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V. Rate distortion theory

• In this chapter, we study rate distortion theory and how to control the
level of distortion or loss of information in encoding strategies.

• Typical situations that benefit from rate-distortion theory include
those with constraints that force source coding to be lossy.

• For example, a communication channel might impose constraints on the
transmission rate, which requires compression beyond the entropy rate.

• For speech and audio signals, we often require quantization to obtain a
representation in codewords with sufficiently short codeword lengths.



• In general, we have to deal with rate requirements that inevitably lead to
lossy compression, which requires control of the level of distortion.

• In particular, we focus on source coding with a fidelity criterion and
situations in which we must perform lossy signal compression.

• We consider a mathematical model of a source coding system and explore
how it can benefit from lossy compression.

• We introduce the rate distortion function and develop an approach to
computing the rate using constrained optimization of mutual information.



The applications that we are interested include:

a) Source coding:

o Lossy compression using quantization

o Source codes that do not represent completely the source

b) Data transmission at a rate greater than the channel capacity, that is, 
when 𝑅 > 𝐶



A. Mathematical model

• Let us consider a DMS defined by an M-ary alphabet and the random 
variable 𝑥 = 𝑋𝑖| 𝑖 = 1,2, … ,𝑀 that produces symbols 𝑋𝑖 .

• This alphabet is assumed to produce symbols 𝑠𝑖 that are statistically
independent with probabilities 𝑝𝑖 , 𝑖 = 1,2, … ,𝑀.

• The source symbols 𝑥 are inputs to an encoder that produces 𝑦 = ൛𝑌𝑗 | 𝑗 =
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• The average code rate is described by

𝑅 bits /codeword

• At the output of the encoder, the codewords could also be represented 
by an N-ary alphabet through the random variable 𝑦 = 𝑌𝑗 | 𝑗 = 1,2, … , 𝑁 .

• By the source coding theorem, we have

o Lossless coding: 𝑅 ≥ 𝐻 𝑥 → perfect representation of the source

o Lossy coding: 𝑅 < 𝐻 𝑥 → loss of information



B. Rate distortion function

• Consider the joint pdf 𝑝𝑥𝑦(𝑋𝑖 , 𝑌𝑗) that describes the occurrence of symbol
𝑋𝑖 at the input of the channel and its output representation 𝑌𝑗 related by

𝑝𝑥𝑦 𝑋𝑖 , 𝑌𝑗 = 𝑝𝑦|𝑥 𝑌𝑗 𝑋𝑖 𝑝𝑥 𝑋𝑖 ,

where 𝑝𝑦|𝑥 𝑌𝑗 𝑋𝑖 is the conditional probability density function (pdf) of the 
encoder.

• The distortion measure associated to the representation of 𝑥 = 𝑋𝑖 by
y = 𝑌𝑗 is given by

𝑑 𝑥, 𝑦 = 𝑑 𝑋𝑖 , 𝑌𝑗 ,

where 𝑑 𝑋𝑖 , 𝑌𝑗 is also referred to as the distortion measure of a single 
symbol.



• Examples of distortion measures include

o Hamming distortion:

𝑑 𝑋𝑖 , 𝑌𝑗 = ൝
0, 𝑋𝑖 = 𝑌𝑗
1, 𝑋𝑖 ≠ 𝑌𝑗

o Squared error distortion:

𝑑 𝑋𝑖 , 𝑌𝑗 = 𝑋𝑖 − 𝑌𝑗
2

o Mean-squared error distortion:

𝑑 𝑥, 𝑦 = 𝐸 𝑥 − 𝑦 2



• The average distortion of all possible source symbols and of the
encoding representation is described by

ҧ𝑑 = 

𝑖=1

𝑀



𝑗=1

𝑁

𝑝𝑥 𝑋𝑖 𝑝𝑦|𝑥 𝑌𝑗 𝑋𝑖 𝑑 𝑋𝑖 , 𝑌𝑗 ,

where ҧ𝑑 is a continuous non negative function of 𝑝𝑦|𝑥 𝑌𝑗 𝑋𝑖 , which are
determined by the encoder/decoder pair.

• The conditional probabilities and pdfs 𝑝𝑦|𝑥 𝑌𝑗 𝑋𝑖 are said to be
𝐷 −admissible if and only if ҧ𝑑 ≤ 𝐷, where 𝐷 is a chosen distortion value.



• The set of all allocations of 𝐷 −admissible conditional pdfs is given by

𝑃𝐷 = 𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖 : ҧ𝑑 ≤ 𝐷

• For each set of conditional probabilities 𝑝𝑦|𝑥 𝑌𝑗 𝑋𝑖 , we have the mutual 
information described by

𝐼 𝑥, 𝑦 = σ𝑖=1
𝑀 σ𝑗=1

𝑁 𝑝𝑦|𝑥 𝑌𝑗 𝑋𝑖 𝑝𝑥 𝑋𝑖 log2
𝑝𝑦|𝑥 𝑌𝑗 𝑋𝑖

𝑝𝑦 𝑌𝑗
bits/codeword



• The rate distortion function is defined by

𝑅 𝐷 = min
𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖 ∈PD

𝐼(𝑥, 𝑦) bits/codeword

subject to the constraint



𝑗=1

𝑁

𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖 = 1, for 𝑖 = 1,2, … ,𝑀

where ҧ𝑑 ≤ 𝐷 for the computation of 𝑅 𝐷 and

𝑃𝐷 is the set to which 𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖 belongs and ensures a distortion 𝐷.



• The previous optimization leads to the following illustration.

• When the distortion 𝐷 is reduced → 𝑅 𝐷 increases.

• When the distortion 𝐷 is increased → 𝑅 𝐷 decreases.

𝑅 𝐷

𝐷



C. Computation of the rate distortion 
function

• In order to compute the rate distortion function, we consider the 
conditional probabilities 𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖 and proceed as follows:

• Computation of 𝑅 𝐷 :

o Given 𝑑 𝑥, 𝑦 = 𝑑 𝑋𝑖 , 𝑌𝑗 .

o Compute 𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖 that minimize 𝐼(𝑥, 𝑦) subject to constraints:

𝑅 𝐷 = min
𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖 ∈PD

𝐼(𝑥, 𝑦) subject to the constraint σ𝑗=1
𝑁 𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖 = 1

Transition prob. 
𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖

𝑦𝑥

Distortion

measure 𝑑 𝑋𝑖 , 𝑌𝑗



Example 

Consider a discrete memoryless source that outputs Gaussian random variables 
𝑥 with zero mean and variance 𝜎2.

We consider an encoder that quantizes 𝑥 = 𝑋 and produces 𝑦 = Q x = 𝑋
through the mean squared error distortion measure given by 

𝑑 𝑥 , 𝑦 = 𝐸[ 𝑥 − 𝑦 2]

a) Compute the rate distortion function 𝑅 𝐷 .

b) Determine the transition probabilities that achieve the lower bound of 
𝑅 𝐷 .

Source 
encoder

𝑥 𝑦



Solution:

a) We consider a Gaussian random variable 𝑥 with zero mean and variance 
𝜎2, i.e., 𝑥~𝑁(0, 𝜎2).

By extending the optimization that leads to the computation of the rate 
distortion function, we obtain

𝑅 𝐷 = min
𝑝𝑦|𝑥 𝑌𝑖 𝑋𝑖 ∈PD

𝐼(𝑥, 𝑦)

subject to 𝑝𝑦|𝑥 𝑌 𝑋 : 𝑑 𝑥, 𝑦 = 𝐸 𝑥 − 𝑦 2 ≤ 𝐷



We first find a lower bound for the rate distortion function and then 
prove that this is achievable. 𝐸 𝑥 − 𝑦 2 ≤ 𝐷, we observe that

𝐼 𝑥, 𝑦 = ℎ 𝑥 − ℎ(𝑥|𝑦)

=
1

2
log2 2πeσ

2 − ℎ(𝑥 − 𝑦|𝑦) =
1

2
𝑙𝑜𝑔2 2𝜋𝑒𝜎

2 − ℎ(𝑥 − ො𝑥|ො𝑥)

≥
1

2
𝑙𝑜𝑔2 2𝜋𝑒𝜎

2 − ℎ(𝑥 − ො𝑥)

≥
1

2
log2 2𝜋𝑒𝜎

2 − ℎ(𝑁(0, 𝐸 𝑥 − 𝑦 2 ))

=
1

2
log2 2𝜋𝑒𝜎

2 −
1

2
log2 2𝜋𝑒𝐸 𝑥 − 𝑦 2

≥
1

2
log2 2𝜋𝑒𝜎

2 −
1

2
log2 2𝜋𝑒𝐷

=
1

2
log2

𝜎2

𝐷

Therefore, we have

𝑅 𝐷 ≥
1

2
log2

𝜎2

𝐷
bits / output

Conditioning 
reduces 
entropy

Gaussian distribution 
maximizes entropy



The rate distortion function for a Gaussian source is illustrated by

𝑅 𝐷

𝐷1

5



b) 

In order to find the conditional pdf 𝑝𝑦|𝑥 𝑌 𝑋 that achieves the lower bound 
of item a), it is often more convenient to look at 𝑝𝑦|𝑥 𝑋|𝑌 which is 
sometimes called the test channel. 

We construct 𝑝𝑦|𝑥 𝑋|𝑌 to achieve equality in the bound. If 𝐷 ≤ 𝜎2, we 
choose

𝑥 = 𝑦 + 𝑤, where 𝑥~𝑁 0, 𝜎2 , 𝑤~𝑁 0, 𝐷 and 𝑦~?

and 𝑦 and 𝑤 are independent.

We need to find the contribution to the mutual information of 𝑦 that yields

𝐼 𝑥, 𝑦 =
1

2
log2

( ฎ?

𝜎2−𝐷

+ 𝐷)

𝐷
=
1

2
log2

𝜎2

𝐷



This requires the distribution of 𝑦 to be Gaussian with

𝑦~𝑁 0, 𝜎2 − 𝐷

The test channel can be illustrated by

𝑦 𝑥~𝑁 0, 𝜎2

𝑤~𝑁 0, 𝐷


