebook for the ith transmit antenna is unique, so

the pilot positions cannot be occupied by those of other antennas. The proposed SVQ

jointly quantizes the optimum pilot allocation for all transmit antennas, which exploits the
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feedback bits better than the quantization based on separate transmit antennas,namely un-

stacked vector quantization (USVQ). Furthermore, the generation of codebooks by USVQ

is not so straightforward. These pilot allocation of one transmit antenna cannot be reused

for the other transmit antennas. In this case, the optimum pilot pattern set B is required

to exclude these pilot patterns occupying these tones, which makes it more complicated.

The algorithm is provided in Table 3.2.

Table 3.2: SVQ for optimum pilot allocation

Input: B, Q
Output: BQ
1 Choose initial codebook B0 from B
2 for q = 1:Q

3 Bq = Bq−1

4 for n = 1:N

5 n′
min = argminxopt(n′)∈Bq

‖xopt(n)− x
opt(n′)‖2F

6 Vn′
min

= x
opt(n′

min) + Vn′
min

(the n′
minth column of V)

7 end

8 x
opt(n′) = 1

|Vn′ |Vn′

(|Vn′ | is the counter for n′th column of V in step 6)

9 Put xopt[n′] in corresponding column of Bq
10 end

11 Map the BQ to a binary structure antenna by antenna,

and exclude the previous antenna’s pilot tones.

12 Set the Np largest values to 1, and the rest to 0.

3.6 Simulation Results

In this section, the DPA and UPA with different receivers (linear, SIC, ML) based on

MIMO-OFDM systems are compared via Monte Carlo simulations. A diversity gain can

be observed from these simulation results. Note that the performance difference between

ZF and MMSE receivers may be negligible. In this case, we use MMSE receivers as

linear and MMSE-SIC receivers as SIC. We assume a scenario with the following set-

tings: the carrier frequency fc = 650MHz, the subcarrier spacing ∆f = 976.5Hz and the
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OFDM symbol duration T = 1/∆f ≈ 1ms. The MIMO-OFDM system parameters are

L = 4, Ns = 16, 32, Np = 4, Nt = Nr = 2, 4. The transmit signals are modulated with

BPSK. Extension to other modulations is straightforward, by modify (3.17) and (3.22)

as appropriate. We expect the result to be similar for such modulation. The channel es-

timation and detection performances are measured via MSE and BER. The simulations

are carried out over multipath channels with a uniform power delay profile and a normal-

ized Doppler frequency fdTOFDM = 10−4 unless otherwise specified. In other words,

the channel varies slowly between OFDM symbols. The feedback link is assumed to be

perfect and instantaneous. With a limited feedback channel, the simulation is performed

in a scenario where the receivers relay back the small number of codebook indices, which

implies that the feedback link can only send several bits.
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Figure 3.1: Comparison of BER between MIPS and exhaustive search of DPA for Nt =

Nr = 2, Ns = 16, Np = 4, L = 4

In Fig. 3.1, we plot the BER of DPA with MIPS and the exhaustive search as described

in [54]. The results show that the MIPS can perform equivalently to the exhaustive search

in the BER performance. Hence, in what follows we do not employ DPA with the exhaus-

tive search due to its prohibitive complexity, and focus on the MIPS algorithm.

Fig. 3.2 depicts the BER and MSE performances of different receivers with DPA or
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Figure 3.2: Comparison of BER and MSE between DPA and UPA forNt = Nr = 2, Ns =

16, Np = 4, L = 4
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UPA in a MIMO-OFDM system with Nt = Nr = 2, Ns = 16, Np = 4 with BPSK. DPA

with MIPS significantly outperforms the UPA in terms of BER around 10 dB at 10−3,

but gives poorer MSE performance. In other words, the system can achieve better BER

performance at the expense of MSE degradation.

The BER and MSE performances of DPA and UPA for ML receivers are also pre-

sented. From Fig. 3.2a, the DPA with lower bound approximation (LBA) of the SER

estimates [119] performs worse than the DPA with the union bound in (3.19) even at low

SNR values. 5 dB BER performance gain can be obtained by DPA at high SNR. We then

plot the DPA in a moderate size system with Nt = Nr = 4, Ns = 32, Np = 4 modulated

with BPSK in Fig. 3.3. The performance gains are still maintained for different receivers.
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Figure 3.3: Comparison of BER between DPA and UPA forNt = Nr = 4, Ns = 32, Np =

4, L = 4

In Fig. 3.4, the curves of BER performance against the number of feedback bits at

SNR= 15 dB are plotted to further illustrate the tradeoff between the number of feedback

bits and the BER performance. Note that the complexity of DPA at the receiver is also

reduced using a small number of feedback bits, which determines the number of search
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trials. According to our observation in Fig. 3.4, an excellent tradeoff between complexity

and performance gain can be achieved using 5 bits codebook. Hence, the feedback over-

head is significantly reduced from 25 bits to several bits. The number of search trials is

also reduced to a fixed number equal to 25.
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Figure 3.4: Comparison of BER between different feedback bits with SVQ for Nt =

Nr = 2, Ns = 16, Np = 4, L = 4 at 15 dB (The pilot positions for MIPS are perfectly

known to the transmitter)

The delay of the feedback link is assumed to be 20 ms (equivalent to 20 OFDM sym-

bols), which is twice the length of the normal WiMAX feedback delay [116]. Because

of the delay in the feedback channel, the pilot allocation indices is not sent to the trans-

mitter instantaneously, neither optimal. Here Fig. 3.5a details the BER performance of

DPA over a range of fdTOFDM with a fixed delay at SNR= 20 dB. The performance of

DPA is better than the UPA except for ML with SVQ-5 bits in a relatively slow varying

channel with fdTOFDM values between fdTOFDM = 10−5 and fdTOFDM = 3 − 4 × 10−3.

These are equivalent to a maximum relative velocity between the transmitter and receiver

of around 3 − 4 mph, which is sufficient for the pedestrians in most scenarios. In other

words, the effect of increasing the feedback channel delay is negligible in slowly varying

channels. Fig. 3.5b shows that the BER performance of DPA employing SVQ (5 bits)
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at SNR= 15 dB when the feedback channel operates over a binary symmetric channel

(BSC) with different error probabilities Pe. The feedback indices may be impaired by

the errors, which cause the indices mismatch with the channels at the transmitter side.

The BER performance degrades with increasing error probability of the feedback link.

Additionally, the linear and SIC receivers are more robust to the feedback channel errors

at very high Pe = 10−3 than ML receivers similar to ML receivers in Fig. 3.5a. This

is because the SER estimates of ML receivers for DPA significantly rely on minimum

Euclidean distance estimates in (3.19) that are more sensitive to the channel estimation

errors introduced by the pilot allocation. However, DPA still outperforms UPA within an

acceptable level of Pe. From Fig. 3.5, It can be observed that if the channel is varying

rapidly, the errors of the feedback channel must be reduced to maintain the reliability of

the already delayed indices.

In Fig. 3.6, we present the BER performance of DPA using linear receivers withL = 4,

Nt = Nr = 2 and Ns = 32, Np = 4, 6, 8, 10, 12, 14 to illustrate the possible best diversity

achieved by DPA. As shown above, the slopes of BER curves become steeper with the in-

creasing number of pilots compared to UPA, because data avoid the faded subcarrier with

DPA. DPA with perfect channel estimates can achieve a better performance. It may not

only suggest that other receivers incorporating DPA can achieve a better performance, but

also receivers with more advanced channel estimators will benefit from DPA much more

than the channel estimators used above as similarly described in [53]. To further explain

the performance improvement of DPA, we can introduce a simple diversity analysis. If

the channels of subcarriers are uncorrelated, the upper bound of diversity order for linear

receivers can be easily obtained as d = L(Nt − Nr + 1) [124] without transmit antenna

selection, which normally is not achievable for DPA. In our case, the exact diversity anal-

ysis becomes intractable due to the correlation. For simplicity of analysis, the following

assumptions are made as follows.

1. All pilots are optimally placed;

2. Channel estimates are perfect;

3. Np ≫ L;

4. The entire OFDM symbol may be split into available Nb = ⌈Ns−NtNp

Ns
L⌉ indepen-

dent blocks which experience different fading.
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Hence, we can assume that all data are transmitted over the available blocks with relatively

high SINRs compared to the subcarriers occupied by pilots. According to the assumptions

and simulation results above, the diversity of DPA is mainly affected by Np, and DPA is

prone to select Nb blocks out of L. So we can consider DPA as a special case of selection,

but in the frequency domain rather than the space domain. Following similar rules in [124,

Lemma 2], the achievable diversity equals d = (L − ⌈(Ns−NtNp

Ns
)L⌉ + 1)(Nr − Nt + 1),

which approximately agrees with the red curve in Fig. 3.6. The conclusion can also

be naturally extended to other receivers such as SIC or ML. In general, DPA exploits a

selection diversity compared to UPA, the diversity of which can be further improved with

the increase of Np and more reliable channel estimates as in [53].
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2, Ns = 32, L = 4 with linear receivers

3.7 Summary

A low-complexity dynamic pilot allocation has been derived for MIMO-OFDM systems

(linear, SIC, ML), which can improve the SER performance at the expense of MSE degra-

dation. DPA over a limited feedback channel has also been investigated, and a stacked

vector quantization (SVQ) scheme has been proposed to reduce the feedback bits and the
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number of search trials for more practical scenarios. The gain of SER performance for

DPA is promising over the limited feedback channels, and the time variation will not sig-

nificantly affect the performance of DPA, if the channel is a slow time-varying channel.

Finally, the achievable diversity of DPA with different receivers is discussed to further

validate our simulation results.
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4.1 Introduction

In this chapter, two different sphere decoding algorithms are proposed for MIMO de-

tection and union bound estimation, respectively. Both algorithms are based on the tree

structure to reduce the complexity of searching the minimum Euclidean distance in two

different forms: (1) complex-valued system model and (2) real-valued system model. In

what follows, a novel complex sphere decoder for MIMO detection will be presented
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first, and then the low-complexity union bound estimation. To achieve a high spectral

efficiency, maximum likelihood (ML) detection should be employed with high order con-

stellations. However, “brute-force” ML detection is impractical even for a system with a

small number of antennas. An alternative method is called the sphere decoder (SD), and

this has attracted significant attention recently, due to the considerable complexity reduc-

tion it achieves [18, 101]. The key idea behind the SD is to find the lattice point closest

to the received signals within a sphere radius. Although the computational complexity

has been greatly reduced by Schnorr-Euchner enumeration (SE) [17,19], sequential Fano

decoders [91], and statistical pruning based algorithms [125–127], it is still very high

for the systems with a large number of antennas and high order modulation compared to

suboptimal methods, such as linear or DFE based techniques [5, 64].

In most applications, the complex-valued system is decoupled and reformulated as

an equivalent real-valued system. Real-valued SDs can only process lattice based mod-

ulation schemes such as quadrature amplitude modulation (QAM) and pulse amplitude

modulation (PAM), while other modulations such as phase shift keying (PSK) cannot be

processed as efficiently, because some invalid lattice points are included in the search.

Additionally, the depth of the expanded tree for real-valued SDs is twice of that for com-

plex counterparts. Hence, the complex-valued SE-SD and a modified version of SE-SD

were proposed in [28,102]. The complex-valued SDs avoid the decoupling of the complex

system and can be widely applied to different modulations without reaching invalid lattice

points. Especially, the latter one has already achieved a very low complexity compared to

other real-valued and complex-valued SDs [128]. However, the intricacy of complex SE

enumeration is still a weak point that makes the real-valued SDs preferred for hardware

implementation. Some novel low-complexity complex enumerators have been studied

in [129–131], and these enumerators are interchangeable in most complex-valued SDs.

However, the enumeration still must be employed in each detection layer, and performed

for several times once new branches are accessed. In the rest of this chapter, the SDs we

discuss are all based on complex-valued SE enumeration in [28,102], namely computation

of coordinate bound (CCB) enumeration.

Motivated by the description above and probabilistic tree pruning SD (PTP-SD) [126],

we devise a novel complex-valued SD (CSD) with statistical pruning strategy (SPS), SIC

aided modified probabilistic tree pruning (MPTP). There are three contributions in the

L. Li, Ph.D. Thesis, Department of Electronics, University of York 2013



CHAPTER 4. SPHERE DECODING ALGORITHMS FOR MIMO DETECTION AND BOUND

ESTIMATION 96

proposed method: (1) The use of MPTP to reduce the number of visited nodes by eval-

uating the partial path metrics (PPMs) of the next layer. If the PPM corresponding to

the next layer’s nulling-cancelling point exceeds the constraint of MPTP, the complex SE

enumeration can be avoided. (Note that other novel enumeration schemes can also be

exploited to replace the CCB [28, 102]). (2) For the SPS, the radius can be updated by

the SPS at the bottom layer, if the first updated radius obtained by SIC is greater than the

value given by SPS. Compared to the proposed algorithm, the inter-search radius control

scheme (ISRC) works in a similar way [127], which further reduces the sphere radius af-

ter the search reach the bottom layer. But it must perform several Q-function and inverse

Q-function calculations, and the parameters for ISRC are difficult to choose to maintain

the tradeoff between complexity and performance. (3) Additional conditions for the CCB

are specified to avoid missing candidates in each layer. Simulation results show that the

proposed method can achieve a substantial complexity reduction as compared to existing

CSD algorithms.

Besides hard decision type detection, soft processing for MIMO systems has been pre-

sented. In [28], the authors report a near-capacity MIMO detection using list-SD (LSD)

with a relatively large candidate list. With a large list, the performance of the LSD will

be very close to the MAP detector. The results in [129] illustrate the hardware implemen-

tation of LSD with 4 candidates, which may not be considered as a true implementation

of LSD [132]. This is because the list size is too small to achieve near-capacity perfor-

mance. Hence, it cannot be considered as an optimum detection technique. Additionally,

the LLR clipping is also required for the LSD with a small list, because the +1 or −1
is missing in a particular bit LLR calculation based on the max-log MAP criterion. It

can be fixed by setting a given magnitude of LLR as in [28], but the performance loss is

unavoidable. Although the authors in [105, 106] have fixed this problem for non-iterative

detection decoding scheme and non-coherent detection, these LLR clipping techniques

are still relatively complicated in most cases. However, a large list will result in irre-

ducible complexity to limit the applications of LSD in practice, because the candidate

updates in the list is difficult in hardware implementation [103]. This may not be a de-

sirable feature. If the list generation for LSD is simple, exact LLR clipping will not be

required. In the following, we will discuss a simple list generation for the LSD given the

proposed CSD.
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Secondly, the union bound is usually considered as a useful analytical tool to estimate

the union bound of ML detection. Because this bound only depends on the minimum

Euclidean distance of receive constellations and the number of nearest neighbours. The

union bound tightly approximates the exact probability of symbol error at SNR values [1].

Furthermore, the bound estimation can be applied in many works such as adaptive space-

time modulation [119], dynamic pilot allocation for ML detection in the Chapter 3 and op-

timal minimum distance-based precoding [133]. However, the computational complexity

of the union bound is impractical for MIMO systems, because the search is performed like

the conventional ML detection. A sphere decoding based minimum Euclidean distance

search algorithm has been reported in [120], which employs the symmetric properties to

eliminate the symmetric symbol vectors. However, the removal of these symbol vectors

has a limited impact on the complexity reduction. Hence, a novel depth-first search (DFS)

based sphere decoding algorithm has been proposed to further reduce the search complex-

ity. The initial radius of the search is also derived according to the statistical distribution

of the channel matrix, because the initial radius determines the worst search complexity

as discussed in [21]. In this context, we compare different sphere decoding algorithms for

the search, and show that one can use this bound to estimate performance for ML receivers

with a relatively lower complexity than the previous sphere decoding algorithms.

The rest of the chapter is organized as follows. Section 4.2 presents the system model

and problem formulation. Section 4.3 describes the proposed complex sphere decoder

and the algorithm table. The fundamentals of bound estimation is demonstrated in Section

4.4. The soft processing with LSD is also discussed in Section 4.5. In Section 4.6, the

simulation results demonstrate the complexity and BER performance of CSD and LSD,

respectively. Furthermore, the simulation results of bound estimation is also presented. A

summary is drawn in Section 4.7.

4.2 System Model

MIMO systems and the system model after QR decomposition have been presented in

Subsection 2.6.1, so the exact system model for CSD will not be detailed in this subsec-

tion. The transmit symbol vector s, the received symbol vector y, the channel matrix
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H, and the noise vector v are defined the same as (2.51) in the following. Note that we

assume Nt ≤ Nr throughout this chapter, because QR decomposition cannot yield a tree

structure with overloaded MIMO systems. To clarify the Euclidean distance for one given

layer, the full path metric (FPM) and partial path metric (PPM) are defined as

rPPM =
m∑

i=1

∣∣∣∣∣yi − ri,isi −
i−1∑

j=1

ri,jsj

∣∣∣∣∣

2

(4.1)

Note that the quantity rPPM denotes the full path metric when m = Nt, and it denotes the

partial path metric when m < Nt.

4.3 Complex Sphere Decoder with Successive Interfer-

ence Cancellation based Tree Pruning

In Subsection 2.6.7, the basic idea of CSD and computation of coordinate bound have

been reviewed. The proposed CSD is based on the same enumeration scheme. Hence, the

system model becomes (2.75). Furthermore, MMSE-SQRD, discussed in (2.73), is used

as the processing technique in this chapter [101].

4.3.1 Search Strategy and Successive Interference Cancellation Tree

Pruning

In this subsection, we present three different techniques to reduce the complexity: (1) a

novel search strategy with the aid of SIC; (2) the MPTP algorithm; (3) SPS.

Search Strategy

Compared to conventional SE-CSD, the novel search strategy first performs SIC to obtain

the NC points and the full path metric (FPM) without calculating the partial path metrics

(PPMs) of other constellation points and sorting for each layer, and the radius rSD may

be updated by FPM rPPM, m = Nt or r′SD obtained by SPS in Subsection 4.3.1 once the
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search reaches the bottom layer. The rest of the search can be performed upwards starting

from the NC point of the bottom layer rather than top layer as in conventional SE-CSD.

Additionally, the span of tree can be further shrunk by MPTP. In (2.77), the candidates

chosen by CCB can be determined by the new updated radius ρm in Subsection 4.3.1.

Hence, the number of possible candidates for each layer can be significantly reduced.

The details of the proposed algorithm are specified in Table 4.1.

Statistical Pruning Strategy

The possible radius for SDs can be calculated as r′SD = σ2β according to [21].

Pr(x < r′SD) =

∫ r′SD/σ
2
v

0

1

2Nt(σ2
v/2)

Nt

xNt−1

Γ(Nt)
e−x/σ2

vdx

=

∫ β

0

uNt−1

Γ(Nt)
e−udu , (x/σ2

v = u , β = Ts/σ
2
v)

= 1− ǫ,

(4.2)

where ǫ is the threshold probability defined according to the empirical results with the

size of the system, the modulation and the number of possible ML solutions [21], and

the parameter β can be easily obtained by the inverse incomplete Gamma function. Once

rSD > r′SD, the quantity rSD will be replaced by r′SD at the bottom layer.

Modified Probabilistic Tree Pruning

Denoting the detected symbols as ŝj , the noise vi can be used to model the branch metric

weight as

Bi = |yi −
i∑

j=1

ri,j ŝj|2 ≤ |vi|2, i = 1, 2, . . . , Nt, (4.3)

We assume the remaining Nt −m layers’ symbols are perfectly detected in (4.3). Then,

the branch metric weight is only affected by the noise. Hence, the current PPM Pm plus

the norm of the remaining layers’ noise
∑Nt

i=m+1 |vi|2 must be smaller than the sphere

radius in most cases. Hence, the possible full metric weight can be represented as

Pm +

Nt∑

i=m+1

|vi|2 ≤ rSD, (4.4)
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where Pm =
∑m

i=1Bi. Since
∑Nt

i=m+1 |vi|2/σ2
v ∼ χ2 with 2(Nt −m) degrees of freedom

[21, 126]. After some manipulations, the noise term can be given by

Nt∑

i=m+1

|vi|2/σ2
v ≤ (rSD − Pm)/σ

2
v (4.5)

Accordingly, the probability of Pr(
∑Nt

i=m+1 |vi|2/σ2
v ≤ (rSD − Pm)/σ

2
v) is reasonably

large. Because the sphere radius rSD normally is very large to cover all possible combina-

tions. As discussed above, the summation
∑Nt

i=m+1 |vi|2/σ2
v follows Chi-square distribu-

tion, and the CDF is Pr(
∑Nt

i=m+1 |vi|2/σ2
v ≤ (rSD − Pm)/σ

2
v). Thus,

Ξ((rSD − Pm)/σ
2
v ;Nt −m) = ǫv < ǫp, (4.6)

where ǫv = Pr(
∑Nt

i=m+1 |vi|2/σ2
v ≤ (rSD − Pm)/σ

2
v) and Ξ(x; a) =

∫ x

0
1

Γ(a)
e−tta−1dt. ǫp

denotes the pre-defined probability of occurrence for
∑Nt

i=m+1 |vi|2/σ2
v ≤ (rSD−Pm)/σ

2
v ,

which can be determined readily for complexity reduction. According to (4.6), the PPM

Pm becomes

Pm ≤ rSD − σ2
vΞ

−1(ǫp;Nt −m), (4.7)

where Ξ−1(x; a) is the inverse of Ξ(x; a). In other words, any PPM Pm larger than the

LHS of (4.7) is unlikely to be the correct path for the ML solution, so these nodes with

their child nodes are eliminated from the search tree. To avoid the CCB, we introduce the

quantized NC point Q(δm) obtained by SIC to calculate the minimum PPM for the mth

layer as

P δ
m =

∣∣∣∣∣ym − rm,mQ(δm)−
m−1∑

j=1

ri,j ŝj

∣∣∣∣∣

2

+ Pm−1, (4.8)

and

P δ
m > ρm, (4.9)

where ρm = rSD−σ2
vΞ

−1(ǫp;Nt−m), andQ(δm) is a quantized symbol for the givenmth

layer. If the inequality in (4.9) is satisfied, the NC point and the remaining nodes with

their child nodes are all pruned, and the CCB is not carried out. Otherwise, the quantity

¶δm is used in (2.77) to replace rSD to further reduce the number of candidates. Note that

the parameter ρm is pre-computed at the start of the transmission without any additional

complexity.
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Q

I

7π
8

−

3π
4

Ti
r2i,i

[3π2 , 2π]

δi

(a) Case I

Q

I

Ti
r2i,i

11π
6

11π
4 π

4

δi

(b) Case II

Figure 4.1: Two specific examples to exclude the constellation points erroneously: (a) In

Case I, the phases are bounded by [7π
8
− 3π

4
], which is supposed to cover the constellation

points between [3π
2
2π]. But these constellation points are excluded by the CCB, because

they are not inside the bound. (b) Case II has the similar problem: the constellation point

π
4

is not in the bound [11π
4

11π
6
].

4.3.2 Additional conditions for CCB

There are two additional conditions (AC) we should consider to avoid the performance

loss, if we introduce Ti = ρi as the intra radius for CCB.

1. If θδi − arccos(ψ) < 0 and θδi + arccos(ψ) > 0, set −π ≤ θk < π. If 0 ≤ θk < 2π,

some constellation points located in [π, 2π] will be eliminated erroneously.

2. If θδi + arccos(ψ) > 2π, set θδi + arccos(ψ) = θδi + arccos(ψ)− 2π. If the upper

bound of the phase is greater than 2π, the constellation points in [0, π] will not be

included.

In Fig. 4.1, we present two special cases that can be fixed by the conditions described

above. The phase range between −3π
4

and 7π
8

does not match to the above definition

0 ≤ θk < 2π, so the two points between 3π
2

and 2π will be pruned erroneously in Fig.

4.1a within the red circle. For Fig. 4.1b, the phase of the constellation point is π
4
, which

should be considered as a candidate based on the phase range. But the upper bound of
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phase obtained by CCB is greater than 2π, which will eliminate the candidate at π
4
. Note

that these additional conditions are not specified in previous works such as [28, 102],

which employ extremely large initial radius instead. For PSK modulation and QAM, all

constellation points are located on one ring, and the candidates can be obtained in one

shot. For high order QAM, the CCB must be performed for different concentric rings.

4.4 Bound Estimation for Maximum Likelihood Detec-

tion

In this section, a novel union bound estimation technique using sphere decoding algorithm

is proposed. The instantaneous SER performance of ML detection can be approximated

by a looser bound (see [1], [22] and [119]).

4.4.1 System model

For the bound estimation of MIMO systems, the system model for the search is almost

identical to (3.20) except that the real values are used in the model. Furthermore, the

channel matrix H will be decomposed into Q and R for the search as normal sphere

decoders.

4.4.2 Channel-Statistics Based Initial Radius

As discussed above, the initial radius has a significant effect on the complexity of sphere

decoding algorithms [21]. Hence, the initial radius is derived based on the channel statis-

tics. A special matrix namely Wishart matrix is illustrated as follows. The Wishart matrix

W is a random and non-negative definite matrix with real, non-negative eigenvalues given

by

W =

{
HHH Nt > Nr

HHH Nt ≤ Nr.
(4.10)
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Table 4.1: Proposed complex sphere decoder with SIC based tree pruning

Input: rSD =∞, R, v, ρi, i = 1, 2, . . . , Nt.

Output: ŝML

1: Compute the NC points and obtain the full path metric and partial path metrics

P 1
1,...,Nt

, save s1,...,Nt , ŝML = ŝ.

2: If r′SD < PNt , PNt = Ts. end. Set rSD = PNt . Perform step 6, and set ki = 1, ∀i.
3: Set i = Nt, go to 17.

4: Compute the PPM P δ
i according to (2.76) and (4.8).

5: If P δ
i > ρi, go to 17.

6: Else obtain the sorted candidates skii ∈ scand
i , ki = [1, 2, . . . , N i

c ] in (2.78) by the

complex SE enumeration (CCB) with ρi, where N i
c denotes the number of available

branches at the ith layer.

Set ki = 0.

7: end

8: ki = ki + 1.

9: If ki ≤ N i
c or i = Nt, go to 12.

10: Else go to 17.

11: end

12: Calculate the PPM for the kth candidate at the ith layer, P ki
i = Bki

i + Pi−1.

13: If i = Nt, PNt = P ki
i , go to 20. end

14: Else go to 16.

15: end

16: If P ki
i < T0, i = i+ 1, Pi−1 = P

ki−1

i−1 , save si−1, go to 4. end

17: i = i− 1.

18: If i = 0, output ŝML and terminate.

19: Else go to 8.

20: end

21: If PNt < T0. T0 = PNt ,

22: If r′SD < rSD, rSD = r′SD. end

23: ŝML = ŝ, go to 17.

24: end
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After a simple transformation in (3.20), the minimum Euclidean distance for one channel

use can be given by

d2min(H) = argmin
s,s′∈CNt

s6=s′

‖He‖2
Nt

, (4.11)

where e = s− s′. Additionally, ‖He‖2 = ‖Re‖2. According to [134], the Rayleigh-Ritz

theorem can be applied to the Wishart matrix as below

‖e‖2λmin(W) ≤ argmin
s,s′∈CNt

s6=s′

‖Re‖2 ≤ λmax(W)‖e‖2, (4.12)

where the symbols λmax and λmin denote the maximum and minimum eigenvalue of

the Wishart matrix, respectively. For sphere decoding, the minimum eigenvalue of the

Wishart matrix is not needed. Because the initial radius is only related to the maximum

eigenvalue in this case. Let p ≈ λmax(W). Hence, the distribution of the initial radius p,

defined similarly to rSD, can be roughly approximated by the distribution of the maximum

eigenvalue of the real Wishart matrix. Note that the quantity 0.99 used below implies that

the initial radius obtained by (4.13) has 99% chance to be greater than the Euclidean dis-

tance ‖He‖2. The CDF of the maximum eigenvalue of the real Wishart matrix can be

expressed as [4] ∫ p

0

1

lm

lm∑

i=1

ϕi(λ1)
2λln−lm

1 e−λ1dλ1 = 0.99, (4.13)

where λ1 = λmax(W), lm = min(Nt, Nr), ln = max(Nt, Nr). Additionally,

ϕk+1(λ1) =

(
k!

(k + ln − lm)

)1/2

Lln−lm
k (λ1), k = 0, . . . , lm − 1, (4.14)

where Lln−lm
k (λ1) = 1

k!
eλ1λlm−ln

1
dk

dλk
1
(e−λ1λln−lm+k

1 ) is the associated Laguerre polyno-

mial. The MIMO channels can be decomposed into multiple virtual single-input and

single-output (SISO) channel [4]. For a small number of transmit antennas, if one equiva-

lent SISO channel experiences deep fading, the vector e = [0, . . . , ei, . . . , 0]
T may be the

candidate to obtain the minimum Euclidean distance for the bound estimation. Hence, the

initial radius p can be obtained by the Chi-square distribution as follows:

∫ pα

0

1

Γ(Nt)
xt−1etdt = 0.99, (4.15)

where α denotes the average power of the candidate constellation. Hence, the rest steps

is similar to the SPS in Subsection 4.3.1.
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4.4.3 Modified Schnorr-Euchner Enumeration

We first define the PPM as normal sphere decoders, which are slightly different from the

forms of the sphere decoders. In order to show the PPM, the branch metric weight for one

given candidate êi at layer i can be evaluated by

Bi = |ri,iêi +
i−1∑

j=1

ri,j êj |2, (4.16)

where the quantity êj denotes the candidates at upper layers. Based on (4.16), the PPM

for one given candidate êi at layer i can be given as

Pi = Bi + Pi−1, (4.17)

where Pi−1 =
∑i−1

m=1Bm. The search strategy used in bound estimation is similar to that

used in the complex sphere decoder, see Table 4.2. We therefore do not detail the search

strategy further. The only difference is the way of acquiring the candidates at each layer.

The bound of êi for layer i can be derived by [17, 19]

⌊
−(p− Pi−1)

1/2 −∑i−1
j=1 ri,j êj

ri,i

⌋

︸ ︷︷ ︸
cmin

≤ êi ≤
⌈
(p− Pi−1)

1/2 −∑i−1
j=1 ri,j êj

ri,i

⌉

︸ ︷︷ ︸
cmax

. (4.18)

where the notations ⌊⌋ and ⌈⌉ denote the floor and ceiling function, respectively. Note

that the symmetric properties of e [120] can be used in the algorithm without any modifi-

cations.

4.5 List Soft Processing based Complex Sphere Decoder

As we discussed above, the conventional LSD has a variable complexity. In our case, we

naturally extend our proposed CSD to the LSD with a simpler list generation. From the

original idea of the LSD, a list of symbol candidates with the smallest FPM are required in

the LLR calculation as (4.20). Furthermore, it may not be possible to construct a list with

fixed complexity in terms of SE-SD, the complexity of which has been already reduced. In

our case, the proposed CSD reaches the NC point first, and then starts the search from the

bottom layer. Thus the number of visited nodes can be better controlled. The complexity
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Table 4.2: Sphere Decoding Algorithm for Minimum Euclidean Distance Search

Input: p, R, s − s′ ∈ D, where the quantity D denotes the set of differences between s

and s′

Output: d2min

1: Set i = 1, P0 = 0

2: Compute the bounds (cmin, cmax) of êi by (4.18) and sort them according to the dis-

tance from λi = −
∑i−1

j=1 ri,j êj/ri,i, k ∈ [1, N i
c], where the quantity N i

c denotes the

number of candidates at layer i. Set k = 0.

3: k = k + 1.

4: if k > N i
c then

5: go to 15.

6: else

7: if êj = 0, j = 1, . . . , i− 1 or i = 1 then k = k + 1. go to 9.

8: end if

9: Calculate the path metric for kth candidate node at ith level, Pi = Bi + Pi−1.

10: if i = Nt then

11: go to 21.

12: else

13: if Pi < p, i = i+ 1, then go to 2.end if

14: end if

15: i = i− 1.

16: if i = 0 then

17: Output d2min(H) = p and terminate.

18: else

19: go to 3.

20: end if

21: if Pi < p then

22: p = Pi, go to 15.

23: end if
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of list generation by the propose CSD is lower than the conventional LSD. Although its

complexity is still not fixed, the number of updates and replacements in the list become

more moderate compared to the conventional counterpart.

4.5.1 Extrinsic LLR Calculation of LSD

According to the MAP criterion in Subsection 2.6.8, the extrinsic LLR can be evaluated

by

=
1

2

∑

b∈Bk+

{− 1

σ2
v/2
‖y−Hsk+‖2+bT

k̄ ·Le2(bk̄)}−
1

2

∑

b∈Bk−

{− 1

σ2
v/2
‖y−Hsk−‖2+bT

k̄ ·Le2(bk̄)},

(4.19)

where the vector bk̄ denotes the bit vector omitting the kth bit, the a priori LLR Le2(bk̄)

denotes the LLR from the channel decoder corresponding to the bits in bk̄, and the quan-

tity Bk± denotes the list of bit vectors obtained by the LSD having ±1 at the kth bit. The

symbol vector sk± denotes the possible symbol combinations corresponding to the set

Bk± , and the corresponding kth bit of sk± equals ±1. Following the max-log approxima-

tion and the list obtained by the LSD [28] and the derivation in Subsection 2.6.8, equation

(4.19) becomes:

Le1 ≈
1

2
max
b∈Bk+

{− 1

σ2
v/2
‖y−Hsk+‖2+bT

k̄ ·Le2(bk̄)}−
1

2
max
b∈Bk+

{− 1

σ2
v/2
‖y−Hsk−‖2+bT

k̄ ·Le2(bk̄)}.
(4.20)

The LLR Le1 for the kth bit in the transmit symbol vector is obtained for the channel

decoder. Therefore, the extrinsic information Le1 from the LSD and Le2 from the channel

decoder exchange between two decoding components.

4.5.2 Scatter List Generation

To build a list with simple implementation, a few modifications will be made to the pro-

posed CSD: (1) Perform the proposed CSD to obtain the complete branches accessed in

the search, and start several new sub-tree searches respectively given on each full branch

obtained above until the list is filled. Note that the sub-tree search will be terminated once

it reaches the starting point of the neighbouring sub-tree search. (2) Replace the radius
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rSD by the largest FPM of the symbol vectors in the list. (3) MPTP will be carried out

given the new radius rSD . (4) The sphere radius rSD may be updated in (4.2) with the

new largest FPM in the list once a candidate with a smaller FPM is found. The search

strategy described above splits the entire tree into different sub-trees and searches them

independently. The flow chart has been presented in Fig. 4.2. Although the proposed

CSD is needed to perform initially in the scatter list generation, its complexity has been

significantly reduced, which is measured via the number of updates in the list generation.

Proposed CSD search

Output N full branches accessed in CSD

Sub-tree search 1 Sub-tree search n Sub-tree search N

Output a new candidate to the list

List generation

full?

Yes No

Sort and replace Add the candidates

Figure 4.2: The flow chart of scatter list generation

4.5.3 ML based Ordering

The ML solution can be exploited to re-order the remaining branches for the list gener-

ation of the LSD. When the list is full, the search will go back to the upper layers and

proceed down the tree. However, the unvisited nodes at the lower layers are unknown to

this search, and these partial branches would be ordered according to SE enumeration.

The basic idea of ML based ordering is to sort the remaining partial branches based on

the ML solution in the lower layers rather than only computing their real PPM for a given

layer. Additionally, a large proportion of the remaining branches may be discarded if the
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distance (rSD) is much smaller than the distance of sr. In our case, the following equation

can be used for ordering at the ith layer:

κ = argmin
sr∈R

‖y −Rsr‖2, (4.21)

where the vector sr = [s1ML, . . . , s
i−1
ML , s

i
r, . . . , s

Nt
r ]T , and the quantityR denotes the set of

available branches for the ith layers. The unvisited nodes in the lower layers are replaced

by the ML solution (siML). The calculation of ML based ordering is very moderate in

(4.21), which only needs |R|(i+ 1) multiplication for each layer.

4.6 Simulation Results

In this section, we have discussed the proposed CSD in two different forms: (1) the hard

output CSD, (2) the soft output CSD (LSD). For the hard output CSD, the performance

and complexity of several CSDs are compared via BER and the number of visited nodes in

a 8× 8-MIMO system with 16QAM and 8PSK. An MPSK modulation in our simulation

is defined as γe(2n+1)π/M : n = 0, 1, . . . ,M − 1. We consider the conventional SE-

CSD, Pham-CSD [102], PTP-CSD [126], the proposed CSD with and without additional

conditions for CCB, all of which are complex SE enumeration based CSD with rSD =∞
at the beginning of the search. The PTP can be simply extended to Pham-CSD. The

SNR is defined as SNR(dB) = 10 log10
(
EsNr

σ2

)
. The probabilistic noise constraint is

set to ǫp = 0.2. The threshold ǫ for SPS must be appropriately adjusted according to

the dimensions and the modulation as stated earlier, and we set ǫ = 0.001. The ISRC

scheme [127] is not employed, because of the difficulty of choosing parameters for intra

radius.

As shown in Figs. 4.4 and 4.3, the complexity of the proposed CSD improves upon the

others in terms of visited nodes per channel use by 25% for 16QAM and more than 25%

for 8PSK at high SNRs without any BER performance loss, even compared to conven-

tional SE-CSD between the mid and high SNR regime. The performance loss of the pro-

posed algorithm without additional conditions (AC) is significant at high SNRs. In other

words, it is more sensitive to the missing candidates in low noise scenarios. However,

the complexity reduction is not obvious at low SNR scenarios due to the CCB including
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Figure 4.3: Comparison of BER and the number of visited nodes per channel use with per-

fect channel estimates between the proposed and other CSDs forNt = Nr = 8 with 8PSK.

Note that the curves of Conventional SE-CSD, Pham-CSD, PTP-CSD and proposed-CSD

w/ AC are superimposed in (a).
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Figure 4.4: Comparison of BER and the number of visited nodes per channel use with

perfect channel estimates between the proposed and other CSDs for Nt = Nr = 8

with 16QAM. Note that the curves of Conventional SE-CSD, Pham-CSD, PTP-CSD and

proposed-CSD w/ AC are superimposed in (a).
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more unreliable constellation points. It can be observed that the curves of number of vis-

ited nodes for different SDs converge at very high SNR values, so the improvement of the

proposed SD is reduced at high SNR, but is still very promising. To show the robustness

to the channel estimation errors, the BER performance of CSDs for 8× 8 MIMO system

with 8PSK and LS channel estimation [78] is plotted in Fig. 4.5. We can observe that the

BER performance of the proposed CSD with imperfect channel estimates can still achieve

the same performance as other existing CSDs. The BER performance of 16QAM is not

shown here, because it has similar curves as in Fig. 4.5.
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Figure 4.5: Comparison of BER with LS channel estimation between the proposed and

other CSDs for for Nt = Nr = 8 with 8PSK. Note that the curves of Conventional SE-

CSD, Pham-CSD, PTP-CSD and proposed-CSD w/ AC are superimposed

The worst case complexity is measured by the 99% quantile of the total number of

visited nodes per channel use (Pr(Cw > Cany) = 0.99) [135], where the quantity Cw
denotes the number of visited nodes accessed by the SDs in one particular channel use,

and the quantity Cany denotes the number of visited nodes accessed by the SDs in any

channel use. The corresponding worst case complexity Cw of CSDs are also plotted in

Fig. 4.6, which implies that the number of visited nodes of the proposed CSD is tightly

lower bounded by the complexity of SIC at high SNRs.

Additionally, the complexity of SDs increases exponentially with increasing dimen-
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Figure 4.6: Worst case complexity of CSDs against SNR, Nt = Nr = 8 with 16QAM
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sion. We therefore plot the number of visited nodes against the dimensions (Nt = Nr) at

a high SNR value (20 dB) to show that the complexity is still reduced by our proposed

algorithm in Fig. 4.7.

The complexity discussed so far is only based on the number of visited nodes. In or-

der to show the advantages of complexity reduction of complex SE enumeration (CCB)

and eliminating unnecessary candidates, the curves with the number of FLOPS are pre-

sented in Fig. 4.8.For the fair comparison, we assume that a complex addition requires 2

FLOPS, and a complex multiplication requires 16 FLOPS. The proposed algorithm still

outperforms the other CSDs, because of fewer implementations of complex SE enumer-

ation and the reduced number of candidates. The number of FLOPS of the detection

ordering are not considered, because the CSDs are performed with the same preprocess-

ing technique. Furthermore, the parameters for MPTP can be pre-computed before the

start of the transmission.

For bound estimation of ML detection, the proposed sphere decoding algorithm for

bound estimation, the conventional depth-first search (DFS) sphere decoding algorithm,

[120] and the K best-first search (KBFS) sphere decoding algorithm are introduced. The

complexity of the proposed and other algorithms are compared via Monte Carlo simu-

lations in terms of floating-point operations (FLOPS). Note that the zeros in matrices or

vectors do not count in FLOPS. The union bound and simulation performance of ML de-

tection are measured via SER. The power of the transmit antennas is normalized to unity.

The SNR is defined the same as above. Additionally, the root mean square error (RMSE)

is defined as RMSE =

√
E[|d̂2min − d2min|2]. The initial radius obtained in (4.13) is ap-

plied to the proposed and conventional DFS, and p =∞ in BFS. From Fig. 4.9a and 4.9b,

the proposed sphere decoding algorithm and the method in [120] can precisely find the

minimum Euclidean distance d2min(H) (RMSE= 0) compared to other conventional algo-

rithms such as DFS and KBFS, but the later one has higher complexity than the proposed

search algorithm. The curves for the union bound and the simulation result approximately

agree as shown in Fig. 4.10, so the proposed bound estimation technique is shown to be

tight and requires lower complexity, and thus suits the instantaneous SER estimates. Note

that the curves of union bound are slightly lower than the simulation results. This is

because the scalar used in the (3.19)
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Figure 4.8: Comparison of FLOPS between the proposed and other CSDs for Nt = Nr =

8 with 16QAM and 8PSK
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For soft output CSD (LSD), we consider 8× 8-16 QAM and a NSC half rate convolu-

tional code with constraint length 3 for simplicity. In a coded system, the SNR has been

re-defined:Eb

N0 dB
= SNRdB+10 log10

Nt

RNrM
, where R denotes the rate of the channel code.

The performance and complexity of the proposed LSD has been evaluated by BER and

the number of updates in the list. The EXIT chart has also been introduced to present

the mutual information changes. Note that fixed value clipping has been adopted in our

simulation, and the appropriate clipping values can be simply obtained by evaluating the

mutual information Ie as [105]. In our case, the clipping value is set to±12. In Fig. 4.11,

the EXIT chart of conventional LSD [28] and the proposed LSD has been illustrated with

different sizes of list. We can observe that both of them perform almost identically with

different size of list, and the list size has a significant influence on the LSD performance.

Additionally, the EXIT chart of LSD with the same list size in different SNR has also

been plotted in Fig. 4.12. The SNR only moves the curves up and down without changing

the shapes. Similarly, the BER performance of two LSD with L = 512 agrees with the

results in the EXIT chart, which has been presented in Fig. 4.13, and the performance

improves with the increasing number of iterations. The complexity comparison made by

CDF has been shown in Fig. 4.14, which implies that the number of updates in the list

has been significantly reduced by the proposed LSD with large list size. Furthermore, the
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search can be terminated early to suit the hardware implementation.

4.7 Summary

In this chapter, two novel sphere decoding algorithms for MIMO detection and bound esti-

mation have been presented. The proposed CSD, incorporating the statistical tree pruning

technique and SIC, first reaches the bottom layer, and eliminates the candidates for the

lower layers before the search reaches them rather than eliminating these candidates at

the lower layers. From the simulation results, it is seen that the proposed CSD can signifi-

cantly save computational efforts compared to the conventional CSD. The search strategy

is also applied to the bound estimation, but in a real-valued system model. Accordingly,

we have defined how to choose the initial radius, and extended the SE enumeration to the

search with the use of symmetric properties of symbol vectors. Furthermore, the proposed

CSD has been naturally extended to the list SD (LSD) based on the scatter list genera-

tion. The proposed LSD makes better use of the ML solution to re-order the remaining

branches. Hence, the list generation becomes simpler than that of the conventional LSD.

The complexity of the proposed sphere decoding algorithms for MIMO detection and

bound estimation are significantly reduced, which provides an attractive tradeoff between

complexity and performance.
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5.1 Introduction

Due to their high spectral efficiency and simple equalization, OFDM have been widely

adopted by many digital communication standards such as LTE, LTE-A, WiMAX. How-

ever, their performance suffers severely from inter-carrier interference (ICI) induced by

rapid channel variations.

To eliminate the effects induced by ICI, several equalization techniques ranging from

linear ones (ZF and MMSE) to non-linear ones (SIC and MAP) have been proposed. A

simple frequency domain ZF equalizer using the banded channel structure has been pro-

posed in [136]. A recursive MMSE filter with decision feedback equalization and matched

filter bound (MFB) (perfect removal of ICI cancellation) [137] has been investigated, and

can be considered as a performance benchmark for ICI cancellation. In [56, 57], the au-

thors further enhanced the banded structure of the channel matrix in the frequency domain

by a time-domain window, which maximizes the power inside the band, and designed the

equalizers in serial and block form with ICI cancellation. Also, the authors in [58,59] pro-

posed two pre-equalizers to mitigate the effects of time variations, and obtain a diagonal

channel matrix. One developed a partial FFT (PFFT) method to reduce the size of channel

matrix for equalization, and the other has formulated the pre-equalizer by minimizing ICI

power. In [60], ICI is modelled using derivatives of the channel amplitude, and an iterative

decision feedback equalizer (DFE) was proposed to formulate a single tap equalizer in the

frequency domain. A similar idea is implemented in [61] to obtain the diagonal matrix

using mean values of transmit symbols based on LLR values from the channel decoder.

Another method estimates the symbols using a sequential LSQR algorithm with selective

parallel interference cancellation (PIC), which is also based on the banded structure of the

modified channel matrix in the time or the frequency domain [63]. Some other iterative

processing techniques employing a LLR criterion or different cancellation orders are pre-

sented in [64,65] . Besides, a low-complexity sequential MAP detector using the Markov

Chain Monte Carlo algorithm for mobile OFDM can be found in [66] with successively

reduced search dimension using soft ICI cancellation, which is a variant of ICI cancel-

lation with the aid of MAP detection. However, By introducing the Gibbs sampler, the
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complexity of generating samples for MAP detection is almost the same as that of tens of

sequential ICI cancellations with a relatively large channel matrix [66]. Due to the diffi-

culty of estimating the rapidly varying channel, some joint receiver designs incorporating

channel estimation have been proposed for OFDM systems in [62,138,139]. The authors

of [62] propose a successive interference cancellation (SIC) scheme based on a group of

subcarriers, namely MF-SIC, with iterative single-burst channel estimation (SBCE), but

its working scenario is limited to relatively low normalized Doppler frequencies due to

the channel estimation error and the residual ICI inside the band. The work presented

in [139] is relatively robust to channel variation, but it requires a higher complexity than

others. The recent work in [138] suggests an alternative way of estimating time vary-

ing channels in multi-segmental form with soft PIC, which can extend the operation of

OFDM systems to higher Doppler frequencies. All these techniques discussed above con-

sider only the dominant ICI terms inside the band, the rest of the ICI outside the band is

treated as white noise. However, the ICI terms outside the band is not real noise. Hence,

the autocorrelation function of the ICI outside the band has been discussed in [140] to

design a pre-whitener to compensate ICI outside the band, the autocorrelation matrix of

which can also be applied to the likelihood function for more accurate LLR computation.

However, it will complicate the LLR computation, which is not a desirable feature for

soft ICI cancellation. Furthermore, the error floor in the coded OFDM system is mainly

caused by the ICI inside the band rather than the ICI outside the band.

In this chapter, we first discuss the matched filter based PIC with multi-segmental

channel estimation (MSCE), and then we employ multi-feedback ICI cancellation

matched filter in a sequential form (MBMF-SIC). The original idea is motivated by [95],

which proposes multi-feedback cancellation for MIMO systems to approximate the ML

solution by selecting one SIC solution out of multiple candidates. Unlike the work

in [62, 66, 95], the proposed multi-feedback strategy has been employed to approximate

the residual ICI induced by soft cancellation to obtain more reliable LLRs. We propose

two generation mechanisms for the multi-feedback strategy: Gibbs sampling based gener-

ation (GSG) and tree search based generation (TSG). Note that the generation of feedback

candidates by GSG is performed bit by bit independently unlike the recursive implemen-

tation described in [141, 142]. Furthermore, it does not require a burn-in period to reach

its stationary distribution [66] and the removal of repetitions [143]. For TSG, it build up

a tree structure like normal sphere decoders and search the most likely candidates given
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the probability of bits, which is based on the conventional Bayesian framework. Hence,

the contribution of this chapter can be summarized as: (1) two simple ICI cancellation

algorithms (MF-PIC [138] and MBMF-SIC) have been proposed. (2) The MBMF-SIC

using the reduced channel matrix for feedback candidates has been discussed, the ef-

fectiveness of which has been validated in terms of SINR. (3) The SINR ordering is also

discussed to further remove the error floor induced by the ICI inside the band. (4) The pro-

posed channel estimation (MSCE) has been presented, which estimates the time-varying

channel several times in each OFDM symbol period. The proposed ICI cancellation algo-

rithms also incorporates MSCE, which shows the robustness of the proposed MBMF-SIC

to channel estimation errors, and a better performance than other cancellation techniques.

Additionally, the lower bound MSE of MSCE has also been given.

The chapter is organized as follows. Section 5.2 states the system model and receiver

structure. Section 5.3 discusses a parallel iterative interference cancellation (MF-PIC).

Section 5.4 formulates the problem of MBMF-SIC and explains multi-feedback cancella-

tion and the LLR computation. The multi-feedback generation mechanism is presented in

Section 5.5 as well as SINR ordering for MBMF-SIC in Section 5.6. Followed by Section

5.6, the MSCE and the lower bound has been investigated. The simulation results has

been illustrated in Section 5.9, and Section 5.10 draws the conclusion.

5.2 System model

We consider a coded OFDM system with Ns subcarriers and iterative processing as illus-

trated in Fig. 5.1. For a conventional SIC receiver, the number of feedback candidates is

reduced to one in the multi-feedback generation block. The information bits are encoded

as bm by the channel encoder, and then interleaved as um through the random interleaver,

where the subscript m denotes the mth bit in a bit sequence. Each group of c bits is

modulated by the symbol mapper onto one symbol sk on the kth subcarrier at the ith

OFDM symbol, and then the IFFT is performed to obtain the serial data stream. The CP

is inserted. Once the distorted transmitted signals reach the receiver, the CP is removed.

The received signals are split into several segments, which go through the PFFT for the

channel estimation (MSCE). The summation of the outputs of PFFT blocks is the same
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as the conventional FFT. Thus the output is used for equalization (MBMF) as used in nor-

mal OFDM systems. The output of MBMF block is the output of equalization, which are

the estimated symbols ŝk. The bit LLRs corresponding to these symbols can be obtained

and deinterleaved for the channel decoder using BCJR algorithm [144]. The output of

the channel decoder, after the interleaver, is also used for the interference cancellation.

The interference is regenerated by the multi-feedback generation block. For the conven-

tional SIC receiver, the number of feedback candidates is reduced to one in the output of

multi-feedback generation block. Referring to (2.15) and (2.101), the system model can

be represented as

y = Hdfs + v. (5.1)

In the following, the processing is based on the frequency domain unless otherwise spec-

ified.

Source Channel

Encoder
Interleaver Symbol

Mapper
IFFT +CP

-CP PFFT

PFFT MSCE

MBMF
Symbol

Demapper Deinterleaver Channel

Decoder

Interleaver

Multi-

feedback

generation

Figure 5.1: System Model of MBMF-SIC incorporating with MSCE

As discussed in Section 2.8, we employ a banded channel matrix HD for OFDM sys-

tems over doubly selective channels as shown in Fig. 5.2 and [56], so the truncated system

model for kth subcarrier can be approximated as below:

yk = Hksk + vk

= hksk +

k+Q∑

k̄=k−Q,k̄6=k

hk̄sk̄ +
∑

k̄ 6∈[k−Q,k+Q]

hk̄sk̄ + vk

(5.2)

where the truncated received signals yk = [yk−D, . . . , yk, . . . , yk+D]
T ,hk denotes the kth

column vector of the truncated channel matrix, the truncated transmit symbol vector for
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the kth subcarrier sk = [sk−2D, . . . , sk, . . . , sk+2D]
T , the truncated noise vector vk =

[vk−D, . . . , vk, . . . , vk+D] and the truncated channel matrix with the size Q = 2D

Hk =




hdf (k −D, k − 2D) · · · hdf (k −D, k) · · · 0

0
. . .

...
. . .

...

· · · 0 hdf (k +D, k) · · · hdf (k +D, k + 2D)


 .

(5.3)

D + 1 D

D + 1

The kth truncated channle matrix Hk

2D + 1

2Q+ 1, Q = 2D

2D + 1, Q = D

Figure 5.2: The matrix representations of the banded channel matrix HD, the kth trun-

cated channel matrix Hk, and the reduced channel matrix in blue square

5.3 Matched Filter Parallel Interference Cancellation

In this section, we present a MF-PIC approach to mitigate the ICI in OFDM systems.

The banded structure is employed to reduce the complexity of MF-PIC in the matched

filtering stage and the cancellation stage. This is because the elements of HD outside the

shaded area are omitted for complexity reduction. The LLR calculation of MF-PIC is also

discussed as follows. The ICI terms are mostly contributed from 2Q adjacent subcarriers

as illustrated in 5.2 and [56]. Hence, the residual ICI outside the band is considered as

noise. Based on (2.101), the match filtered signals are expressed as follows:

ŷ = HH
Dy

= HH
DHdfs +HDv

= RDfs+ ṽ,

(5.4)
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where the vector ŷ = [ŷ0, . . . , ŷk, . . . , ŷNs−1]
T represents the MF outputs. In Subsection

2.6.8, the LLR computation for MIMO systems has been discussed in details for BPSK.

We consider 4QAM here. Hence, the LLR values of sk(i), i = 1, 2 for the channel decoder

and the soft symbol estimates for iterative interference cancellation can be computed as

[62]

L(sk(1)) = ln
Pr(sk(1) = +1|ŷk)
Pr(sk(1) = −1|ŷk)

=
4ℜ(ŷk)
σ2
ṽ

(5.5)

Accordingly, L(sk(1) =
4ℑ(ŷk)
σ2
ṽ

. where the quantity sk(i) denotes the ith bit of the

symbol sk at the kth subcarrier, and i = 1, 2 Because 4QAM carries 2 information bits.

Subsequently, L(sk(i)) from (5.5) is deinterleaved, and then fed to the channel decoder as

the a priori LLRs. The extrinsic LLRs of L(sk(i)) can be obtained from the channel de-

coder, and then the soft symbol estimates ŝk is fed back for soft interference cancellation

after the interleaver as given in (5.6). The received data vector after cancellation is given

by

ȳ = ŷ − R̃Df ŝ, (5.6)

where ȳ = [ȳ0, . . . , ȳk, . . . , ȳNs−1]
T , ŝ = [ŝ0, . . . , ŝk, . . . , ŝNs−1]

T , R̃Df is the matrix RDf

with zero diagonal elements, and the new LLR value L(sk(i)) can be re-computed in (5.5)

to replace ŷk by ȳk. According to Bayes’s theorem [78] and (5.5), the soft symbol estimate

of the kth subcarrier for interference cancellation is given by

ŝk = tanh(L(sk(1))/2) + tanh(L(sk(2))/2)i, (5.7)

where
√
−1 = i. Therefore, the MF-PIC can cancels the ICI in one shot once the a

priori LLR from the channel decoder is known, and then feed the new LLR after the ICI

cancellation to the channel decoder.

5.4 Proposed Multi-feedback Interference Cancellation

In this section, we discuss the basic idea of multi-feedback interference cancellation, and

compare it with the conventional soft interference cancellation and MAP detector via

LLR representation. It can be verified that the proposed algorithm can be considered as a

hybrid detection method performing MAP estimation in terms of multiple ICI suppression

operations for the desired subcarrier.
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5.4.1 Problem formulation and solution

The received signal in (5.2) after subtracting the soft symbol estimates is given by:

ỹk = hksk +

k+Q∑

k̄=k−Q,k̄ 6=k

hk̄(sk̄ − ŝq)
︸ ︷︷ ︸

soft residual interference inside band

+
∑

k̄ 6∈[k−Q,k+Q]

hk̄sk̄ + vk

︸ ︷︷ ︸
ṽ

, (5.8)

where ŝk̄ = [sk−Q, . . . , ŝk−1, ŝk+1, . . . , sk+Q]
T , ŝq ∈ ŝk̄ denotes the soft symbol vector

omitting the desired symbol at the kth subcarrier ŝk, which are inside the band obtained

by previously detected subcarriers or the LLR from the channel decoder. The vector ṽ

denotes the interference outside the band plus noise. The residual interference inside the

band can be approximated by the summation of received signals ỹ(b), b = 1, 2, . . . , B,

after subtracting multiple interference symbols s
(b)

k̄
as follows:

k+Q∑

k̄=k−Q,k̄ 6=k

hk̄(sk̄ − ŝk̄) ≈
B∑

b=1

(ỹ
(b)
k − hksk − ñ)Pr(ỹ

(b)

k̄
), (5.9)

where

ỹ
(b)
k = hksk +

k+Q∑

k̄=k−Q,k̄ 6=k

hk̄(sk̄ − s(b)k̄
)

︸ ︷︷ ︸
hard residual interference inside band

+ṽ, (5.10)

and s
(b)

k̄
= [s

(b)
k−Q, . . . , s

(b)
k−1, s

(b)
k+1, . . . , s

(b)
k+Q]

T , s
(b)

k̄
∈ s

(b)

k̄
. The quantity B denotes the

number of feedback candidates. Substituting (5.9) into (5.8), it can be arranged as:

y∗
k ≈ ỹk −

B∑

b=1

(ỹ
(b)
k − hksk − ṽ)Pr(ỹ

(b)

k̄
) ≈ hksk + ṽ, (5.11)

where y∗
k denotes the received signal if the residual interference inside the band is per-

fectly removed by (5.9), and the probability Pr(y
(b)

k̄
) denotes the a priori probability of

received signals after interference cancellation, which are mainly determined by Pr(s
(b)

k̄
).

Hence, the terms Pr(y
(b)

k̄
) and Pr(s

(b)

k̄
) are interchangeable (Pr(ỹ

(b)
k ) ≈ Pr(s

(b)

k̄
)). If we

assume no residual interference inside the band Equation (5.11) after a rearrangement

becomes:

ỹk −
B∑

b=1

ỹ
(b)
k Pr(ỹ

(b)

k̄
) = hksk + ṽ− hksk

B∑

b=1

Pr(ỹ
(b)

k̄
)− ṽ

B∑

b=1

Pr(ỹ
(b)

k̄
), (5.12)

where
∑B

b=1 Pr(ỹ
(b)

k̄
) =

∑B
b=1 Pr(s

(b)

k̄
) ≈ 1, if all possible combinations of symbol vectors

s
(b)
k are considered in the summation. So ỹk −

∑B
b=1 ỹ

(b)
k Pr(ỹ

(b)

k̄
) ≈ 0. Note that the con-

ditional probability of ỹ
(b)
k given s

(b)

k̄
and ỹk given ŝk̄ in (5.12) will be mutually exclusive
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and conditionally independent, if the residual interference term dominates. Hence, the

likelihood functions of ỹ
(b)
k and ỹk given sk can be separately evaluated by

Pr(ỹ
(b)
k |sk) ∝ e

−(ỹ
(b)
k −hksk)

H 1

σ2
ṽ

(ỹ
(b)
k −hksk)

(5.13)

For simplicity, we assume 4QAM is used as the previous subsection, so sk(i) = ±1, i =
1, 2. Using (5.13), the LLR can be computed as

L(s
(b)
k (1)) = ln

Pr(sk(1) = +1|ỹ(b)
k )

Pr(sk(1) = −1|ỹ(b)
k )

=
4ℜ(hH

k ỹ
(b)
k )

σ2
ṽ

, (5.14)

and the conditional probability of s
(b)
k (1) given ỹ

(b)
k can be calculated by

Pr(s
(b)
k (1) = +1|ỹ(b)

k ) =
1

1 + e−L(s
(b)
k (1))

(5.15)

Accordingly, L(s
(b)
k (2)) =

4ℑ(hH
k ỹ

(b)
k )

σ2
ṽ

. From (5.15), multiple conditional probability

Pr(s
(b)
k (1) = +1|ỹ(b)

k ) and Pr(sk(1) = +1|ỹk) can be obtained. Hence, the average con-

ditional probability Pr(sk|y∗
k) can be obtained by

Pr(sk(1) = +1|y∗
k) =

B∑

b=1

Pr(s
(b)
k (1) = +1|ỹ(b)

k )Pr(ỹ
(b)
k )

+ Pr(sk(1) = +1|ỹk)Pr(ỹk),

(5.16)

As mentioned above, Pr(ỹ
(b)
k ) = Pr(s

(b)

k̄
), which can be obtained by the LLR from the

channel decoder. Equation (5.16) can be rewritten as

Pr(sk(1) = +1|y∗
k) =

B∑

b=1

Pr(s
(b)
k (1) = +1|ỹ(b)

k )Pr(s
(b)

k̄
)

+ Pr(sk(1) = +1|ỹk)Pr(̂sk̄),

(5.17)

The second term in (5.17) can also be evaluated according to (5.13). The LLR of sk(1)

for the channel decoder, with the use of (5.17), can be easily evaluated by

L(sk(1)) = ln
Pr(sk(1) = +1|y∗

k)

Pr(sk(1) = −1|y∗
k)
. (5.18)

Hence, we have obtained the new LLR output by multi-feedback cancellation algorithm

in this section, and further used in the channel decoder.
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5.4.2 Comparison of soft interference cancellation and MAP detec-

tion

To show the differences between proposed MBMF-SIC and MAP and conventional soft

ICI cancellation algorithm, the LLR of different methods are shown below. For the MAP

detection algorithm, the LLR of the ith particular bit sk(i) can be found as

L(sk(i)) = ln

∑
sk∈Si+

Pr(sk|yk)∑
sk∈Si−

Pr(sk|yk)
, (5.19)

where Si± denotes the set of different symbol vector combinations sk with sk(i) = ±1.

For soft interference cancellation based on (5.8), the LLR can be evaluated by

L(sk(i)) = ln

∑
sk∈Ci+

Pr(sk|ỹk)∑
sk∈Ci−

Pr(sk|ỹk)
, (5.20)

where Ci± denotes the set of different symbol combinations sk with sk(i) = ±1. Given

(5.19) and (5.20), equation (5.16) can be rewritten in the form of a LLR as

L(sk(i)) ≈ ln

∑
sk̄∈Sk̄

∑
sk∈Ci+

Pr(sk|ỹk)Pr(ỹk|sk̄)Pr(sk̄)∑
sk̄∈Sk̄

∑
sk∈Ci−

Pr(sk|ỹk)Pr(ỹk|sk̄)Pr(sk̄)
, (5.21)

where Sk̄ denotes the set of symbol vector combinations sk omitting the symbol sk, the

vector ỹk denotes the received signals suppressing the interference from sk̄, and the vector

yk̄ denotes the received signals cancelling the desired symbol sk. Note that the quantity

B actually constrains the set size of Sk̄. However, the probability Pr(ỹk|sk̄) may not be

tractable in the implementation, so Pr(sk̄) ≈ Pr(ỹk|sk̄)Pr(sk̄) is assumed. Hence, equation

(5.21) can be considered as another way of implementing the conventional MAP detection

in two steps. The first step performs MAP detection for the interference symbols sk̄, and

the last step performs interference cancellation for one particular bit sk(i).

5.5 Multi-Feedback Generation Mechanism

As mentioned above, the vectors ŝk̄ in (5.8) and s
(b)

k̄
in (5.10) denote the soft symbol

vector and the bth feedback symbol vector, respectively. For soft symbol estimates, it can

be obtained by

ŝk̄ =

|C|∑

j=1

Pr(sk̄ = Cj |y∗
k)Cj, (5.22)
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where Cj denotes the jth symbol in the symbol alphabet C. For the generation of s
(b)
k ,

there are two different generation methods described below: (1) Gibbs sampler based

generation; (2) Tree search based generation. The algorithm procedure for 4QAM are also

illustrated in Table 5.1. It can also be extended to other modulation schemes accordingly.

However, it is unlikely that OFDM systems will operate with a high order modulation

scheme in situations of very high mobility.

5.5.1 Gibbs sampling based generation (GSG)

The bit s
(b)

k̄
(i) can be re-generated by the Gibbs sampler [142]:

s
(b)

k̄
(i) =





+1 if U(s
(b)

k̄
(i)) ≤ P (s

(b)

k̄
(i))

−1 otherwise

, (5.23)

where P (s
(b)

k̄
(i)) = Pr(sk̄(i) = +1|y∗

k) from the channel decoder, the notation U() de-

notes a random number generated based on a uniform distribution between [0, 1]. Hence,

these bits can be re-mapped onto the symbols Cj . The probability Pr(s
(b)

k̄
) is required

for the computation of the average conditional probability in (5.17). However, the sym-

bol vector s
(b)
k is randomly generated by (5.23). Here, we assume an extreme case

that the probability P (s
(b)

k̄
(i)) = 1, ∀b, i, the symbol vectors s

(b)

k̄
, ∀b will be identical.

In other words, the Gibbs sampler with reliable feedback from the channel decoder

is prone to generate the similar symbol vectors, which have almost equal probability

(Pr(s
(1)

k̄
) ≈ . . . ≈ Pr(s

(b)

k̄
) ≈ . . .Pr(s

(B)

k̄
) ≈ Pr(̂sk̄)). The number of feedback candi-

dates B can approaches ∞ for GSG, so ỹk −
∑B

b=1 ỹ
(b)
k Pr(ỹ

(b)

k̄
) ≈ 0. However, it is

undesirable for the implementation to choose a very large B, so a pre-defined B would

be possible to achieve an attractive tradeoff between complexity and performance.

5.5.2 Tree search based generation (TSG)

Compared to the Gibbs sampling based method, the feedback can also be generated given

the probability of the symbol. For the case of 4QAM, the conditional probability can be
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computed as

Pr(sk̄ = C1|y∗
k) = p1p2

Pr(sk̄ = C2|y∗
k) = p1(1− p2)

Pr(sk̄ = C3|y∗
k) = (1− p1)p2

Pr(sk̄ = C4|y∗
k) = (1− p1)(1− p2)

(5.24)

where pi, i = 1, 2 denotes the probability Pr(sk̄(i) = +1) calculated by L(sk̄(i)) from

the channel decoder. Hence, the most likely symbol combinations can be obtained by

calculating and sorting Pr(s
(b)

k̄
), the process of which is similar to the tree search prob-

lem in [93]. To further simplify the search process, the computation is performed in the

logarithm domain. The search process is implemented as follows:

1. Initialization: P (C k̄
1 ) = − log(p1p2), P (C

k̄
2 ) = − log(p1(1 − p2), P (C

k̄
3 ) =

− log((1 − p1)p2), P (C
k̄
4 ) = − log((1 − p1)(1 − p2)), k̄ = 1, 2, . . . , 2Q, j =

1, 2, . . . |C|, , and Pr(s
(b)

k̄
) =

∑k+Q

k̄=k−Q,k̄ 6=k
P (C k̄

j ), where the quantity C k̄
j denotes

the probability of the jth symbol in the logarithm domain at the k̄th subcarrier.

2. Solve argmin
s
(b)

k̄
∈Sk̄

Pr(s
(b)

k̄
), b = 1, 2, . . . , B using tree search algorithm in [93],

3. Output s
(b)

k̄
, b = 1, 2, . . . , B and the corresponding weight calculated in step 2.

The symbol vectors s
(b)

k̄
, b = 1, 2, . . . , B and the corresponding probability Pr(s

(b)

k̄
), b =

1, 2, . . . , B can be obtained by the above search. For TSG, the probability Pr(̂sk̄) is un-

known, so (5.17) cannot be derived. But the probability Pr(̂sk̄) can be assumed to be 1
B+1

as the assumption made in GSG, which is (Pr(s
(1)

k̄
) ≈ . . . ≈ Pr(s

(b)

k̄
) ≈ . . .Pr(s

(B)

k̄
) ≈

Pr(̂sk̄)). Hence, Pr(s
(b)

k̄
) = 1

B+1
Pr(s

(b)

k̄
) for TSG in (5.17). Thus, in this section, we

have obtained two different multi-feedback generation schemes, which can provide the

weighted feedback candidates generated by the a priori probability from the channel de-

coder.

5.5.3 Further discussion on generation mechanisms

From the above, the contribution of the second term in (5.16) will be reduced with the

increasing number of feedback candidates for both generation mechanisms, and they will
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Table 5.1: Proposed MBMF-SIC for 4QAM

Input: ỹk = yk, Hk, σ2
ñ, k = 0, 1, . . .Ns − 1

Output: L(sk(1)), L(sk(2)), k = 0, 1, . . .Ns − 1

1: If this is the initial iteration, go to step 2. Else go to step 9

2: For k = 0, 1, . . .Ns − 1

3: For k̄ = k −Q, . . . , k − 1, k + 1, . . . , k +Q inside the band

L(sk̄(1)) =
ℜ(hH

k̄
ỹk̄)

σ2
ṽ

, L(sk̄(2)) =
ℑ(hH

k̄
ỹk̄)

σ2
ṽ

,

End

4: Generate feedback symbols sb
k̄
, b = 1, 2, . . .B by GSG or TSG according to LLR

obtained in step 3, and soft feedback symbols ŝk̄ by (5.22).

5: Perform interference cancellation as (5.8) and (5.10) using sb
k̄
, b = 1, 2, . . .B and ŝk̄

to obtain ỹ
(b)
k and ỹk.

6: Calculate L(s
(b)
k (i)) and L(ŝk(i)) according to ỹ

(b)
k and ỹk respectively, i = 1, 2.

7: Calculate Pr(sk(1) = +1|y∗
k) and Pr(sk(2) = +1|y∗

k) as (5.16) and the corresponding

LLR for the cancellation in (5.8) and the channel decoder.

8: End

9: For k = 0, 1, . . .Ns − 1

10: For k̄ = k −Q, . . . , k − 1, k + 1, . . . , k +Q inside the band

Obtain L(sk̄(i)), i = 1, 2 from the channel decoder.

End

11: Generate feedback symbols sb
k̄
, b = 1, 2, . . .B by GSG or TSG according to LLR

obtained in step 10, and soft feedback symbols ŝk̄ by (5.22).

12: Perform interference cancellation as (5.8) and (5.10) using sb
k̄
, b = 1, 2, . . .B and ŝk̄

to obtain ỹ
(b)
k and ỹk.

13: Calculate L(s
(b)
k (i)) and L(ŝk(i)) according to ỹ

(b)
k and ỹk respectively, i = 1, 2.

14: Calculate Pr(sk(1) = +1|y∗
k) and Pr(sk(2) = +1|y∗

k) as (5.16) and the corresponding

LLR for the cancellation in (5.8) and the channel decoder.

15: End
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converge to the MAP algorithm. However, it requires a larger channel matrix and more

candidates as in [66]. The main difference between the Gibbs sampling based generation

and the tree search based generation is the terms Pr(s
(b)

k̄
) and Pr(̂sk̄) . For TSG, the

probability Pr(ỹ
(b)
k ) is calculated with the LLR fed back from the channel decoder. On

the other hand, each feedback in GSG is assumed to be equally probable. However,

they perform almost identically in BER performance with the same number of feedback

candidates. This is because TSG and GSG make use of the LLR from the channel decoder

in different forms. The complexity of these two methods is not very intensive. The

GSG employs one or multiple random number generators, which can be implemented

efficiently without any multiply operations as stated in [132]. For TSG, the multipliers

are also not required due to the use of logarithm domain computation. For example, the

number of real additions required for TSG is around 2QB|C| at most.

5.5.4 Reduced channel matrix for multi-feedback interference can-

cellation

Conventionally, the more interference is mitigated, the better SINR performance achieves.

However, the output SINR of matched filter with a reduced size Q = D channel matrix

may not suffer significant performance compared to that with a normal size Q = 2D

channel matrix . According to the statements in [140], the channel matrix in (5.3) can

also be reduced to (5.25) as shown in Fig. 5.2. The representation of the reduced channel

matrix is illustrated in the blue square. It can be found that the elements in the upper-

left corner and lower-right corner have been omitted. Hence, the normal size truncated

channel matrix with Q = 2D in (5.3) is replaced by the following reduced size channel

matrix:

Hk =




hdf (k −D, k −D) · · · hdf (k −D, k) · · · 0

0
. . .

...
. . .

...

· · · 0 hdf (k +D, k) · · · hdf (k +D, k +D)


 . (5.25)

To show the pre-processing SINR difference between the reduced size channel matrix

Q = D and the normal size channel matrix Q = 2D, the pre-processing SINR obtained
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by observing ỹ
(b)
k in (5.10) is

SINR
(b)
Q ≈

EsE{hH
k hk}∑k+Q

q=k−Q,q 6=k E{hH
k̄
hk̄}|sk̄ − s(b)k̄

|2P̄ (s(b)
k̄
) + E{ñH

k ñk}

≈ Ẽs∑k+Q

k̄=k−Q,k̄ 6=k
E{hH

k̄
hk̄}|sk̄ − s(b)k̄

|2P̄ (s(b)
k̄
) + E{ñH

k ñk}
,

(5.26)

where P̄ (s
(b)
q ) = Pr(sq 6= s

(b)
q ), and the quantity Es denotes the average transmit signal

power. Note that the exact symbol error probability P̄ (s
(b)
q ) in a coded system cannot be

easily obtained. The residual interference term inside the band is omitted for simplicity.

Because the first term in the denominator of (5.26) will be significantly suppressed at high

SNR by the MBMF-SIC. Hence, the entire ICI power σ2
c0 and ICI power σ2

cQ outside Q

central terms can be evaluated by an upper bound [140, 145] as

σ2
c0 ≈

Es

12
(2πTsaNs)

2(

L−1∑

l=0

σ2
l σ

2
Dl)−

Es

240
(2πTsaNs)

4(

L−1∑

l=0

σ2
l σ

4
Dl)

σ2
cQ ≈ σ2

c0(1−
6

π2

2D∑

q=1

1

q2
)

(5.27)

where σ2
l denotes the variance of the lth channel tap. σ2

Dl =
∫ fd
−fd

Pl(f)f
2df , and Pl(f) is

the Doppler power spectral density (PSD) of the lth path. σ2
Dl = f 2

d /2, and Ẽs = Es−σ2
c2D

denotes the transmit signal power inside the band with a normal channel matrix Q = 2D.

The quantity Tsa =
TOFDM

Ns
. For Q = 2D, equation (5.26) can be rewritten as

SINR
(b)
Q ≈

QẼs

E{ñH
k ñk}

(5.28)

Without the residual interference inside the band, the SINR for the bth feedback is mainly

determined by the noise plus the ICI outside the band. Furthermore, the power of the

signal Ẽs for Q = D will be identical to that for Q = 2D, because the power of the

signal is derived from the same channel coefficients hk in (5.25) for Q = D or in (5.3)

for Q = 2D. Similar to [140], SINR
(b)
2D > SINR

(b)
D if no pre-whitener is employed.

However, the post-processing SINR of the matched filter hH
k will partially contradict the

above discussion, which can be evaluated by

PSINR
(b)
Q ≈

Ẽ2
s/Es

tr(E{hkh
H
k }E{ckcHk }) + σ2

ṽ

(5.29)

where the vector ck = [ck−D,k ck−D+1,k . . . ck+D,k]
T denotes the residual ICI outside the

band for the kth subcarrier and ck = 1√
Es

∑
k̄ 6∈[k−Q,k+Q]Hk̄,ksk̄. The autocorrelation func-
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tion of the channel coefficients hk can be derived by [140]

E{hdf (d, k)h∗df(d+ r, k)} ≈ 4π2T 2
sa

(
Nh−1∑

l=0

σ2
l σ

2
Dl

)

· 1

(1− e−j2πd/Ns)(1− ej2π(d+r)/Ns)

(5.30)

where d ∈ [−D,D]. Note that there are singularity points when d = 0 or d = −r in

(5.30), and the autocorrelation function become unavailable. Let d = −d and r = −r to

avoid the singularity point when d = −r and d 6= 0. For d = 0, thanks to the Hermitian

symmetric property of the autocorrelation function, the value of the singularity point can

be obtained by setting r = 0 and d = r. For d = 0 and r = 0, E{hf (0, k)h∗f(0, k)} =
Es − σ2

c0

Es

. Additionally, the autocorrelation function of ICI can be obtained by [140]

E{ck+dc
∗
k+d+r} ≈ 4π2T 2

saαd,rγ(Q, r,Ns)

Nh−1∑

l=0

σ2
l σ

2
Dl (5.31)

where

γ(D, r,Ns) =
∑

m6∈[−D,D]
∪[−D−r,D−r]

1

(1− e−j2πm/Ns)(1− ej2π(m+r)/Ns)
. (5.32)

and

αd,r =




efdTsaNs/2(|d|+|r|) d 6= 0, r 6= 0

1 d = 0, r = 0
(5.33)

Further simplification of (5.32) can be found in [140]. Note that for Q = D the auto-

correlation of ICI in (5.32) is modified accordingly given the range of m. This is be-

cause the residual interference ck−D, . . . ck, . . . ck+D outside the band in (5.25) is given by

the different sets of m. The quantity αd,r in (5.33) will be used in this case, otherwise

αd,r = 1, ∀d, r. Hence, the autocorrelation matrix E{hkh
H
k } and E{ckcHk } can be com-

puted by (5.30) and (5.31), respectively. The analytical pre-processing SINR (SINR
(b)
Q )

and post-processing SINR after the matched filter (PSINRb
Q) can be calculated by (5.28)

and (5.29).

In the following, we present some simple numerical results and analytical results of

pre-processing SINR (SINR
(b)
Q ) and post-processing SINR (PSINR

(b)
Q ) in Fig. 5.3 , and

fdTOFDM = 0.65. We can observe that the post-processing SINR (PSINR
(b)
Q ), with the

same size Q, can be improved by the matched filter compared to pre-processing SINR

(SINR
(b)
Q ) at low SNR values. Furthermore, the post-processing SINR performance gap
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between Q = D = 1 and Q = 2D = 2 is small (around 1 dB at 12 dB SNR). We

can conjecture that the error probability of Pr(s
(b)
k 6= sk), with Q = D in (5.8), will not

be significantly degraded compared to that with Q = 2D. In other words, the multi-

feedback cancellation with Q = D requires less complexity than that with Q = 2D in the

cancellation stage, but achieves similar post-processing SINR performance.
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Figure 5.3: pre-processing and post-processing SINR comparison for the bth feedback

with different Q. Ns = 128, fdTOFDM = 0.65

5.6 SINR Ordering for MBMF-SIC

For conventional sequential ICI cancellation for OFDM systems, the cancella-

tion performs subcarrier by subcarrier, because the previous soft symbol estimates

[ŝk−2D, . . . , ŝk−1] inside the band are needed in the cancellation for the desired subcar-

rier sk. In this case, there is no significant benefit from the ordering, due to absence of

previous soft symbol estimates. With the iterative ICI cancellation and the channel de-

coder, the soft symbol estimates [ŝk−2D, . . . , ŝk−1] are known beyond the initial iteration,
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so any ordering can be performed. However, its performance improvement by ordering is

very small. On the other hand, the sequential ICI cancellation will introduce the aggre-

gation of residual interference. For MBMF-SIC, the interference is reconstructed by the

multi-feedback symbols vectors [sbk−2D, . . . , s
b
k−1], b = 1, 2, . . . , B, so the aggregation of

residual interference from previous soft symbols can be significantly removed. Further-

more, we assume that the conditional probability of y
(b)
k given s

(b)

k̄
and ỹk given ŝk̄ are

conditionally independent in (5.13). It will be true if the residual interference inside the

band in (5.8) and (5.10) dominates. This assumption may be more reasonable by the

ordering, which can reduce the coupling effects brought by the previous soft symbol es-

timates. Following (5.8) and (5.29), the SINR of the kth subcarrier for ordering can be

evaluated as similar to the SINR ordering discussed in Subsection 2.6.4

νk ≈
(|hH

k hk|)2Es

Estr(E{hkh
H
k }E{ckcHk }) + σ2

ṽ + tr(
∑k+Q

k̄=k−Q,q 6=k
hk̄υkh

H
k̄
)
, (5.34)

where υk = E{(sq − ŝq)(sq − ŝq)∗}. In the remaining steps, the quantity νk can be sorted

for k = 1, . . . , Ns, and the detection ordering can be implemented accordingly. Other

ordering methods can also be employed on the basis of error probability or LLRs, the

calculation of which will introduce the channel matrix inversion, with complexity at least

O((2D+1)2). Hence, the complexity of LLR ordering in [146] will be more complicated

than that of SINR ordering.

5.7 Multi-Segmental Channel Estimation

In this section, we discuss MSCE to estimate time-varying channels, and discuss the pilot

symbol selection in each iteration. Additionally, the MSCE can be terminated in an early

iteration by comparing with previous estimates.

5.7.1 Least-squares based MSCE

For MSCE, we split the received signal r(n), n = 0, 1, . . . , Ns − 1 into T seg-

ments as in (2.109), and each segment has M = Ns/T samples. By defining

yt = [yt(0), . . . , yt(Ns − 1)]T , hdf (t) = [hdf (t, 0), . . . , hdf (t, Ns − 1)]T , htl(t) =
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[htl(t, 0), . . . , htl(t, l), . . . , htl(t, L − 1)]T , and the term δk(t) in (2.110) is reorganized

in a matrix form as

∆t =




δ0(t) . . . δNs−1(t)
...

. . .
...

δ1−Ns(t) . . . δ0(t)


 , (5.35)

equation (2.111) for the tth segment can be rewritten in the following form:

yt =
√
Ns∆tdiag(s)FL︸ ︷︷ ︸

A

htl(t), (5.36)

where hdf (t) =
√
NsFLhtl(t). Using LS estimation in the time domain [78], the channel

estimates in the tth segment can be obtained by

ĥtl(t) = (AHA)−1AHyt. (5.37)

Note that there are Np pilot symbols already known to the receiver, and the 0s can be

set for the unreliable symbol estimates of ŝ in each iteration, the reliability of which can

be evaluated by LLRs from the channel decoder. In the following steps, we introduce

the piece-wise linear model to approximate the channel impulse responses for the time-

varying channels between the tth segment and (t + 1)th segment as in [147]. Hence, the

channel estimates ĥtl(n) = [ĥtl(n, 0), . . . , ĥtl(n, l), . . . , ĥtl(n, L− 1)]T for different time

indices can be obtained, and the corresponding channel frequency response ĥdf (d, k) in

(5.3) can be obtained. The matrix ∆t can be pre-computed, once the number of segments

T is determined. In addition, the differences of channel estimates between the (p − 1)th

and pth iteration can be measured, which can help us to terminate the MSCE at an earlier

iteration.

5.7.2 MSE lower bound analysis

In this subsection, we derive an overall MSE lower bound as a benchmark for the MSCE

discussed above. As can be seen from above, the MSCE exploits the linear interpolation to

approximate the channels between segments, that is, an approximation errors in the chan-

nel estimates rather the noise itself. Firstly, the channel estimates after the interpolation

can be rewritten in another form as

h̃tl = Φĉ (5.38)
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where

h̃tl = [h̃T
tl(0), . . . , h̃

T
tl(l), . . . , h̃

T
tl(L− 1)]T ∈ C

NsL×1,

h̃tl(l) = [h̃tl(0), . . . , h̃tl(n), . . . , h̃tl(Ns − 1)]T ∈ C
Ns×1,

ĉ = [ĥT
tl(0), . . . , ĥ

T
tl(l), . . . , ĥ

T
tl(L− 1)] ∈ C

TL×1

ĥtl(l) = [ĥtl(0, l), . . . , ĥtl(t, l), . . . , ĥtl(T − 1, l)]T ,

(5.39)

and

Φ = IL ⊗Ψ,

Ψ = [ψ(0), . . . ,ψ(n), . . . ,ψ(Ns − 1)]T ∈ R
Ns×T

ψ(n) = [ψ(n, 0), . . . , ψ(n, q), . . . , ψ(n, T − 1)]T

(5.40)

where ψ(n, q) denotes the interpolation coefficients. Defining the noise term and the

residual interference term in as zt, equation (5.36) can be rewritten in a compact matrix

form:

y =




Λ0

. . .

ΛT−1




︸ ︷︷ ︸
Θ∈TNs×TNs




FH

. . .

FH




︸ ︷︷ ︸
F′∈TNs×TNs




diag(s)
...

diag(s)




︸ ︷︷ ︸
S∈TNs×Ns

ΓΦc +




z0
...

zT−1




︸ ︷︷ ︸
z∈TNs×1

(5.41)

where

F = [Λ0, . . . ,Λt, . . . ,ΛT−1] ∈ C
Ns×Ns

y = [yT
0 , . . . ,y

T
t , . . . ,y

T
T−1]

T ∈ C
TNs×1

Γ = [γT
0 , . . . ,γ

T
k , . . . ,γ

T
Ns−1] ∈ C

Ns×NsL

(5.42)

and

Λt ∈ C
Ns×M ,

γk = [0, . . . ,︸ ︷︷ ︸
k+1

e−j 2π
Ns

k·0, 0 . . .︸︷︷︸
lNs

, e−j 2π
Ns

kl, 0 . . .︸︷︷︸
(L−l)Ns

, e−j 2π
Ns

k(L−1), 0 . . .︸︷︷︸
Ns−k+1

]T ∈ C
LNs×1,

(5.43)

Hence, equation (5.41) can be represented as

y = ΘF′SΓΦ︸ ︷︷ ︸
B

c+ z, (5.44)

where the matrix Θ denotes the partial FFT, and the matrix F′ denotes the normal IFFT.

The channel estimates ĉ = ĥtl can be obtained by LS estimation accordingly. The overall

MSE is based on the approximation errors of linear interpolation and the estimation error

of ĉ, namely MSEappx and MSEest, respecitvely. According to the derivation of [148], the

overall MSE can be expressed as

MSEoverall = MSEappx + MSEest. (5.45)
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where

MSEappx =
1

NsL
tr{(INs −ΨΨH)R}

MSEest =
1

NsL
tr{E((c− ĉ)(c− ĉ)H)}

(5.46)

Note that the unity power of the multipath channel is assumed, and the matrix R repre-

sents the autocorrelation matrix, which is defined in (2.27). The autocorrelation matrix of

E((c− ĉ)(c− ĉ)H) can be given by

E((c− ĉ)(c− ĉ)H) = E(zzH)E(BBH) (5.47)

where the cross-correlation function of noise is E{zt(d1)zt(d2)} =
σ2
v

T
e−j

π(d1−d2)(2t−1)
T sinc(π(d1−d2)

2T
), and the notation sinc denotes the sinc function.

Because we assume all data and pilot symbols for transmission are known to the channel

estimator in the later iterations, so the matix B can be calulated and E(BBH) accordingly.

The overall MSE lower bound can be given by

MSEoverall =
1

NsL
tr{(INs −ΨΨH)R+

1

NsL
tr{E(zzH)E(BBH)} (5.48)

Note that the prior assumption that channels are constant within the segment is not used

in the MSE analysis, so the overall MSE is a lower bound for MSCE.

5.8 Complexity Requirements of MBMF-SIC and MSCE

The complexity of the MBMF-SIC discussed in this chapter is determined by the param-

eters: the number of multi-feedback candidates B, the reduced size truncated channel

matrix Q = D, the number of subcarriers Ns, and the number of iterations for the can-

cellation P . Following the algorithm table in Table 5.1 with 4QAM, the computation of

the algorithm for the initial iteration is slightly different from that for the later iterations.

But the computational complexity of the initial iteration is almost identical to that of the

later iterations. The computational complexity comes from two aspects: (1) the multi-

feedback generation; (2) the multi-feedback cancellation. The computation of feedback

symbols generation for k = 0, 1, . . . , Ns − 1 in step 11 requires a maximum of 8NsBD

complex additions (CAs) for GSG and TSG, and the computation of the cancellation in

step 12 and 13 for k = 0, 1, . . . , Ns − 1 requires NsB(8D2 + 6D + 1) complex multi-

plications (CMs) and NsB(8D2 + 6D + 2) CAs. In step 14, the computation of average
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probability of Pr(sk(i) = +1|y∗
k), i = 1, 2 and k = 0, 1, . . . , Ns−1 and the corresponding

LLR leads to NsB CAs. Hence, the total number of complex operations for one iteration

required by the MFMB-SIC isNs(16BD
2+20BD+4B), and the SINR ordering requires

a total ofO(Ns logNs)+Ns complex operations [66]. The complexity comparison of ICI

cancellation techniques has been made in Table 5.2. The complexity of MBMF-SIC and

MF-PIC is moderate compared to MF-SIC, and much lower than that of conventional

MMSE-SIC and banded MMSE-SIC.

Furthermore, the MSCE requires a maximum of O(TL2) + O(2NsL) complex op-

erations for each OFDM symbol in the pth iteration. This is because the size of ma-

trix inversion used in (5.37) is only related to the number of the channel paths L. The

complexity comparison between different channel estimation techniques for rapidly time-

varying channel is presented in Table 5.3. Note that pilot assisted-LS denotes the pilot

assisted LS channel estimation, which uses the discrete Karhuen-Loève-basis expansion

model (BEM) to approximate the time-varying channels with the limited number of ex-

pansion coefficients [149]. The number of expansion coefficients is lower bounded by

2⌈fdTOFDM⌉ + 1 = 2D − 1 as described in [148]. The significant advantage of MSCE

over the method in [149] is the use of linear interpolation to approximate the channels

between two segments in the OFDM symbol. Hence, the MSCE can be considered as

a special representation of BEM with 2 expansion coefficients. Compared to SBCE, the

complexity of MSCE is a bit higher. Because the matrix inversion with the size L is

required to estimate the channels in the mid-point of each segment.

Algorithm Complex Operations

MMSE-SIC [150] O(N3
s ) +O(4N2

sD
2) +O(N2

s )

banded MMSE-SIC [56] Ns(
64
3
D3 + 80D2 + 104

3
D + 4)

MF-SIC [62] Ns(32D
2 + 16D + 3)

MF-PIC [138] Ns(32D
2 + 22D + 1)

MBMF-SIC Ns(16BD
2 + 20BD + 4B)

MBMF-SIC+SINR ordering Ns(16BD
2 + 20BD + 4B) +O(Ns logNs) +Ns

Table 5.2: Complexity comparison between different interference cancellation techniques

for the pth iteration
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Algorithm Complex Operations

SBCE [62] O(N2
s ) +O(2NsL)

PA-LS [149] O((2D2 − 1)L3) +O((4DNs − 2)L2)

MSCE O(TL3) +O(2NsL)

Table 5.3: Complexity comparison between different channel estimation techniques for

the pth iteration

5.9 Simulation Results

In this section, the performance of the proposed methods (MF-PIC and MBMF-SIC) will

be evaluated by BER in different scenarios. We assume a scenario with the following

settings: the carrier frequency fc = 650MHz, the subcarrier spacing ∆f = 976.5Hz,

and the OFDM symbol period is TOFDM = 1/∆f ≈ 1ms. The number of subcarriers

is Ns = 128. The symbols are modulated by 4QAM, the extension of which to other

modulation schemes is straightforward. In addition, a 1/2 rate convolutional code with

generator polynomial (7, 5) is employed for the iterative interference cancellation, and the

length of the code is 2560 bits. A wide-sense stationary uncorrelated scattering channel

with a uniform power delay profile is simulated according to the Jakes model and the

normalized Doppler frequency fdTOFDM = 0.65. The maximum delay of the channel is

L = 8. In our setting, the normalized Doppler frequency corresponds to a speed of the

transmitter relative to the receiver of 1000 km/h. Because of the band assumption, we

assume D = ⌈fdTOFDM⌉ + 1 as described in [56, 57] given the time-domain window. For

MSCE, the number of segments (T = 2) is used, and the number of pilots Np = Ns/4.

We also define an approximate matched filter bound (AMFB) as a benchmark for ICI

cancellation, which implies that the ICI inside the band (Q = 2D) is perfectly removed.

In Fig. 5.4, the BER performance of GSG based MBMF-SIC (GMBMF-SIC) and TSG

based MBMF-SIC (TMBMF-SIC) with SINR ordering are quite close to the benchmark

AMFB [137] with a fraction of one dB loss, and significantly remove the error floor com-

pared to banded MMSE-SIC [56], MF-SIC [62] and MBMF-SIC without SINR ordering.

It can be explained that the SINR ordering improves the reliability of detected symbols,

and make the assumption for (5.12) more appropriate. For fair comparison, the SINR or-
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dering is incorporated in other schemes in Subsection 5.6 in the later iterations except the

1st iteration. This is because serial ICI cancellation requires previous symbol estimates

to improve the reliability of the remaining symbols. But the ordering for MBMF-SIC

can be employed in the initial iteration due to the use of LLR to generate multi-feedback

candidates in the step 3 and 4 of Table 5.1 . We can also observe that the BER perfor-

mance between GMBMF-SIC and TMBMF-SIC is negligible, but TSG performs better

than GSG. It also agrees with the statements in [132] that the tree search algorithm works

better than the Gibbs sampler at high SNR. For simplicity, we only consider GMBMF-SIC

and TMBMF-SIC with SINR ordering in the rest of the chapter, which will be referred to

as OGMBMF-SIC and OTMBMF-SIC. Furthermore, the curves of OTMBMF-SIC may

not be shown in some following figures, because there is almost no differences between

OGMBMF-SIC and OTMBMF-SIC in the BER performance.
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Figure 5.4: BER performance against SNR (dB) of MF-PIC, GMBMF-SIC, OGMBMF-

SIC, TMBMF-SIC, OTMBMF-SIC ,MF-SIC, banded MMSE-SIC, and AMFB in the 4th

iteration with fdTOFDM = 0.65

In Fig. 5.5, the BER performance against the number of iterations of MF-PIC,

GMBMF-SIC, OGMBMF-SIC and other soft ICI cancellation techniques (MF-SIC,
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banded MMSE-SIC, AMFB) with 4QAM is shown. For MBMF-SIC, we can observe

that its performance is closer to the banded MMSE-SIC in the 1st iteration at SNR= 12

dB than other matched filter based techniques, and it outperforms them significantly in

the 4th iteration with (B = 5) multi-feedback (Qb = D) and soft feedback (Q = 2D).

Unlike the BER performance of GMBMF-SIC and OGMBMF-SIC, the performance of

MF-PIC is not promising in the 1st iteration, but it works almost identically to the banded

MMSE-SIC in the 4th iteration.
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Figure 5.5: BER performance against the number of iterations of of MF-PIC, GMBMF-

SIC, OGMBMF-SIC, MF-SIC, banded MMSE-SIC, and AMFB with fdTOFDM = 0.65 at

SNR= 12 dB

The BER performance of the 1st iteration and the 4th iteration against normalized

Doppler frequencies fdTOFDM from 0.25 to 0.65 has been illustrated in Figs. 5.6 and 5.7,

which validates the statements that the proposed OGMBMF-SIC and OTMBMF-SIC can

work in a wide range of high Doppler frequencies fdTOFDM. Fig. 5.6 shows that the

BER performance in the 1st iteration of MF-SIC and MF-PIC is much poorer than that

of banded MMSE-SIC at low normalized Doppler frequencies fdTOFDM from 0.25 to 0.35

except OGMBMF-SIC and OTMBMF-SIC, and the BER performance of OGMBMF-SIC

and OTMBMF-SIC degrade slowly with an increasing normalized Doppler frequencies.
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In Fig. 5.7, we can observe that the gain of BER performance obtained by OGMBMF-

SIC and OTMBMF-SIC is not very significant in the 4th iteration at different normalized

Doppler frequencies, because the power of ICI inside the band reduces. Hence, the MF-

SIC and MF-PIC can be used in the low Doppler frequencies, and the determination

of B can be adapted according to fdTOFDM to obtain a more attractive tradeoff between

performance and complexity.
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Figure 5.6: BER performance against fdTOFDM of MF-PIC, OGMBMF-SIC, OTMBMF-

SIC, MF-SIC, and banded MMSE-SIC in the 1st iteration at SNR = 12 dB

Fig. 5.8 compares the BER performance against SNR (dB) with a normalized Doppler

frequencies fdTOFDM = 0.65 in the 4th iterations. The MSCE is iteratively performed

in every iteration, once the new symbol estimates become available from the channel

decoder. The BER performance of these receivers in the 1st iteration is very poor with

fdTOFDM = 0.65, which may not be useful for comparison. Matched filter based re-

ceivers (MF-SIC, OGMBMF-SIC) are less sensitive to channel estimation errors, because

they do not make use of channel coefficients as much as banded MMSE-SIC. For banded

MMSE-SIC, the autocorrelation matrix must be used, which may amplify the channel

estimation errors. In Fig. 5.4, the banded MMSE-SIC outperforms MF-SIC with perfect
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Figure 5.7: BER performance against fdTOFDM of MF-PIC, OGMBMF-SIC, OTMBMF-

SIC, MF-SIC, and banded MMSE-SIC in the 4th iteration at SNR= 12 dB
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channel knowledge in the BER performance. However, their performance at SNR= 20

dB has been degraded to the same level of BER (less than 1 dB performance loss) in the

4th iteration with MSCE. MF-PIC is not very close to banded MMSE-SIC with channel

estimation, because the autocorrelation matrix is also required for MF-PIC for ICI can-

cellation. Intuitively, the proposed OGMBMF-SIC has the same advantages as MF-SIC.

With MSCE, OGMBMF-SIC can still achieve an acceptable BER performance in such a

high mobility scenario (fdTOFDM = 0.65), which makes OGMBMF-SIC more practical.
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Figure 5.8: BER performance against SNR (dB) of MF-PIC, GMBMF-SIC, OGMBMF-

SIC, MF-SIC, banded MMSE-SIC, and AMFB using MSCE in the 4th iteration with

fdTOFDM = 0.65

To show the robustness to the high normalized Doppler frequencies, we compared

the SBCE, PA-LS and MSCE in terms of BER performance in the 4th iteration. In Fig

5.9, the MF-PIC and OGMBMF-SIC with SBCE cannot work at the normalized Doppler

frequencies over 0.4. Additionally, the curves of MSCE is almost identical to that of PA-

LS, only slightly poorer at high normalized Doppler frequencies, which implies that the

MSCE performed in an iterative manner with the aid of data symbols can approach the

performance of PA-LS, which uses the DKL-BEM to approximate the channels with 5
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expansion coefficients.
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Figure 5.9: BER performance against fdTOFDM of OGMBMF-SIC and MF-PIC using

MSCE and SBCE in the 4th iteration at SNR= 16 dB

To determine an appropriate number of multi-feedback candidates (B) of MBMF-SIC

for a given normalized Doppler frequency, the BER performance against the number of

feedback elements has been plotted in Fig. 5.10 for OGMBMF-SIC and OTMBMF-SIC.

The BER performance improves with an increasing number of feedback elements. We

also observed that both of them reach the optimum BER performance around B = 7 in

the 4th iteration, which implies that both generation mechanisms can be considered as

equivalent, if more iterations are performed by the receivers. Unlike the BER perfor-

mance of OTMBMF-SIC, the BER performance of OGMBMF-SIC is poorer than that of

OTMBMF-SIC in the first several iterations. This is because the feedback of OGMBMF-

SIC is randomly generated given the a priori probability from the output of the channel

decoder, and we assume each of them has equal probability, which may introduce insta-

bility into the LLR calculation with the increasing number of feedback elements. For

OTMBMF-SIC, each feedback candidate has been weighted given the probability, so the

feedback elements with low probability will not have a significant influence on the BER

performance. In other words, it only takes the most significant feedback candidates into
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account. Furthermore, MBMF-SIC is not equivalent to the MAP algorithm, and employs

the reduced channel matrix in the multi-feedback cancellation. Thus a large B does not

significantly improve the BER performance as compared to a small B.
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Figure 5.10: BER performance against the number of multi-feedback candidates B with

fdTOFDM = 0.65 at SNR= 12 dB

5.10 Summary

In this chapter, we have presented two low-complexity iterative receivers for coded

OFDM systems. One is matched filter based parallel interference cancellation (MF-

PIC), and the other is multi-feedback matched filter based sequential ICI cancellation

(MBMF-SIC). For OFDM systems over the rapidly time-varying channel, the MF-PIC

can be performed with low computational complexity, and achieve a satisfactory perfor-

mance at the low normalized Doppler frequencies. The MBMF-SIC approximates the

residual interference inside the band by multi-feedback candidates, and evaluate their

log-likelihood function separately. It can be considered as an approximate MAP algo-
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rithm and makes better use of a priori information from the channel decoder compared to

the conventional soft ICI cancellation. Furthermore, two simple generation mechanisms

for multi-feedback candidates have been investigated. The use of the reduced channel

matrix for multi-feedback cancellation will not degrade the post-processing SINR signif-

icantly. Hence, the complexity of multi-feedback generation is further reduced compared

to the use of the normal channel matrix. It can be found that the MBMF-SIC with SINR

ordering can significantly remove the error floor induced by ICI inside the band. The sim-

ulation results demonstrate that the proposed MF-PIC can achieve a similar performance

to banded MMSE-SIC and MF-SIC at low normalized Doppler frequencies, and the pro-

posed MBMF-SIC outperforms other existing soft ICI cancellation techniques at the ex-

pense of a moderate complexity increase. With the use of MSCE, MBMF-SIC can still

achieve an acceptable BER performance at high normalized Doppler frequencies. Thus

MBMF-SIC provides an attractive tradeoff between the performance and complexity.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In the thesis, several channel estimation and detection techniques have been presented as

follows:

1. For MIMO-OFDM system over the quasi-static channel, MIMO-OFDM can be

considered as multiple parallel MIMO systems due to the diagonal channel matrix,

the channels of which are highly correlated if the frequency selectivity is not very

severe. In order to make better use of frequency selectivity, we have proposed

dynamic pilot allocation (DPA) for MIMO-OFDM systems in Chapter 3. Firstly, the

DPA algorithms, incorporating linear and SIC receivers, have been derived based

on the SINR in the presence of channel estimation errors. The DPA algorithms

allocate the pilots with the aid of SER estimates of different pilot patterns obtained

by the SINR. Secondly, the instantaneous SER estimates of ML receivers cannot be

easily obtained using the SINR. Hence, the SER estimates are approximated by the

union bound instead. Using the union bound, the pilots can be assigned as similar

to that of linear and SIC receivers. Thirdly, the stack vector quantization has also

been discussed to reduce the overhead of the feedback link. The proposed DPA

algorithms can also be used in an imperfect feedback link with delays and errors.

Finally, the simulation results illustrate that the proposed DPA can significantly
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improve the BER performance at the expense of MSE performance degradation.

Furthermore, the pilot patterns generated by the DPA provide a higher diversity

than the uniform pilot patterns.

2. In Chapter 4, two sphere decoding algorithms have been presented for MIMO de-

tection and bound estimation. The basic principles of these two sphere decoding

algorithms are very similar. To build a tree structure, the algorithms search across

the tree and find the minimum Euclidean distance. The only difference between

them is the system models. For MIMO detection, the complex-valued model is

used. This is because the number of detection layers is only half of the real-valued

system model. In the bound estimation method, we consider the real-valued model

for the use of real-valued symmetric properties of the corresponding symbol vec-

tors.

The proposed complex-valued sphere decoder for MIMO detection is an approxi-

mate detection method for MIMO systems. It incorporates the complex enumera-

tion scheme namely computation of coordinate bound, which leads to the reduced

number of candidates for each detection layer, because the constellation points out-

side the bound have been eliminated. In order to save the computational effort of

computing coordinate bound, a successive interference cancellation is performed

before the computation of coordinate bound. Thus the candidate corresponding to

the minimum Euclidean distance for the current detection layer can be obtained. If

the distance is smaller than the sphere radius derived by the probabilistic tree prun-

ing, the algorithm will search down the branch. Otherwise, the search will return

to the upper layer to access another branch. For iterative detection and decoding,

we proposed a scatter list generation based on the proposed complex-valued sphere

decoder. Hence, the list can be obtained with lower complexity compared to the

conventional list generation. The idea of scatter list generation is to split the tree

into different sub-trees with the aid of the ML solution obtained by the proposed

complex-valued sphere decoder, so the search complexity of each sub-tree is very

low. Furthermore, the ML solution can also be exploited for the branch ordering,

namely ML based ordering, which inserts the symbols obtained by the ML solution

in the lower detection layers. Hence, the full path metric can be derived accordingly

for these remaining branches rather than the partial path metric, and these remain-

ing branches can be ordered according to these full path metric. Therefore, the
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search can first access these branches with smaller full path metric. The simulation

results show that the proposed complex-valued sphere decoder and list sphere de-

coder can reduce the complexity with negligible BER performance loss compared

to ML receivers and the conventional LSD.

A low complexity instantaneous bound estimation is proposed to obtain the union

bound of ML receivers. The union bound is approximated by the minimum Eu-

clidean distance of the receive constellation. Hence, the search can be performed

similarly to the sphere decoder. We derive the initial radius for the search based on

the channel statistics, and then extend the SE enumeration to the search strategy to

bound the constellation points as discussed in the complex-valued sphere decoder.

With the use of symmetric properties of constellation points, the number of con-

stellation points accessed by the search is further reduced. The simulation results

demonstrate that the proposed bound estimation technique can precisely find the

minimum Euclidean distance, and the union bound obtained by the minimum Eu-

clidean distance is very close to the SER performance for ML receivers obtained by

simulation.

3. In Chapter 5, We have proposed two low complexity iterative ICI cancellation al-

gorithms (MF-PIC and MBMF-SIC) for coded OFDM systems. The MF-PIC uses

the output of matched filter, and then mitigates the ICI inside the band in a parallel

form. The MBMF-SIC employs multi-feedback candidates to remove the residual

interference inside the band in a serial form. The multi-feedback candidates can be

generated based on Gibbs sampler or tree search algorithm with negligible complex-

ity. Furthermore, the size of channel matrix used in the multi-feedback cancellation

can be reduced with an acceptable post-processing SINR performance loss. In other

words, the size of multi-feedback candidates does not affect the BER performance

significantly. Additionally, we also propose multi-segmental channel estimation

(MSCE) technique to estimate the time-varying channel several times rather than

once in one OFDM symbol period. One can interpolate the time-varying channels

with the channel estimates obtained by MSCE. Hence, the interpolated channels

are estimated more accurate than that with single burst channel estimator, which

estimates the time-varying channel once. The simulation results demonstrate that

the BER performance of MF-PIC is close to that of the banded MMSE-SIC at the

low normalized Doppler frequencies, and outperform the MF-SIC. On the other
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hand, the MBMF-SIC can approach the BER performance of AMFB in a wide

range of normalized Doppler frequencies. With the use of MSCE, the operational

normalized Doppler frequencies can be extended compared to that with the single

burst channel estimation. Furthermore, the proposed MBMF-SIC is less sensitive to

the channel estimation errors, because no autocorrelation matrix calculation is re-

quired. Hence, the proposed MF-PIC is a good candidate to work at low normalized

Doppler frequencies, and the MBMF-SIC provides excellent BER performance and

manageable complexity for coded OFDM systems over rapidly time-varying chan-

nels.

6.2 Future Work

Some suggestions for future work based on this thesis are given below:

1. We have investigated dynamic pilot allocation for MIMO-OFDM systems with a

small number of subcarriers. However, the complexity of searching the optimum

pilot pattern for the large number of subcarriers is still very high. A lower complex-

ity method is also required for WiMAX, LTE and LTE-A, which have hundreds

of subcarriers in OFDM systems. Besides, the multi-user MIMO-OFDM systems

have not been taken into account. This is because the channel estimation is more

complicated. It is worth to study further on dynamic pilot allocation with other

channel estimation techniques.

2. The enumeration schemes for complex sphere decoder are too complicate for the

MIMO systems with a large number of transmit and receive antennas. It is useful

to investigate enumeration schemes in complex plane and reduce the number of

candidates found by the scheme at low SNR. Like the complex sphere decoder, the

bound estimation for large MIMO systems is still a problem, which can be sorted

out by reducing the search complexity as the sphere decoders do. However, it is

valuable to avoid the search like the sphere decoders for large MIMO systems, and

find the bound by a simple calculation.

3. Multi-segmental channel estimator estimates the time-varying channels twice,
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which is sufficient for the simulation settings we use. However, it may not be suffi-

cient for systems working at higher normalized Doppler frequencies. If the number

of segments obtained by splitting the OFDM symbol is increasing, the noise will

be enhanced for the channel estimation due to the less signal power left for each

segment. It is useful to justify the maximum number of segments in one OFDM

symbol. Additionally, the MF-PIC and the MBMF-SIC can be extended to MIMO-

OFDM systems over rapidly time-varying channels. But the banded channel matrix

for MIMO-OFDM may not exist. It is important to justify the multi-feedback can-

cellation with more interference from other transmit antennas or other users.
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Glossary

AC Additional Conditions

AMFB Approximate Matched Filter Bound

AWGN Additional White Gaussian Noise

BEM Basis-Expansion-Model

BER Bit-Error-Rate

BFS Breadth-First Search

BLAST Bell LAb Space Time

BPSK Binary Phase Shift Keying

CAs Complex Additions

CCB Computation of Coordinate Bound

CDF Cumulative Distribution Function

CDMA Code Division Multiple Access

CSI Channel State Information

CMs Complex Multiplications

CP Cyclic Prefix

CSD Complex Sphere Decoder

dB Decibel

DF Decision Feedback

DF Depth-First Search

DFE Decision Feedback Equalizer

DFT Discrete Fourier Transform

DKL Discrete Karhuen-Loève

DPA Dynamic Pilot Allocation

DVB Digital Video Broadcasting

EXIT EXtrinsic Information Transfer

FFT Fast Fourier Transform

FLOPS FLoating point OperationS

FPM Full Path Metric

GSG Gibbs Sampling Generation

Hz Hertz
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IAI Inter Antenna Interference

ICI Inter-Carrier Interference

IDD Iterative Detection and Decoding

IFFT Inverse Fast Fourier Transform

ISI Inter-Symbol Interference

KBFS K Best First Search

LBA Lower Bound Approximation

LLR Log-Likelihood Ratio

LS Least Squares

LSD List Sphere Decoder

LTE Long Term Evolution

MAP Maximum A Posteriori probability

MBMF Multi-feedBack Matched Filter

MED Minimum Euclidean Distance

MF Matched Filter

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MIPS MIMO Iterative Pilot Search

ML Maximum Likelihood

MPTP Modified Probabilistic Tree Pruning

MSCE Multi-Segmental Channel Estimation

MMSE Minimum Mean Square Error

MSE Mean Square Error

NC Nulling Cancelling

NP Non-deterministic Polynomial-time

NSC Non-Systematic Convolutional

OFDM Orthogonal Frequency Division Multiplexing

OSIC Ordered SIC

PA Pilot Assisted

PACE Pilot-symbol-Aided Channel Estimation

PDF Probability Density Function

PFFT Partial Fast Fourier Transform

PIC Parallel Interference Cancellation
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PPM Partial Path Metric

PSK Phase-Shift Keying

P/S Parallel to Serial

QAM Quadrature Amplitude Modulation

RMSE Root Mean Square Error

S/P Serial to Parallel

SBCE Single Burst Channel Estimation

SER Symbol Error Rate

SC Soft Cancellation

SD Sphere Decoder

SE Schnorr and Euchner

SIC Successive Interference Cancellation

SINR Signal to Interference plus Noise Ratio

SIR Signal to Interference Ratio

SISO Soft-Input Soft-Output

SISO Single-Input Single-Output

SNR Signal to Noise Ratio

SPS Statistical Pruning Strategy

SQRD Sorted QR Decomposition

STBC Space-Time Block Code

SFBC Space-Frequency Block Code

STC Space-Time Coding

SVD Singular Value Decomposition

SVQ Stacked Vector Quantization

TSG Tree Search Generation

UPA Uniform Pilot Allocation

USVQ Unstacked Vector Quantization

WiMAX Worldwide interoperability for Microwave Access

ZF Zero Forcing
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