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III. Channel capacity

• In this chapter, we study channel capacity and examine several implications
of the capacity theorem of Shannon.

• In particular, we examine the fundamental limit of how much information
can be transmitted over a channel given some key parameters.

• We present mathematical models of discrete and continuous channels and
explore how these models can describe realistic channels.

• We introduce the concept of mutual information and its relation to entropy
and the channel capacity of both discrete and continuous channels.



A. Discrete memoryless channels

• Communication channels represent the medium over which signals are 
transmitted.

• In particular, communication channels introduce amplitude and phase
distortions in the transmitted signals. 

• Modelling communication channels is key because they can be simulated
and their capacities can be computed.

• In this section, we will focus our attention on discrete memoryless
channels using the concepts of random variables, probability and
discrete memoryless sources.



• Let us consider a discrete memoryless channel (DMC) model as

𝑥

𝑋0
𝑋1
⋮

𝑋𝐽−1

ൢ
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⋮

𝑌𝐾−1

𝑦

• The model can be written as

𝑦 = 𝑥 + 𝑛,  

where 𝑛 represents the noise.

• The model is discrete because 𝑦 and 𝑥 take on discrete values.

𝑝 𝑦𝑘|𝑥𝑗

𝑥 𝑦

AlphabetAlphabet



The mathematical description of discrete memoryless channels (DMCs) 
include:

• The input and output alphabets described by

𝑥 = 𝑋0, 𝑋1, … , 𝑋𝐽−1 and 𝑦 = 𝑌0, 𝑌1, … , 𝑌𝐾−1

• The set of transition probabilities given by

𝑝 𝑦𝑘|𝑥𝑗 = P 𝑦𝑘 = 𝑌𝑘 𝑥𝑗 = 𝑋𝑗 , for all 𝑗 and 𝑘

where 0 ≤ 𝑝 𝑦𝑘|𝑥𝑗 ≤ 1 for all 𝑗 and 𝑘.



• The channel can be completely characterized by the set of all transition
probabilities as compactly described by

𝑷 =

𝑝 𝑦0|𝑥0 𝑝 𝑦1|𝑥0 … 𝑝 𝑦𝐾−1|𝑥0
𝑝 𝑦0|𝑥1

⋮
𝑝 𝑦1|𝑥1 …
⋮ ⋱

𝑝 𝑦𝐾−1|𝑥1
⋮

𝑝 𝑦0|𝑥𝐽−1 𝑝 𝑦1|𝑥𝐽−1 … 𝑝 𝑦𝐾−1|𝑥𝐽−1

• A key property that applies to the set of transition probabilities is

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘|𝑥𝑗 = 1, for all 𝑗



• The input 𝑥 of the DMC is modelled by the probability

𝑝 𝑥𝑗 = 𝑃 𝑥𝑗 = 𝑋𝑗 , 𝑗 = 0,1, … , 𝐽 − 1

where 𝑃 𝑥𝑗 = 𝑋𝑗 is the probability of an event.

• The joint probability mass function (pmf) of the input 𝑥 and the ouput 𝑦
of the DMC is described by

𝑝 𝑥𝑗 , 𝑦𝑘 = 𝑃 𝑥𝑗 = 𝑋𝑗 , 𝑦𝑘 = 𝑌𝑘

= 𝑃 𝑦𝑘 = 𝑌𝑘|𝑥𝑗 = 𝑋𝑗 𝑃 𝑥𝑗 = 𝑋𝑗
= 𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗

• The joint pmf is key as it contains the transition and input probabilities. 



• The channel output is described by the pmf given by

𝑝 𝑦𝑘 = 𝑃 𝑦𝑘 = 𝑌𝑘

= σ𝑗=0
𝐽−1𝑃 𝑦𝑘 = 𝑌𝑘|𝑥𝑗 = 𝑋𝑗 𝑃 𝑥𝑗 = 𝑋𝑗

= σ𝑗=0
𝐽−1𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗 , 𝑘 = 0,1, … , 𝐾 −1

• With the mathematical quantities that constitute the structure of
DMCs it is possible to fully characterize them. 



Example 1

Consider a binary symmetric channel with 𝐽 = 𝐾 = 2. 

Since the channel is symmetric the probability of receiving a 1 if a 0 was
sent is the same as the probability of receiving a 0 if a 1 was sent. This is
known as the conditional probability of error and given by 𝑝.

a) Describe in a diagram the binary symmetric channel and all its 
probabilities.

b) Compute the input, transition and output probabilities.



a) The binary symmetric channel (BSC) of this problem deals with 𝐽 = 2
inputs, namely, 𝑥0 = 0 and 𝑥1 = 1.

There are also 𝐾 = 2 outputs, namely, 𝑦0 = 0 and 𝑦1 = 1. The BSC can then
be illustrated by

𝑥0 = 0

𝑥1 = 1

𝑦0 = 0

𝑦1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



b) The input probabilities are described by
𝑝 𝑥0 = 𝑃(𝑥0 = 0)

𝑝 𝑥1 = 𝑃(𝑥1 = 1)

The transition probabilities are given by

𝑝 𝑦0|𝑥0 = 1 − 𝑝

𝑝 𝑦1|𝑥1 = 1 − 𝑝

𝑝 𝑦1|𝑥0 = 𝑝

𝑝 𝑦0|𝑥1 = 𝑝

The output probabilities are described by

𝑝 𝑦0 = σ𝑗=0
𝐽−1

𝑝 𝑦0|𝑥𝑗 𝑝 𝑥𝑗 = 𝑝 𝑦0|𝑥0 𝑝 𝑥0 + 𝑝 𝑦0|𝑥1 𝑝 𝑥1 = 1 − 𝑝 𝑝 𝑥0 + 𝑝𝑝 𝑥1

𝑝 𝑦1 =෍

𝑗=0

𝐽−1

𝑝 𝑦1|𝑥𝑗 𝑝 𝑥𝑗 = 𝑝 𝑦1|𝑥0 𝑝 𝑥0 + 𝑝 𝑦1|𝑥1 𝑝 𝑥1 = 𝑝𝑝 𝑥0 + 1 − 𝑝 𝑝 𝑥1

𝑥0 = 0

𝑥1 = 1

𝑦0 = 0

𝑦1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



B. Mutual information

• Let us consider a DMC and the entropy associated with the input 
alphabet 𝐻 𝑥 , which measures the uncertainty about the input 𝑥.

• An important question for DMCs is: how to measure 𝐻 𝑥 when
observing 𝑦 ?

• We can investigate this by looking into the concept of conditional
entropy.

DMC 

𝑝 𝑦𝑘|𝑥𝑗

𝑥 𝑦



• The conditional entropy for a given output 𝑌𝑘 is described by

𝐻 𝑥|𝑦𝑘 = 𝑌𝑘 =෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗|𝑦𝑘 log2
1

𝑝 𝑥𝑗|𝑦𝑘

• If we compute the mean value of 𝐻 𝑥|𝑦𝑘 = 𝑌𝑘 then we obtain the
conditional entropy

𝐻 𝑥|𝑦 = σ𝑘=0
𝐾−1𝐻 𝑥|𝑦𝑘 = 𝑌𝑘 𝑝 𝑦𝑘

= σ𝑘=0
𝐾−1σ𝑗=0

𝐽−1𝑝 𝑥𝑗|𝑦𝑘 𝑝 𝑦𝑘 log2
1

𝑝 𝑥𝑗|𝑦𝑘

= σ𝑘=0
𝐾−1σ𝑗=0

𝐽−1𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗|𝑦𝑘

• The conditional entropy 𝐻 𝑥|𝑦 measures the uncertainty of the
channel after observing the ouput 𝑦.



• The mutual information measures the uncertainty about the input 𝑥 of
the DMC while observing the output 𝑦 of the DMC.

• The mutual information is described by

𝐼 𝑥, 𝑦 = 𝐻 𝑥 − 𝐻 𝑥|𝑦 ,

where 𝐻 𝑥 measures the uncertainy of the input 𝑥 and 𝐻 𝑥|𝑦 measures 
the uncertainty of the DMC after observing the ouput 𝑦 of the DMC.

• There is an equivalence of the mutual information if we swap the input 
and the ouput of the DMC, which yields

𝐼 𝑦, 𝑥 = 𝐻 𝑦 − 𝐻 𝑦|𝑥 ,



Properties

i) The mutual information 𝐼 𝑥, 𝑦 is symmetric, i.e., 

𝐼 𝑥, 𝑦 = 𝐼 𝑦, 𝑥

ii) The mutual information is always nonnegative, i.e.,

𝐼 𝑥, 𝑦 ≥ 0



iii)  The mutual information 𝐼 𝑥, 𝑦 is related to the joint entropy of the
input and the output of the channel by

𝐼 𝑥, 𝑦 = 𝐻 𝑥 + 𝐻 𝑦 − 𝐻 𝑥, 𝑦 ,

𝐻 𝑥, 𝑦 = ෍

𝑘=0

𝐾−1

෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗 , 𝑦𝑘



Illustration
𝐻 𝑥, 𝑦

𝐻 𝑥
𝐼 𝑥, 𝑦

𝐻 𝑦

𝐻 𝑦|𝑥𝐻 𝑥|𝑦



iv) Data/information processing inequality

𝐼 𝑥, 𝑦 ≥ 𝐼 𝑥, 𝑧

No clever signal processing can increase the information content.

𝑝 𝑦𝑘|𝑥𝑗

𝑥 𝑦
Signal

Processing

𝑧



Proof of property i)

We first use the formula for entropy and further manipulate it as follows:

𝐻 𝑥 = σ𝑗=0
𝐽−1𝑝 𝑥𝑗 log2

1

𝑝 𝑥𝑗

= σ𝑗=0
𝐽−1𝑝 𝑥𝑗 log2

1

𝑝 𝑥𝑗
σ𝑘=0
𝐾−1𝑝 𝑦𝑘|𝑥𝑗

= σ𝑗=0
𝐽−1σ𝑘=0

𝐾−1𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗 log2
1

𝑝 𝑥𝑗

= σ𝑗=0
𝐽−1σ𝑘=0

𝐾−1𝑝 𝑦𝑘 , 𝑥𝑗 log2
1

𝑝 𝑥𝑗

Substituting 𝐻 𝑥 and 𝐻 𝑥|𝑦 into 𝐼 𝑥, 𝑦 , we obtain

𝐼 𝑥, 𝑦 = 𝐻 𝑥 − 𝐻 𝑥|𝑦

= σ𝑗=0
𝐽−1σ𝑘=0

𝐾−1𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗



Using Bayes’ rule for conditional probabilities, we have

𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗
=
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

Substituting the above relation into 𝐼 𝑥, 𝑦 , we obtain

𝐼 𝑥, 𝑦 =෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗

=෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

= 𝐼 𝑦, 𝑥



Proof of property ii)

Since 𝑝 𝑥𝑗|𝑦𝑘 =
𝑝 𝑦𝑘,𝑥𝑗

𝑝 𝑦𝑘
, we may express the mutual information of the

channel as

𝐼 𝑥, 𝑦 =෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗

=෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘 , 𝑥𝑗

𝑝 𝑦𝑘 𝑝 𝑥𝑗

Using the fundamental inequality arising from Jensen’s inequality

σ𝑘=0
𝐾−1𝑝𝑘 log2

𝑞𝑘

𝑝𝑘
≤ 0 , we obtain

𝐼 𝑥, 𝑦 ≥ 0



The equality only holds if

𝑝 𝑦𝑘 , 𝑥𝑗 = 𝑝 𝑦𝑘 𝑝 𝑥𝑗

and then we have
𝐼 𝑥, 𝑦 = 0

This property shows that we cannot lose information on average by
observing the output of a channel.

Moreover, the mutual information is zero only if the random variables 𝑥
and 𝑦 are statistically independent.



Proof of property iii)

Let us first rewrite the expression of the joint entropy 𝐻 𝑥, 𝑦 as

𝐻 𝑥, 𝑦 = ෍

𝑘=0

𝐾−1

෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗 , 𝑦𝑘

= ෍

𝑘=0

𝐾−1

෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗 , 𝑦𝑘 log2
𝑝 𝑥𝑗)𝑝(𝑦𝑘

𝑝 𝑥𝑗 , 𝑦𝑘

+෍

𝑘=0

𝐾−1

෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗)𝑝(𝑦𝑘

The first double summation on the right-hand side of the above expression
is the negative of the mutual information, i.e.,  −𝐼 𝑥, 𝑦 .



The second term can be manipulated as follows:

σ𝑘=0
𝐾−1σ𝑗=0

𝐽−1𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗)𝑝(𝑦𝑘
=

= σ𝑗=0
𝐽−1

log2
1

𝑝 𝑥𝑗
σ𝑘=0
𝐾−1𝑝 𝑥𝑗 , 𝑦𝑘 + σ𝑘=0

𝐾−1 log2
1

𝑝(𝑦𝑘)
σ𝑗=0
𝐽−1

𝑝 𝑥𝑗 , 𝑦𝑘

= σ𝑗=0
𝐽−1𝑝 𝑥𝑗 log2

1

𝑝 𝑥𝑗
+ σ𝑘=0

𝐾−1𝑝(𝑦𝑘) log2
1

𝑝(𝑦𝑘)

= 𝐻 𝑥 + 𝐻 𝑦

Accordingly, we have

𝐻 𝑥, 𝑦 = −𝐼 𝑥, 𝑦 + 𝐻 𝑥 + 𝐻 𝑦

and
𝐼 𝑥, 𝑦 = 𝐻 𝑥 + 𝐻 𝑦 − 𝐻 𝑥, 𝑦



Proof of property iv)

The data processing inequality can be used to show that no clever
manipulation of the data (or signals) can increase the information content.

Let us employ the chain rule with the mutual information to write

𝐼 𝑥, 𝑦, 𝑧 = 𝐼 𝑥, 𝑧 + 𝐼 𝑥, 𝑦|𝑧

= 𝐼 𝑥, 𝑦 + 𝐼 𝑥, 𝑧|𝑦

Since 𝑥 and 𝑧 are conditionally independent given 𝑦, we have

𝐼 𝑥, 𝑧|𝑦 = 0

Since 𝐼 𝑥, 𝑦|𝑧 ≥ 0, we have
𝐼 𝑥, 𝑦 ≥ 𝐼 𝑥, 𝑧

The equality only holds when 𝑥, 𝑦 and 𝑧 form a Markov chain.



C. Capacity of discrete memoryless
channels

• Let us consider a DMC and the entropy associated with the input
alphabet 𝐻 𝑥 , which measures the uncertainty about the input 𝑥.

• The mutual information of the input 𝑥 and the output 𝑦 of the channel is
given by

𝐼 𝑥, 𝑦 =෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗

=෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

DMC 

𝑝 𝑦𝑘|𝑥𝑗

𝑥 𝑦



• The joint pmf between the input and output variables is given by

𝑝 𝑦𝑘 , 𝑥𝑗 = 𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗

• The output probabilities can be computed by

𝑝 𝑦𝑘 =෍

𝑗=0

𝐽−1

𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗 , 𝑘 = 0,1, … , 𝐾 −1

• In order to compute 𝐼 𝑥, 𝑦 , we need the input probabilities

𝑝 𝑥𝑗 , 𝑗 = 0,1, … , 𝐽 − 1



• The capacity of a DMC can be computed by maximizing the mutual 
information 𝐼 𝑥, 𝑦 subject to appropriate constraints on 𝑝 𝑥𝑗 .

• The computation of the capacity can be formulated as the optimization:

𝐶 = max
𝑝 𝑥𝑗

𝐼 𝑥, 𝑦 bits/channel use or bits / transmission

subject to 𝑝 𝑥𝑗 , for all 𝑗 and σ𝑗=0
𝐽−1𝑝 𝑥𝑗 = 1

• The optimization involves the maximization of 𝐼 𝑥, 𝑦 by adjusting the
variables 𝑝 𝑥1 , 𝑝 𝑥2 , … , 𝑝 𝑥𝐽−1 subject to appropriate constraints.



Example 2

Consider the BSC illustrated by

a) Compute the capacity of the channel

b) Show how the capacity varies with 𝑝 using a plot.

𝑥0 = 0

𝑥1 = 1

𝑦0 = 0

𝑦1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



We consider the BSC.

We know that the entropy 𝐻 𝑥 is maximized when 𝑝 𝑥0 = 𝑝 𝑥1 =
1

2
, where

𝑥0 and 𝑥1 are 0 and 1, respectively.

The mutual information 𝐼 𝑥, 𝑦 is similarly maximized as described by

𝐶 = 𝐼 𝑥, 𝑦 when 𝑝 𝑥0 = 𝑝 𝑥1 =
1

2
,

where

𝑝 𝑦0|𝑥0 = 1 − 𝑝 = 𝑝 𝑦1|𝑥1
𝑝 𝑦1|𝑥0 = 𝑝 = 𝑝 𝑦0|𝑥1

𝑥0 = 0

𝑥1 = 1

𝑦0 = 0

𝑦1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



a) By substituting the transition probabilities in 𝐼 𝑥, 𝑦 , we obtain

𝐼 𝑥, 𝑦 = σ𝑗=0
𝐽−1σ𝑘=0

𝐾−1𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

With 𝐽 = 𝐾 = 2 and then setting 𝑝 𝑥0 = 𝑝 𝑥1 =
1

2
, we have

𝐶 = max
𝑝 𝑥𝑗

σ𝑗=0
1 σ𝑘=0

1 𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

= 𝑝 𝑦0, 𝑥0 log2
𝑝 𝑦0|𝑥0
𝑝 𝑦0

+ 𝑝 𝑦0, 𝑥1 log2
𝑝 𝑦0|𝑥1
𝑝 𝑦0

+𝑝 𝑦1, 𝑥0 log2
𝑝 𝑦1|𝑥0
𝑝 𝑦1

+ 𝑝 𝑦1, 𝑥1 log2
𝑝 𝑦1|𝑥1
𝑝 𝑦1

= 𝑝 𝑦0|𝑥0 𝑝 𝑥0 log2
𝑝 𝑦0|𝑥0

𝑝 𝑦0
+ 𝑝 𝑦0|𝑥1 𝑝 𝑥1 log2

𝑝 𝑦0|𝑥1

𝑝 𝑦0

+𝑝 𝑦1|𝑥0 𝑝 𝑥0 log2
𝑝 𝑦1|𝑥0

𝑝 𝑦1
+ 𝑝 𝑦1|𝑥1 𝑝 𝑥1 log2

𝑝 𝑦1|𝑥1

𝑝 𝑦1

=
1−𝑝

2
log2 2(1 − 𝑝) +

𝑝

2
log2 2𝑝 +

𝑝

2
log2 2𝑝 +

1−𝑝

2
log2 2(1 − 𝑝)

= 1 + plog2 𝑝 + (1 − 𝑝) log2(1 − 𝑝)



b) Using the definition of entropy and their mathematical relations we
have the capacity of the BSC

𝐶 𝑝 = 1 − 𝐻(𝑝),

where H p = −plog2 𝑝 − 1 − 𝑝 log2 1 − 𝑝 .

The channel capacity varies with 𝑝 in a convex manner as shown below.

𝑝

𝐶(𝑝)

0.5 1

0.5

1 When 𝑝 = 0, 𝐶 attains its maximum
value of 1 bit/ channel use

When 𝑝 =
1

2
, 𝐶 attains its minimum

value of 0 bit/ channel use (useless
channel)



D. Differential entropy and mutual 
information for continuous variables

• In this section, we extend the previous concepts to continuous sources
and channels, which are modelled as continuous random variables.

• Consider a random variable 𝑥 with the probability density function
𝑝𝑥(𝑋), the differential entropy of 𝑥 is described by

ℎ 𝑥 = න
−∞

∞

𝑝𝑥 𝑋 log2
1

𝑝𝑥(𝑋)
𝑑𝑋

• As in the discrete case, the differential entropy depends only on the
probability density of the random variable 𝑥.



Example 3

Compute the differential entropy of a random variable with uniform
distribution described by

𝑝𝑥 𝑋 = ቐ
1

𝑎
, 0 < 𝑋 < 𝑎

0, otherwise

1

𝑎

𝑎 𝑋

𝑝𝑥 𝑋



Solution:

ℎ 𝑥 = න
−∞

∞

𝑝𝑥 𝑋 log2
1

𝑝𝑥(𝑋)
𝑑𝑋

= 0׬
𝑎 1

𝑎
log2 𝑎 𝑑𝑋

= log2 𝑎 bits

Note that log2 𝑎 < 0 for 𝑎 < 1.

The entropy of a continuous random variable can be negative unlike the
case for a discrete random variable.



Example 4

Compute the differential entropy of a random variable with Gaussian
distribution described by

𝑝𝑥 𝑋 =
1

2𝜋𝜎2
𝑒
−
𝑋2

2𝜎2

𝑋

𝑝𝑥 𝑋



Solution:

h 𝑥 = ∞−׬

∞
𝑝𝑥 𝑋 ln

1

𝑝𝑥(𝑋)
𝑑𝑋 (nats) 

= ∞−׬−
∞
𝑝𝑥 𝑋 ln 𝑝𝑥(𝑋) 𝑑𝑋

= ∞−׬−
∞
𝑝𝑥 𝑋 −

𝑋2

2𝜎2
− ln 2𝜋𝜎2 𝑑𝑋

=
1

2
ln 2𝜋𝜎2 +

1

2

𝐸 𝑥2

𝜎2

=
1

2
ln 2𝜋𝜎2 +

1

2
ln e

=
1

2
ln 2𝜋𝑒𝜎2 nats

Changing the basis from ln to log2 , we have

h 𝑥 =
1

2
log2 2𝜋𝑒𝜎

2 bits



Relation of differential entropy to 
entropy of discrete variables

• Let us consider the random variable 𝑥 as the limiting form of a discrete
random variable 𝑥𝑘 = 𝑘∆𝑥, 𝑘 = 0,±1,±2,…, where ∆𝑥 → 0.

• In this case, 𝑥 takes on a value in the range 𝑥𝑘, 𝑥𝑘 + ∆𝑥 with
probability given by

𝑝𝑥 𝑋𝑘 ∆𝑥 = න
𝑘∆𝑥

(𝑘+1)∆𝑥

𝑝𝑥 𝑋 𝑑𝑋

• Consider the quantized random variable 𝑥𝑞 described by

𝑥𝑞 = 𝑥𝑘 , 𝑘∆𝑥 ≤ 𝑋𝑞 < (𝑘 + 1)∆𝑥

𝑋

𝑝𝑥(𝑋)

∆𝑥



• Then the probability that 𝑥𝑞 = 𝑋𝑘 is given by

𝑃 𝑥𝑞 = 𝑋𝑘 = 𝑝𝑥 𝑋𝑘 ∆𝑥 = න
𝑘∆𝑥

(𝑘+1)∆𝑥

𝑝𝑥 𝑋 𝑑𝑋

• Let us now compute the entropy of 𝑥𝑘 by letting ∆𝑥 → 0 as follows:

𝐻(𝑥𝑘) = lim
∆𝑥→0

σ𝑘=−∞
∞ 𝑝𝑥 𝑋𝑘 ∆𝑥 log2

1

𝑝𝑥 𝑋𝑘 ∆𝑥

= lim
∆𝑥→0

σ𝑘=−∞
∞ 𝑝𝑥 𝑋𝑘 ∆𝑥 log2

1

𝑝𝑥 𝑋𝑘
− log2∆𝑥 σ𝑘=−∞

∞ 𝑝𝑥 𝑋𝑘 ∆𝑥

= ∞−׬

∞
𝑝𝑥 𝑋 log2

1

𝑝𝑥(𝑋)
𝑑𝑋 − lim

∆𝑥→0
log2∆𝑥 ∞−׬

∞
𝑝𝑥 𝑋 dX

= ℎ(𝑥)− lim
∆𝑥→0

log2∆𝑥



Theorem 1:

The previous development leads to

𝐻(𝑥𝑘) = ℎ(𝑥)− lim
∆𝑥→0

log2∆𝑥

or
ℎ 𝑥 = 𝐻(𝑥𝑘) + lim

∆𝑥→0
log2∆𝑥,

which for ∆𝑥 → 0 results in

ℎ 𝑥 = 𝐻(𝑥𝑘)

and for an arbitrary ∆𝑥 related to 𝑛 quantization bits yields

ℎ 𝑥 = 𝐻(𝑥𝑘) + log2∆𝑥 =𝐻(𝑥𝑘) + 𝑛



Example 5

Compute the entropy for the following cases:

a)  If a random variable 𝑥 has uniform distribution on [0, 1] and we let 
∆𝑥=2−𝑛.

b)  If a random variable 𝑥 has Gaussian distribution with zero mean, 𝜎2 =
100.



Solution:

a) For a random variable 𝑥 with uniform distribution on [0, 1] and ∆𝑥=2−𝑛, 
we have

𝐻(𝑥𝑘) = ෍

𝑘=−∞

∞

𝑝𝑥 𝑋𝑘 ∆𝑥 log2
1

𝑝𝑥 𝑋𝑘 ∆𝑥
= 𝑛

and 

ℎ 𝑥 = 𝐻(𝑥𝑘) + log2∆𝑥 = 𝑛 − 𝑛 = 0,

which means that 𝑛 bits suffice to describe 𝑥 to an accuracy of n bits.



b)

For a random variable 𝑥 with Gaussian distribution with zero mean and 𝜎2 =
100, we have

ℎ 𝑥 = 𝐻(𝑥𝑘) + log2∆𝑥 =𝐻(𝑥𝑘) + 𝑛

=
1

2
log2 2𝜋𝑒𝜎

2 + n = 5.37bits + n



Joint and conditional entropy: 
extension to vectors

• We can extend the definition of differential entropy to random vectors.

• The joint differential entropy for a random vector 𝒙 = 𝑥1 … 𝑥𝑛 𝑇 is 
defined by

ℎ 𝒙 = න
−∞

∞

𝑝𝒙 𝑿 log2
1

𝑝𝒙(𝑿)
𝑑𝑿

• The conditional differential entropy of two variables 𝑥 and 𝑦 is described by

ℎ 𝑥 𝑦 = න
−∞

∞

න
−∞

∞

𝑝𝑥,𝑦 𝑋, 𝑌 log2
1

𝑝𝑥(𝑋|𝑌)
𝑑𝑋𝑑𝑌

• Since in general 𝑝𝑥 𝑋 𝑌 = 𝑝𝑥,𝑦 𝑋, 𝑌 /𝑝𝑦(𝑌), we can write

ℎ 𝑥 𝑦 = ℎ 𝑥, 𝑦 − ℎ(𝑦)



Example 6

Compute the differential entropy of the random vector 𝒙 = 𝑥1 … 𝑥𝑛 𝑇

whose joint probability density function is

𝑝𝒙 𝑿 =
1

2𝜋
𝑛
2 det(𝑲)

𝑒−
1
2 𝑿−𝒎𝑥

𝑇𝑲−1(𝑿−𝒎𝑥)



Solution:

ℎ 𝒙 = ∞−׬

∞
𝑝𝒙 𝑿 𝑙𝑛

1

𝑝𝒙(𝑿)
𝑑𝑿 (nats)

= ∞−׬−

∞
𝑝𝒙 𝑿 −

1

2
𝑿 −𝒎𝑥

𝑇𝑲−1 𝑿 −𝒎𝑥 − ln 2𝜋
𝑛

2 det 𝑲
1

2 𝑑𝑿

=
1

2
E 𝒙 −𝒎𝑥

𝑇𝑲−1 𝒙 −𝒎𝑥 +
1

2
ln 2𝜋 𝑛 det 𝑲

=
1

2
𝑡𝑟 𝑲𝑲−1 +

1

2
ln 2𝜋 𝑛 det 𝑲

=
1

2
𝑛 ln 𝑒 +

1

2
ln 2𝜋 𝑛 det 𝑲

=
1

2
ln 𝑒𝑛 +

1

2
ln 2𝜋 𝑛 det 𝑲

=
1

2
ln 2𝜋𝑒 𝑛 det 𝑲

By changing the basis of the logarithm, we have

ℎ 𝒙 =
1

2
log2 2𝜋𝑒 𝑛 det 𝑲 bits



E. Mutual information

• Consider a pair of random variables 𝑥 and 𝑦 that can represent the
input and the output of a communication channel.

• The mutual information between 𝑥 and 𝑦 is defined by

𝐼 𝑥, 𝑦 = ∞−׬

∞
∞−׬

∞
𝑝𝑥,𝑦 𝑋, 𝑌 log2

𝑝𝑥(𝑋|𝑌)

𝑝𝑥(𝑋)
𝑑𝑋𝑑𝑌,

where 𝑝𝑥,𝑦 𝑋, 𝑌 is the joint pdf of 𝑥 and 𝑦 , and 𝑝𝑥(𝑋|𝑌) is the conditional
pdf of 𝑥 subject to 𝑦 = 𝑌.

Channel

𝑥 𝑦



• The conditional differential entropy of two variables 𝑥 and 𝑦 is 
described by

ℎ 𝑥 𝑦 = න
−∞

∞

න
−∞

∞

𝑝𝑥,𝑦 𝑋, 𝑌 log2
1

𝑝𝑥(𝑋|𝑌)
𝑑𝑋𝑑𝑌

• Since in general 𝑝𝑥 𝑋 𝑌 = 𝑝𝑥,𝑦 𝑋, 𝑌 /𝑝𝑦(𝑌), we can write

ℎ 𝑥 𝑦 = ℎ 𝑥, 𝑦 − ℎ(𝑦)

• The mutual information is then given by

𝐼 𝑥, 𝑦 = ℎ 𝑥 − ℎ 𝑥 𝑦

• These relations are useful to compute the mutual information in 
practical situations.



Properties of mutual information

i) 𝐼 𝑥, 𝑦 = 𝐼 𝑦, 𝑥 (symmetry)

ii) 𝐼 𝑥, 𝑦 ≥ 0 (non negativity)

iii) 𝐼 𝑥, 𝑦 = ℎ 𝑥 − ℎ 𝑥 𝑦

= ℎ 𝑦 − ℎ(𝑦|𝑥)

iv) Data processing inequality: 𝐼 𝑥, 𝑦 ≥ 𝐼 𝑥, 𝑧

• The proofs are similar to those of mutual information with discrete
variables.



Example 7

Compute the mutual information between the input 𝑥 and the output 𝑦 of
the channel

when both 𝑥 and 𝑦 are drawn from Gaussian random variables with zero 
mean and variance 𝜎2 and the covariance matrix of 𝒖 = 𝑥 𝑦 𝑻

𝑲 = 𝐸 𝒖 −𝒎𝑢 𝒖 −𝒎𝑢
𝑇 =

𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2
,

where 𝒎𝑢 is the mean vector of 𝒖.

Channel

𝑥 𝑦



Solution:

The differential entropies of the input 𝑥 and the output 𝑦 of the channel
are

ℎ 𝑥 =
1

2
log2 2𝜋𝑒 𝜎2 = ℎ(𝑦)

The joint differential entropy is given by

ℎ 𝑥, 𝑦 = ∞−׬

∞
∞−׬

∞
𝑝𝑥,𝑦 𝑋, 𝑌 log2

1

𝑝𝑥,𝑦(𝑋,𝑌)
𝑑𝑋𝑑𝑌

=
1

2
log2 2𝜋𝑒 2 det 𝑲

=
1

2
log2 2𝜋𝑒 2σ4(1 − 𝜌2)



Therefore, the mutual information is described by

𝐼 𝑥, 𝑦 = ℎ 𝑥 − ℎ 𝑥 𝑦

= ℎ 𝑥 + ℎ 𝑦 − ℎ(𝑥, 𝑦)

=
1

2
log2 2𝜋𝑒 𝜎2 +

1

2
log2 2𝜋𝑒 𝜎2 −

1

2
log2 2𝜋𝑒 2σ4(1 − 𝜌2)

= −
1

2
log2 (1 − 𝜌2), 

where ℎ 𝑥 𝑦 = ℎ 𝑥, 𝑦 − ℎ(𝑦)



F. Capacity of Gaussian channels

• The information capacity of Gaussian channels is the maximum of the 
mutual information between the input and the output of the channel.

• To this end, we need to consider all distributions on the input that 
satisfy a power constraint 𝑃.

• Mathematically, the information capacity of Gaussian channels with 
power constraint 𝑃 is given by

𝐶 = max
𝑝𝑥(𝑋)

𝐼 𝑥, 𝑦

subject to 𝐸 𝑥2 ≤ 𝑃

Channel

𝑥 𝑦



Channel capacity theorem 
(Shannon, 1948)

The information capacity of a continuous channel bandlimited to 𝐵 Hz
perturbed by additive white Gaussian noise (AWGN) with power spectral

density
𝑁0

2
is given by

𝐶 = 𝐵 log2 1 +
𝑃

𝑁0𝐵
, bits/ s

where 𝑃 is average transmit power.

This theorem shows that given 𝑃 and 𝐵 we can transmit information at a
rate of 𝐶 bits per second.



Computation of the information 
capacity

• In order to solve the optimization problem given by

𝐶 = max
𝑝𝑥(𝑋)

𝐼 𝑥, 𝑦

subject to 𝐸 𝑥2 ≤ 𝑃

• We first consider the channel model described by

𝑦 = 𝑥 + 𝑛,

where 𝑛 is AWGN with zero mean and variance 𝜎2.

• We  then work out the mutual information expression as follows:

𝐼 𝑥, 𝑦 = ℎ 𝑦 − ℎ(𝑦|𝑥)

AWGN 
channel

𝑥 𝑦



• The mutual information expression can be simplified as

𝐼 𝑥, 𝑦 = ℎ 𝑦 − ℎ(𝑦|𝑥)

= ℎ 𝑦 − ℎ(𝑥 + 𝑛|𝑥)

= ℎ 𝑦 − ℎ(𝑛|𝑥)

= ℎ 𝑦 − ℎ 𝑛 ,

which takes into account that 𝑥 and n are statistically independent.

• Next, we need to compute the differential entropies ℎ 𝑦 and ℎ 𝑛 .

• The differential entropy of AWGN is given by

ℎ 𝑛 =
1

2
log2 2𝜋𝑒𝜎2



• Now, we need to compute the variance of 𝑦, which is given by

𝜎𝑦
2 = 𝐸 𝑦2

= 𝐸 𝑥 + 𝑛 2 = 𝐸 𝑥2 + 𝐸 𝑛2 = 𝑃 + 𝜎2

• The differential entropy of 𝑦 is expressed by

ℎ 𝑦 =
1

2
log2 2𝜋𝑒𝜎𝑦

2

=
1

2
log2 2𝜋𝑒 𝑃 + 𝜎2



• The capacity is the maximum of the mutual information subject to the 
power constraint, which is taken  into account in ℎ 𝑦 , and yields

Ct = max 𝐼 𝑥, 𝑦 = ℎ 𝑦 − ℎ 𝑛

=
1

2
log2 2𝜋𝑒 𝑃 + 𝜎2 −

1

2
log2 2𝜋𝑒𝜎2

=
1

2
log2

𝑃+𝜎2

𝜎2

=
1

2
log2 1 +

𝑃

𝜎2
bits / transmission

• We note that the maximization of ℎ 𝑦 requires that 𝑦 be Gaussian as 
Gaussian random variables have the largest differential entropy.



• The capacity can also be expressed per unit of time by considering that 
𝐾 samples have been transmitted over 𝑇 seconds, which results in

C =
K

T
Ct =

K

T

1

2
log2 1 +

𝑃

𝜎2

=
2BT

T

1

2
log2 1 +

𝑃

𝜎2

= 𝐵 log2 1 +
𝑃

𝑁0𝐵
bits / second

• In the above expression, which has been derived by Shannon, we make 
use of K = 2BT samples, where 𝐵 is the bandwidth.



G. Implications of the channel 
capacity theorem 

• In an ideal system, we transmit at a rate equal to 𝑅𝑏 = 𝐶 bits /s.

• If we take into account 𝑃 = 𝐸𝑏𝐶, where 𝐸𝑏 is the transmit energy per 
bit, we have 

𝐶

𝐵
= log2 1 +

𝑃

𝑁0𝐵
= log2 1 +

𝐸𝑏𝐶

𝑁0𝐵

• The spectral efficiency is the ratio of energy per bit by power spectral 
density is given by

𝐸𝑏

𝑁0
=

2
𝐶
𝐵−1
𝐶

𝐵

𝐸𝑏

𝑁0
(dB)

𝑅𝑏
𝐵

𝑅𝑏 < 𝐶

𝑅𝑏 > 𝐶



i) When 𝐵 → ∞
𝐸𝑏

𝑁0
approaches

𝐸𝑏
𝑁0 ∞

= lim
𝐵→∞

𝐸𝑏
𝑁0

=
1

log2 𝑒
= 0.693 or −1.6 dB

The capacity limit is then given by

𝐶∞ = lim
𝐵→∞

C =
P

N0
log2e Shannon limit



Proof

Since log2 1 + 𝑥 = 𝑥 𝑙𝑜𝑔2 1 + 𝑥
1

𝑥 and lim
𝑥→0

1 + 𝑥
1

𝑥 = 𝑒, we have

𝐶

𝐵
= log2 1 +

𝑃

𝑁0𝐵

=
𝐶

𝐵

𝐸𝑏

𝑁0
log2 1 +

𝐶

𝐵

𝐸𝑏

𝑁0

𝑁0𝐵

𝐶𝐸𝑏

We can then simplify the above as 

𝐸𝑏
𝑁0

log2 1 +
𝐶

𝐵

𝐸𝑏
𝑁0

𝑁0𝐵
𝐶𝐸𝑏

= 1

If 
𝐶

𝐵
→ 0 or 𝐵 → ∞ then we obtain

𝐸𝑏
𝑁0

=
1

log2e
= 0.693



ii) Capacity bound 𝑅𝑏 = 𝐶

• When 𝑅𝑏 ≤ 𝐶 → error-free transmission is possible

• When 𝑅𝑏 > 𝐶 → error-free transmission is not possible

𝐸𝑏

𝑁0
(dB)

𝑅𝑏
𝐵

𝑅𝑏 < 𝐶

𝑅𝑏 > 𝐶



H. Capacity and Security

• The notion of capacity can be extended to physical layer security, which 
is illustrated by the diagram below.

• The secrecy capacity refers to the maximum information rate at which 
an eavesdropper cannot decode information transmitted by a source. 

• The secrecy capacity is defined as the difference between the capacity 
of the main and the wiretap channels:

𝐶𝑠 = 𝐶𝑚 − 𝐶𝑤

AWGN 
channel

𝑥 𝑦𝑚
Source 
(Alice)

AWGN 
channel

𝑦𝑤

Destination 
(Bob)

Eavesdropper 
(Eve)

C.E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. Journ., vol. 29, pp. 656–715, 1949.
S. K. Leung-Yan-Cheong and M. E. Hellman, “The Gaussian wiretap channel,” IEEE Trans. on Inform. Theory, vol. 24, 
no. 4, pp. 451456, July 1978.



• Let us now compute the secrecy capacity of the system as follows.

• For the main and wiretap channels we solve the optimization problem
given by

𝐶 = max
𝑝𝑥(𝑋)

𝐼𝑚|𝑤 𝑥, 𝑦𝑚|𝑤

subject to 𝐸 𝑥2 ≤ 𝑃

• We again consider the channel model described by

𝑦𝑚|𝑤 = 𝑥 + 𝑛𝑚|𝑤,

where 𝑛𝑚|𝑤 is AWGN with zero mean and variance 𝜎𝑚|𝑤
2 .

• We  then work out the mutual information expression as follows:

𝐼 𝑥, 𝑦𝑚|𝑤 = ℎ 𝑦𝑚|𝑤 − ℎ(𝑦𝑚|𝑤|𝑥)



• The mutual information expression for the main channel is described by 

𝐼 𝑥, 𝑦𝑚 = ℎ 𝑦𝑚 − ℎ(𝑦𝑚|𝑥)

= ℎ 𝑦𝑚 − ℎ(𝑥 + 𝑛𝑚|𝑥)

= ℎ 𝑦𝑚 − ℎ 𝑛𝑚 ,

which takes into account that 𝑥 and 𝑛m are statistically independent.

• The differential entropy of the AWGN noise is given by

ℎ 𝑛𝑚 =
1

2
log2 2𝜋𝑒𝜎𝑚

2



• The variance of 𝑦𝑚 is given by

𝜎𝑦𝑚
2 = 𝐸 𝑦𝑚

2

= 𝐸 𝑥 + 𝑛𝑚
2 = 𝐸 𝑥2 + 𝐸 𝑛𝑚

2 = 𝑃 + 𝜎𝑚
2

• The differential entropy of 𝑦𝑚 is expressed by

ℎ 𝑦𝑚 =
1

2
log2 2𝜋𝑒𝜎𝑦𝑚

2

=
1

2
log2 2𝜋𝑒 𝑃 + 𝜎𝑚

2

• The capacity of the main channel is the maximum of the mutual information 
subject to the power constraint, which is 

Cm = max 𝐼 𝑥, 𝑦𝑚 = ℎ 𝑦𝑚 − ℎ 𝑛𝑚 =
1

2
log2 2𝜋𝑒 𝑃 + 𝜎𝑚

2 −
1

2
log2 2𝜋𝑒𝜎𝑚

2

=
1

2
log2 1 +

𝑃

𝜎𝑚
2 bits / transmission



• The mutual information expression for the wiretap channel is 

𝐼 𝑥, 𝑦𝑤 = ℎ 𝑦𝑤 − ℎ(𝑦𝑤|𝑥)

= ℎ 𝑦𝑤 − ℎ(𝑥 + 𝑛𝑤|𝑥)

= ℎ 𝑦𝑤 − ℎ 𝑛𝑤 ,

which takes into account that 𝑥 and 𝑛w are statistically independent.

• The differential entropy of AWGN of the wiretap channel is given by

ℎ 𝑛𝑤 =
1

2
log2 2𝜋𝑒𝜎𝑤

2



• The variance of 𝑦𝑤 is given by

𝜎𝑦𝑤
2 = 𝐸 𝑦𝑤

2

= 𝐸 𝑥 + 𝑛𝑤
2 = 𝐸 𝑥2 + 𝐸 𝑛𝑤

2 = 𝑃 + 𝜎𝑤
2

• The differential entropy of 𝑦𝑤 is expressed by

ℎ 𝑦𝑤 =
1

2
log2 2𝜋𝑒𝜎𝑦𝑤

2

=
1

2
log2 2𝜋𝑒 𝑃 + 𝜎𝑤

2

• The capacity of the wiretap channel is the maximum of the mutual 
information subject to the power constraint, which is 

Cw = max 𝐼 𝑥, 𝑦𝑤 = ℎ 𝑦𝑤 − ℎ 𝑛𝑤 =
1

2
log2 2𝜋𝑒 𝑃 + 𝜎𝑤

2 −
1

2
log2 2𝜋𝑒𝜎𝑤

2

=
1

2
log2 1 +

𝑃

𝜎𝑤
2 bits / transmission



• The secrecy capacity is the difference between the capacity of the 
main and the wiretap channels:

𝐶𝑠 = 𝐶𝑚 − 𝐶𝑤

=
1

2
log2 1 +

𝑃

𝜎𝑚
2 −

1

2
log2 1 +

𝑃

𝜎𝑤
2

• Consequently, confidential communication is not possible unless the main 
channel has a better signal-to-noise ratio than the wiretap channel, i.e.,

𝑆𝑁𝑅𝑚 =
𝑃

𝜎𝑚
2 > 𝑆𝑁𝑅𝑤 =

𝑃

𝜎𝑤
2


