DATA-ADAPTIVE REDUCED-DIMENSION ROBUST CAPON BEAMFORMING

Samuel D. Somasundaram*, Nigel H. Parsons

General Sonar Studies
Thales Underwater Systems
Cheadle Heath, Stockport, Cheshire, U.K.

Peng Li, Rodrigo C. de Lamare

Communications Research Group
Department of Electronics
University of York, U.K.

Abstract

We present low complexity, quickly converging robust adaptive beamformers that combine robust Capon beamformer (RCB) methods and data-adaptive Krylov subspace dimensionality reduction techniques. We extend a recently proposed reduced-dimension RCB framework, which ensures proper combination of RCBs with any form of dimensionality reduction that can be expressed using a full-rank dimension reducing transform, providing new results for data-adaptive dimensionality reduction. We consider Krylov subspace methods computed with the Powers-of-R (PoR) and Conjugate Gradient (CG) techniques, illustrating how a fast CG-based algorithm can be formed by beneficially exploiting that the CGalgorithm yields a diagonal reduced-dimension covariance matrix. Our simulations show the benefits of the proposed approaches.

Index Terms- Robust adaptive beamforming, dimensionality reduction, Krylov subspace methods.

1. INTRODUCTION AND PRELIMINARIES

When implementing adaptive beamforming on arrays with large apertures and many elements that operate in dynamic environments, reduced-dimension techniques are often needed to speed-up the convergence of beamforming algorithms and reduce their computational complexity [1]. This is of fundamental importance in applications found in passive sonar and radar systems. Furthermore, robust adaptive techniques are often required to alleviate the deleterious effects of array steering vector (ASV) mismatch, e.g., caused by calibration and pointing errors. A popular class of these are the robust Capon beamformers (RCBs) that exploit ellipsoidal, including spherical, uncertainty sets of the ASV [2-6]. In [1,7], a framework for combining reduced-dimension and RCB techniques was derived, allowing rapidly converging, low complexity robust adaptive reduced-dimension robust Capon beamformers (RDRCBs) to be formed. A key contribution of that work was the derivation of a complex propagation theorem that allows a reduced-dimension ellipsoid to be derived from an element-space ellipsoid and any fullrank dimension reducing transform (DRT). The reduced-dimension ellipsoid may then be exploited by using RCB techniques in the reduced-dimension space. In $[1,7]$, only data-independent dimensionality reduction was considered. Here, we extend the framework developed in $[1,7]$ to data-adaptive dimensionality reduction, providing new results useful for exploiting in a variety of scenarios that occur in practical applications of robust beamforming algorithms.

The problem under consideration is the design of RDRCBs that are suitable for large arrays. We consider Krylov subspace

[^0]techniques for data-adaptive dimensionality reduction, which are computed by the Powers-of-R (PoR) [8-10] and Conjugate-Gradient (CG) $[11,12]$ algorithms. We then develop RDRCB versions exploiting the PoR and CG algorithms for large arrays. We exploit the fact that the CG algorithm results in a diagonal reduced-dimension sample covariance matrix (SCM) to give particularly low-complexity data-adaptive beamforming algorithms. Scenarios with large planar arrays are investigated along with both non-degenerate ellipsoidal and spherical uncertainty sets.

In the following, $E\{\cdot\},(\cdot)^{T},(\cdot)^{H},(\cdot)^{-1}$ and $(\cdot)^{\dagger}$ denote the expectation, transpose, Hermitian transpose, inverse and MoorePenrose pseudo-inverse operators, respectively. Furthermore, $\|\cdot\|_{2}$, $\mathbf{N}_{\mathbf{X}}^{l}, \boldsymbol{\Pi}_{\mathbf{X}}$ and $\boldsymbol{\Pi}_{\mathbf{X}}^{\perp}$ denote the two-norm, a basis for the left nullspace of \mathbf{X}, the orthogonal projector onto the range space of \mathbf{X} and the orthogonal projector onto the space perpendicular to the range space of \mathbf{X}, respectively. Moreover, $\mathbf{X} \geq 0$ or $\mathbf{X}>0$ mean that the Hermitian matrix \mathbf{X} is + ve semi-definite or + ve definite.

1.1. Robust Capon Beamforming

We model the k th element-space array snapshot $\mathbf{x}_{k} \in \mathbb{C}^{M}$ as

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{a}_{0} s_{0, k}+\mathbf{n}_{k} \tag{1}
\end{equation*}
$$

where $\mathbf{a}_{0}, s_{0, k}$ and \mathbf{n}_{k} denote the true signal-of-interest (SOI) ASV, the SOI complex amplitude and an additive zero-mean complex Gaussian vector that incorporates the noise and the interference. Assuming $s_{0, k}$ is zero mean and uncorrelated with \mathbf{n}_{k}, the array covariance matrix can be written as $\mathbf{R}_{\mathbf{x}}=E\left\{\mathbf{x}_{k} \mathbf{x}_{k}^{H}\right\}=$ $\sigma_{0}^{2} \mathbf{a}_{0} \mathbf{a}_{0}^{H}+\mathbf{Q}_{\mathbf{x}}$, where $\mathbf{R}_{\mathbf{x}}>0, \sigma_{0}^{2}=E\left\{\left|s_{0, k}\right|^{2}\right\}$ is the SOI power and $\mathbf{Q}_{\mathbf{x}}=E\left\{\mathbf{n}_{k} \mathbf{n}_{k}^{H}\right\}$ is the noise plus interference covariance matrix. In practice, $\mathbf{R}_{\mathbf{x}}$ is often replaced by the SCM

$$
\begin{equation*}
\hat{\mathbf{R}}_{\mathbf{x}}=\frac{1}{K} \sum_{k=1}^{K} \mathbf{x}_{k} \mathbf{x}_{k}^{H} \tag{2}
\end{equation*}
$$

formed from K snapshots. In [3] (see, also [6]), RCBs were derived by solving $\max _{\sigma^{2}, \mathbf{a}} \sigma^{2}$ s.t. $\mathbf{R}_{\mathbf{x}}-\sigma^{2} \mathbf{a a}^{H} \geq 0, \mathbf{a} \in \mathcal{E}_{M}(\overline{\mathbf{a}}, \mathbf{E})$, which can be reduced to [3]

$$
\begin{equation*}
\min _{\mathbf{a}} \mathbf{a}^{H} \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{a} \quad \text { s.t. } \quad \mathbf{a} \in \mathcal{E}_{M}(\overline{\mathbf{a}}, \mathbf{E}) \tag{3}
\end{equation*}
$$

The M-dimensional element-space ellipsoid $\mathcal{E}_{M}(\overline{\mathbf{a}}, \mathbf{E})$ is parameterized by $\overline{\mathbf{a}}$, which often represents the assumed ASV, and $\mathbf{E} \geq 0 \in$ $\mathbb{C}^{M \times M}$, and can be written as

$$
\begin{equation*}
\mathcal{E}_{M}(\overline{\mathbf{a}}, \mathbf{E})=\left\{\mathbf{a} \in \mathbb{C}^{M} \mid[\mathbf{a}-\overline{\mathbf{a}}]^{H} \mathbf{E}[\mathbf{a}-\overline{\mathbf{a}}] \leq 1\right\} \tag{4}
\end{equation*}
$$

For non-degenerate sets, $\mathbf{E}>0$. To solve (3), we assume that

$$
\begin{equation*}
\overline{\mathbf{a}}^{H} \mathbf{E} \overline{\mathbf{a}}>1 \tag{5}
\end{equation*}
$$

When $\mathbf{E}=(1 / \epsilon) \mathbf{I}$, (4) reduces to a spherical uncertainty set, $\|\mathbf{a}-\overline{\mathbf{a}}\|_{2}^{2} \leq \epsilon$, with radius $\sqrt{\epsilon}$ and (5) becomes $\|\overline{\mathbf{a}}\|_{2}^{2}>\epsilon$. For non-degenerate ellipsoids, we can factor $\mathbf{E}=\mathbf{E}^{\frac{H}{2}} \mathbf{E}^{\frac{1}{2}}$ and form $\breve{\mathbf{a}}=\mathbf{E}^{\frac{1}{2}} \mathbf{a}, \breve{\mathbf{a}}=\mathbf{E}^{\frac{1}{2}} \overline{\mathbf{a}}$ and $\breve{\mathbf{R}}=\mathbf{E}^{\frac{1}{2}} \mathbf{R} \mathbf{E}^{\frac{H}{2}}$. Then, (3) can be re-written using the following spherical constraint [4]

$$
\begin{equation*}
\min _{\breve{\mathbf{a}}} \breve{\mathbf{a}}^{H} \breve{\mathbf{R}}^{-1} \breve{\mathbf{a}} \text { s.t. }\|\breve{\mathbf{a}}-\breve{\mathbf{a}}\|_{2}^{2} \leq 1 . \tag{6}
\end{equation*}
$$

As shown in [4], (6) can be solved via the eigenvalue decomposition (EVD) of $\breve{\mathbf{R}}$, where computing the EVD is the most computationally expensive step. Denoting ă as the solution to (6), the solution to (3) is formed as $\hat{\mathbf{a}}_{0, \text { RCB }}=\mathbf{E}^{-\frac{1}{2}} \stackrel{\mathbf{a}}{\mathbf{a}}$. The RCB power estimate is formed as $\hat{\sigma}_{0, R C B}^{2}=\frac{\left\|\hat{\mathbf{a}}_{0, R \mathrm{RB}}\right\|_{2}^{2} / M}{\hat{\mathbf{a}}_{0, \mathrm{RCB}}^{H} \mathbf{R}_{\mathrm{x}}^{-1} \hat{\mathbf{a}}_{0, R C B}}$ and the weight vector as $\hat{\mathbf{w}}_{\text {RCB }}=\frac{\mathbf{R}_{\bar{x}}^{-1} \hat{\mathbf{a}}_{0, \mathrm{RCB}}}{\hat{\mathbf{a}}_{0, \mathrm{RCB}}^{H} \mathbf{R}_{\mathrm{x}}^{-1} \hat{\mathbf{a}}_{0, R C B}}$.

2. A DATA-ADAPTIVE REDUCED-DIMENSION ROBUST CAPON BEAMFORMING FRAMEWORK

In reduced-dimension methods, the k th element-space snapshot, $\mathbf{x}_{k} \in \mathbb{C}^{M}$, is projected onto an N-dimensional subspace (with $N<M$) using a DRT $\mathbf{D} \in \mathbb{C}^{M \times N}$, yielding the reduced-dimension snapshot, $\mathbf{y}_{k}=\mathbf{D}^{H} \mathbf{x}_{k}$, where $\mathbf{y}_{k} \in \mathbb{C}^{N}$. As shown in [1,7], this leads to the following RDRCB problem $\max _{\sigma^{2}, \mathbf{b}} \sigma^{2}$ s.t. $\mathbf{R}_{\mathbf{y}}-$ $\sigma^{2} \mathbf{b} \mathbf{b}^{H} \geq 0, \mathbf{b} \in \mathcal{E}_{N}(\overline{\mathbf{b}}, \mathbf{F})$, where $\mathbf{b}=\mathbf{D}^{H} \mathbf{a}, \mathbf{R}_{\mathbf{y}}=\mathbf{D}^{H} \mathbf{R}_{\mathbf{x}} \mathbf{D}$ and $\mathcal{E}_{N}(\overline{\mathbf{b}}, \mathbf{F})$ denote the reduced-dimension ASV, covariance and uncertainty ellipsoid, respectively, which can be reduced to

$$
\begin{equation*}
\min _{\mathbf{b}} \mathbf{b}^{H} \mathbf{R}_{\mathbf{y}}^{-1} \mathbf{b} \quad \text { s.t. } \quad \mathbf{b} \in \mathcal{E}_{N}(\overline{\mathbf{b}}, \mathbf{F}) . \tag{7}
\end{equation*}
$$

The following theorem is used to derive $\mathcal{E}_{N}(\overline{\mathbf{b}}, \mathbf{F})$.
Propagation Theorem: $[1,7]$ The propagation of the elementspace ellipsoid (4), with $\mathbf{E} \geq 0 \in \mathbb{C}^{M \times M}$, through the mapping $\mathbf{D}^{H} \mathbf{a}-\mathbf{I}_{N} \mathbf{b}=\mathbf{0}$, where $\mathbf{D} \in \mathbb{C}^{M \times N}$ has full column rank, yields the ellipsoid $\mathcal{E}_{N}(\overline{\mathbf{b}}, \mathbf{F})$ [see (4)] with

$$
\begin{align*}
& \overline{\mathbf{b}}=\mathbf{D}^{H} \overline{\mathbf{a}} \tag{8}\\
& \mathbf{F}=\mathbf{D}^{\dagger}\left(\mathbf{E}-\mathbf{E N}_{\mathbf{D}}^{l}\left[\left(\mathbf{N}_{\mathbf{D}}^{l}\right)^{H} \mathbf{E N}_{\mathbf{D}}^{l}\right]^{\dagger}\left(\mathbf{N}_{\mathbf{D}}^{l}\right)^{H} \mathbf{E}\right)\left(\mathbf{D}^{\dagger}\right)^{H} . \tag{9}
\end{align*}
$$

For data-adaptive dimensionality reduction, $\overline{\mathbf{b}}$ and \mathbf{F} need updating each time the DRT is updated. If we use (9) for updating, then we observe that $\mathbf{N}_{\mathbf{D}}^{l},\left[\left(\mathbf{N}_{\mathbf{D}}^{l}\right)^{H} \mathbf{E} \mathbf{N}_{\mathbf{D}}^{l}\right]^{\dagger}$ and \mathbf{D}^{\dagger} need calculating, which are expensive operations. Fortunately, if the original element-space ellipsoid is non-degenerate, such that $\mathbf{E}>0$, we can simplify (9). Then, $\left[\left(\mathbf{N}_{\mathbf{D}}^{l}\right)^{H} \mathbf{E N}_{\mathbf{D}}^{l}\right]^{\dagger}=\left[\left(\mathbf{N}_{\mathbf{D}}^{l}\right)^{H} \mathbf{E N}_{\mathbf{D}}^{l}\right]^{-1}$ and we can write

$$
\begin{align*}
\mathbf{F} & =\mathbf{D}^{\dagger} \mathbf{E}^{\frac{1}{2}} \boldsymbol{\Pi}_{\mathbf{E}^{\frac{1}{2}} \mathbf{N}_{\mathbf{D}}^{l}} \mathbf{E}^{\frac{1}{2}}\left(\mathbf{D}^{\dagger}\right)^{H} \\
& =\mathbf{D}^{\dagger} \mathbf{E}^{\frac{1}{2}} \boldsymbol{\Pi}_{\mathbf{E}^{-\frac{1}{2}} \mathbf{D}} \mathbf{E}^{\frac{1}{2}}\left(\mathbf{D}^{\dagger}\right)^{H} \\
& =\left[\mathbf{D}^{H} \mathbf{E}^{-1} \mathbf{D}\right]^{-1}, \tag{10}
\end{align*}
$$

where $\boldsymbol{\Pi}_{\mathbf{E}^{\frac{1}{2}} \mathbf{N}_{\mathbf{D}}^{l}}^{\perp}=\mathbf{I}-\mathbf{E}^{\frac{1}{2}} \mathbf{N}_{\mathbf{D}}^{l}\left[\left(\mathbf{N}_{\mathbf{D}}^{l}\right)^{H} \mathbf{E N}_{\mathbf{D}}^{l}\right]^{-1}\left(\mathbf{N}_{\mathbf{D}}^{l}\right)^{H} \mathbf{E}^{\frac{1}{2}}$. The $M \times M$ inverse \mathbf{E}^{-1} can be computed offline and therefore, the online computation of \mathbf{F} reduces to the computation of an $N \times N$ inverse. Note that, in general, we will need to compute $\mathbf{F}^{\frac{1}{2}}, \mathbf{F}^{\frac{H}{2}}$ and $\mathbf{F}^{-\frac{1}{2}}$ [see Section 1.1], which can all be obtained from the EVD of $\left[\mathbf{D}^{H} \mathbf{E}^{-1} \mathbf{D}\right]$. Note also that, in general, we will require the EVD of
$\breve{\mathbf{R}}_{\mathbf{y}}=\mathbf{F}^{\frac{1}{2}} \mathbf{R}_{\mathbf{y}} \mathbf{F}^{\frac{H}{2}}=\mathbf{F}^{\frac{1}{2}} \mathbf{D}^{H} \mathbf{R}_{\mathbf{x}} \mathbf{D F}{ }^{\frac{H}{2}}$. Thus, in general, two N dimensional EVDs will be required, one decomposing $\breve{\mathbf{R}}_{\mathbf{y}}$ and one decomposing $\left[\mathbf{D}^{H} \mathbf{E}^{-1} \mathbf{D}\right]$. When the element-space uncertainty set is a sphere, so that in (4), $\mathbf{E}=\frac{1}{\epsilon} \mathbf{I}$, then

$$
\begin{equation*}
\mathbf{F}=\frac{1}{\epsilon}\left(\mathbf{D}^{H} \mathbf{D}\right)^{-1} \tag{11}
\end{equation*}
$$

In this case, if the DRT is orthogonal, \mathbf{F} in (11) reduces to $\mathbf{F}=$ $\frac{1}{\epsilon}\left(\mathbf{D}^{H} \mathbf{D}\right)^{-1}=\frac{1}{\epsilon} \mathbf{I}_{N}$. Thus, if the element-space set is a sphere and the DRT is orthogonal, then \mathbf{F} can be written analytically and only one EVD is required. Denoting $\hat{\mathbf{b}}_{0}$ as the solution to (7), we form the RDRCB weight vector as

$$
\begin{equation*}
\hat{\mathbf{w}}_{\text {RDRCB }}=\frac{\mathbf{R}_{\mathbf{y}}^{-1} \hat{\mathbf{b}}_{0}}{\hat{\mathbf{b}}_{0}^{H} \mathbf{R}_{\mathbf{y}}^{-1} \hat{\mathbf{b}}_{0}} . \tag{12}
\end{equation*}
$$

The weight vector (12) operates on the reduced-dimension data, whilst $\hat{\mathbf{w}}_{\text {RDRCB,ES }}=\mathbf{D} \hat{\mathbf{w}}_{\text {RDRCB }}$ operates on the original elementspace data. An estimate of \mathbf{a}_{0} can be formed as $\hat{\mathbf{a}}_{0}=\left(\mathbf{D}^{H}\right)^{\dagger} \hat{\mathbf{b}}_{0}=$ $\mathbf{D}\left(\mathbf{D}^{H} \mathbf{D}\right)^{-1} \hat{\mathbf{b}}_{0}$, which indicates that $\hat{\mathbf{a}}_{0}$ belongs to the column space of \mathbf{D}. Given $\hat{\mathbf{a}}_{0}$, we form the RDRCB SOI power estimate as

$$
\begin{equation*}
\hat{\sigma}_{0, \mathrm{RDRCB}}^{2}=\frac{\left(\left\|\hat{\mathbf{a}}_{0}\right\|_{2}^{2} / M\right)}{\hat{\mathbf{b}}_{0}^{H} \mathbf{R}_{\mathbf{y}}^{-1} \hat{\mathbf{b}}_{0}}=\frac{\hat{\mathbf{b}}_{0}^{H}\left(\mathbf{D}^{H} \mathbf{D}\right)^{-1} \hat{\mathbf{b}}_{0}}{M \hat{\mathbf{b}}_{0}^{H} \mathbf{R}_{\mathbf{y}}^{-1} \hat{\mathbf{b}}_{0}} \tag{13}
\end{equation*}
$$

3. DATA-ADAPTIVE DIMENSIONALITY REDUCTION

Here, we consider Krylov methods that use the PoR and CG algorithms to compute the dimensionality reduction transform.

3.1. Non-Orthogonal PoR Krylov Basis

The standard PoR method for creating a Krylov DRT is to form

$$
\mathbf{D}=\left[\begin{array}{llll}
\frac{\overline{\mathbf{a}}}{\|\overline{\mathbf{a}}\|_{2}} & \frac{\hat{\mathbf{R}}_{\mathbf{x}} \overline{\mathbf{a}}}{\left\|\hat{\mathbf{R}}_{\mathbf{x}} \overline{\mathbf{a}}\right\|_{2}} & \cdots & \frac{\hat{\mathbf{R}}_{\mathrm{x}}^{N-1} \overline{\mathbf{a}}}{\left\|\hat{\mathbf{R}}_{\mathbf{x}}^{N-1} \overline{\mathbf{a}}\right\|_{2}} \tag{14}
\end{array}\right]
$$

which we term the non-orthogonal (NO) PoR (NO-PoR) DRT and can be formed iteratively. That is, starting with $\boldsymbol{\kappa}_{1}=\overline{\mathbf{a}}$, and $\mathbf{D}_{1}=$ $\frac{\bar{a}}{\|\bar{a}\|_{2}}$, for $i=2, \ldots, N$, calculate

$$
\begin{gather*}
\boldsymbol{\kappa}_{i}=\hat{\mathbf{R}}_{\mathbf{x}} \boldsymbol{\kappa}_{i-1} \tag{15}\\
\mathbf{d}_{i}=\frac{\boldsymbol{\kappa}_{i}}{\left\|\boldsymbol{\kappa}_{i}\right\|_{2}} \tag{16}
\end{gather*}
$$

and

$$
\mathbf{D}_{i}=\left[\begin{array}{ll}
\mathbf{D}_{i-1} & \mathbf{d}_{i} \tag{17}
\end{array}\right]
$$

The cost of calculating κ_{i} from κ_{i-1} is $\mathcal{O}\left(M^{2}\right)$ and calculating \mathbf{d}_{i} is $\mathcal{O}(M)$. Thus, calculating the NO-PoR DRT costs $\mathcal{O}(N M[M+$ 1]) flops. Due to the non-orthogonal nature of the DRT, two N dimensional EVDs are required to compute the NO-PoR RDRCB, even if the element-space set is spherical.

3.2. Orthogonal PoR Krylov Basis

In [9], the orthogonal PoR (O-PoR) Krylov subspace technique was proposed and suggested for applications where the model order is highly variable and time-varying. To form the O-PoR DRT, let $\boldsymbol{\kappa}_{1}=$ $\overline{\mathbf{a}}, \mathbf{D}_{1}=\overline{\mathbf{a}} /\|\overline{\mathbf{a}}\|_{2}$, and for $i=2, \ldots, N$, calculate

$$
\begin{equation*}
\boldsymbol{\kappa}_{i}=\boldsymbol{\Pi}_{\mathbf{D}_{i-1}}^{\perp} \hat{\mathbf{R}}_{\mathbf{x}} \boldsymbol{\kappa}_{i-1} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{d}_{i}=\frac{\boldsymbol{\kappa}_{i}}{\left\|\boldsymbol{\kappa}_{i}\right\|_{2}} \tag{19}
\end{equation*}
$$

and

$$
\mathbf{D}_{i}=\left[\begin{array}{ll}
\mathbf{D}_{i-1} & \mathbf{d}_{i} \tag{20}
\end{array}\right],
$$

where $\boldsymbol{\Pi}_{\mathbf{D}_{i-1}}^{\perp}=\mathbf{I}-\sum_{k=1}^{i-1} \mathbf{d}_{k} \mathbf{d}_{k}^{H}$ can be updated efficiently in $\mathcal{O}\left(M^{2}\right)$ operations using $\Pi_{\mathbf{D}_{i}}^{\perp}=\Pi_{\mathbf{D}_{i-1}}^{\perp}-\mathbf{d}_{i} \mathbf{d}_{i}^{H}$. Given $\Pi_{\mathbf{D}_{i-1}}^{\perp}$, updating κ_{i} and \mathbf{d}_{i} costs $\mathcal{O}\left(2 M^{2}\right)$ and $\mathcal{O}(M)$. Thus, the calculation of one new column of \mathbf{D} costs $\mathcal{O}\left(3 M^{2}+M\right)$, so that calculation of the O-PoR DRT costs $\mathcal{O}(N M[3 M+1])$, which is roughly three times more expensive than calculating the NO-PoR DRT. Since the resulting DRT is orthogonal, as discussed earlier, for spherical uncertainty sets only one EVD is required to compute the RDRCB.

3.3. Conjugate Gradient Method

Using the approach outlined in [11], the CG DRT can be formed by setting, $\mathbf{d}_{1}=\overline{\mathbf{a}}, \mathbf{r}_{1}=-\overline{\mathbf{a}}$, and then for $i=2, \ldots, N$, update using

$$
\begin{align*}
\alpha_{i} & =-\frac{\mathbf{d}_{i}^{H} \mathbf{r}_{i}}{\mathbf{d}_{i}^{H} \hat{\mathbf{R}}_{x} \mathbf{d}_{i}}, \tag{21}\\
\mathbf{r}_{i+1} & =\mathbf{r}_{i}+\alpha_{i} \hat{\mathbf{R}}_{\mathbf{x}} \mathbf{d}_{i} \tag{22}\\
\beta_{i} & =\frac{\mathbf{d}_{i}^{H} \hat{\mathbf{R}}_{\mathbf{x}} \mathbf{r}_{i+1}}{\mathbf{d}_{i}^{H} \hat{\mathbf{R}}_{\mathbf{x}} \mathbf{d}_{i}} \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{d}_{i+1}=-\mathbf{r}_{i+1}+\beta_{i} \mathbf{d}_{i} . \tag{24}
\end{equation*}
$$

The cost of computing $\hat{\mathbf{R}}_{\mathrm{x}} \mathbf{d}_{i}$ is $\mathcal{O}\left(M^{2}\right)$. Given $\hat{\mathbf{R}}_{\mathrm{x}} \mathbf{d}_{i}$, the cost of computing α_{i} is $\mathcal{O}(2 M)$. Updating \mathbf{r}_{i+1} is $\mathcal{O}(M)$. The cost of computing β_{i}, given $\hat{\mathbf{R}}_{\mathbf{x}} \mathbf{d}_{i}$ and the denominator of α_{i} is $\mathcal{O}(M)$. Then, updating \mathbf{d}_{i+1} is $\mathcal{O}(M)$. Thus, the total cost to compute a new column of the CG DRT is $\mathcal{O}\left(M^{2}+5 M\right)$. Thus, the total cost to calculate the CG DRT is $\mathcal{O}(N M[M+5])$, which is almost the same as calculating the NO-PoR DRT. Since the CG DRT is nonorthogonal, we would expect that we would need two EVDs to compute the CG-RDRCB. However, in the next section, we illustrate how a fast CG-based RDRCB can be obtained by exploiting that the CG DRT diagonalizes the SCM so that

$$
\begin{equation*}
\hat{\mathbf{R}}_{\mathbf{y}}=\mathbf{D}^{H} \hat{\mathbf{R}}_{\mathbf{x}} \mathbf{D}=\boldsymbol{\Lambda}_{\mathrm{CG}}, \tag{25}
\end{equation*}
$$

where $\boldsymbol{\Lambda}_{\text {CG }}$ is a diagonal matrix and $\mathbf{D}=\left[\mathbf{d}_{1} \ldots \mathbf{d}_{N}\right]$ is the DRT.

4. FAST CONJUGATE-GRADIENT RDRCB

Here, we illustrate how only one N-dimensional EVD is required to solve the CG-RDRCB under either spherical or non-degenerate uncertainty. In general, we will be solving

$$
\begin{equation*}
\min _{\mathbf{b}} \mathbf{b}^{H} \mathbf{R}_{\mathbf{y}}^{-1} \mathbf{b} \text { s.t. }[\mathbf{b}-\overline{\mathbf{b}}]^{H} \mathbf{F}[\mathbf{b}-\overline{\mathbf{b}}] \leq 1 . \tag{26}
\end{equation*}
$$

Usually, at this stage one would transform with $\mathbf{F}^{\frac{1}{2}}$ to give a spherical uncertainty set. However, from (25), we observe that $\mathbf{R}_{\mathbf{y}}^{-1}=$ $\Lambda_{\text {CG }}^{-1}$, so that (26) can be written as

$$
\begin{equation*}
\min _{\mathbf{b}} \mathbf{b}^{H} \boldsymbol{\Lambda}_{\mathrm{CG}}^{-1} \mathbf{b} \text { s.t. }[\mathbf{b}-\overline{\mathbf{b}}]^{H} \mathbf{F}[\mathbf{b}-\overline{\mathbf{b}}] \leq 1 . \tag{27}
\end{equation*}
$$

Noting (10), we let $\mathbf{M}=\boldsymbol{\Lambda}_{\mathrm{CG}}^{-\frac{1}{2}} \mathbf{D}^{H} \mathbf{E}^{-1} \mathbf{D} \boldsymbol{\Lambda}_{\mathrm{CG}}^{-\frac{H}{2}}, \check{\mathbf{b}}=\boldsymbol{\Lambda}_{\mathrm{CG}}^{-\frac{1}{2}} \mathbf{b}$ and $\check{\overline{\mathbf{b}}}=\boldsymbol{\Lambda}_{\mathrm{CG}}^{-\frac{1}{2}} \overline{\mathbf{b}}$, and rewrite (27) as

$$
\begin{equation*}
\min _{\overline{\mathbf{b}}} \check{\mathbf{b}}^{H} \check{\mathbf{b}} \text { s.t. }[\check{\mathbf{b}}-\check{\overline{\mathbf{b}}}]^{H} \mathbf{M}^{-1}[\check{\mathbf{b}}-\check{\mathbf{b}}] \leq 1 \tag{28}
\end{equation*}
$$

We form the Lagrangian using the real Lagrange multiplier μ

$$
\begin{equation*}
L(\check{\mathbf{b}}, \mu)=\check{\mathbf{b}}^{H} \check{\mathbf{b}}+\mu\left([\check{\mathbf{b}}-\check{\mathbf{b}}]^{H} \mathbf{M}^{-1}[\check{\mathbf{b}}-\check{\mathbf{b}}]-1\right) \tag{29}
\end{equation*}
$$

Setting $\frac{\partial L(\check{\mathbf{b}}, \mu)}{\partial \breve{\mathbf{b}}^{H}}=\mathbf{0}$ yields

$$
\begin{equation*}
\hat{\mathbf{b}}=\left(\frac{\mathbf{M}}{\mu}+\mathbf{I}\right)^{-1} \check{\overline{\mathbf{b}}}=\check{\overline{\mathbf{b}}}-\left[\mu \mathbf{M}^{-1}+\mathbf{I}\right]^{-1} \check{\overline{\mathbf{b}}}, \tag{30}
\end{equation*}
$$

where we have used the matrix inversion lemma [13] to obtain the term after the second equality. Using (30) in the constraint equation in (28) yields

$$
\begin{equation*}
h(\hat{\tilde{\mathbf{b}}}, \mu)=\check{\underline{\mathbf{b}}}^{H}\left[\mu \mathbf{M}^{-1}+\mathbf{I}\right]^{-1} \mathbf{M}^{-1}\left[\mu \mathbf{M}^{-1}+\mathbf{I}\right]^{-1} \check{\overline{\mathbf{b}}} . \tag{31}
\end{equation*}
$$

Letting $\mathbf{M}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{H}$ denote the EVD of \mathbf{M}, where $\boldsymbol{\Lambda}=$ $\operatorname{diag}\left\{\left[\begin{array}{lll}\lambda_{1} & \ldots & \lambda_{N}\end{array}\right]\right\}$ is a diagonal matrix containing the eigenvalues in non-increasing order on its main diagonal and \mathbf{U} contains the associated eigenvectors, we can write (31) as

$$
\begin{equation*}
h(\hat{\tilde{\mathbf{b}}}, \mu)=\sum_{n=1}^{N} \frac{\lambda_{n}\left|c_{n}\right|^{2}}{\left(\mu+\lambda_{n}\right)^{2}} \tag{32}
\end{equation*}
$$

where c_{n} is the nth element of $\mathbf{c}=\mathbf{U}^{H} \check{\overline{\mathbf{b}}}$. Since we can write $\mathbf{M}=\mathbf{M}^{\frac{1}{2}} \mathbf{M}^{\frac{H}{2}}$, where $\mathbf{M}^{\frac{1}{2}}=\boldsymbol{\Lambda}_{\mathrm{CG}}^{-\frac{1}{2}} \mathbf{D}^{H} \mathbf{E}^{-\frac{1}{2}}$, we know that \mathbf{M} is non-negative definite $[13,14]$ and therefore, it has non-negative eigenvalues. Thus, $h(\hat{\mathbf{b}}, \mu)$ is a monotonically decreasing function of $\mu>0$. For $\mu=0$, we obtain

$$
\begin{equation*}
h(\hat{\tilde{\mathbf{b}}}, 0)=\check{\mathbf{b}}^{H} \mathbf{M}^{-1} \check{\check{\mathbf{b}}}=\overline{\mathbf{b}}^{H}\left[\mathbf{D}^{H} \mathbf{E}^{-1} \mathbf{D}\right]^{-1} \overline{\mathbf{b}}=\overline{\mathbf{b}}^{H} \mathbf{F} \overline{\mathbf{b}} \tag{33}
\end{equation*}
$$

Note that, to exclude a non-trivial solution, we require that $\overline{\mathbf{b}}^{H} \mathbf{F} \overline{\mathbf{b}}>$ 1. Since we require $h(\hat{\mathbf{b}}, \mu)=1$, it is clear that $\mu \neq 0$. Further, it is clear that $\lim _{\mu \rightarrow \infty} h(\hat{\tilde{\mathbf{b}}}, \mu)=0$, therefore, there is a unique solution $\mu>0$ to $h(\hat{\mathbf{b}}, \mu)=1$, which can be found, e.g., by Newton search. Once μ has been found, $\hat{\mathrm{b}}$ is found using (30) and the solution to (27) is formed as $\hat{\mathbf{b}}_{0}=\boldsymbol{\Lambda}_{\mathrm{CG}}^{\frac{1}{2}} \hat{\mathbf{b}}$. We can use $\hat{\mathbf{b}}_{0}$ and $\mathbf{R}_{\mathbf{y}}^{-1}=\Lambda_{\mathrm{CG}}^{-1}$ in (12) to form the adaptive weights. To form the power estimate using (13), we need to evaluate $\left[\mathbf{D}^{H} \mathbf{D}\right]^{-1}$. If the uncertainty set is spherical, then we can evaluate this quantity from the EVD of M and $\boldsymbol{\Lambda}_{\mathrm{CG}}$, which are already available. For a general, non-degenerate ellipsoid this quantity will need computing.

Fig. 1 shows the relative complexities as N is increased from 1 to M, for $M=320$, illustrating that the CG-based algorithms are significantly cheaper than the other methods.

5. NUMERICAL EXAMPLES

In this section, we assess the performance of the proposed algorithms through numerical examples. For an $M=320, \lambda / 2$-spaced planar array with $M_{h}=40$ elements in a row and $M_{v}=8$ rows, we simulated data with covariance matrix $\mathbf{R}_{\mathbf{x}}=\sigma_{0}^{2} \mathbf{a}_{0} \mathbf{a}_{0}^{H}+\mathbf{Q}_{\mathbf{x}}$, with $\mathbf{Q}_{\mathbf{x}}=\sum_{i=1}^{d} \sigma_{i}^{2} \mathbf{a}_{i} \mathbf{a}_{i}^{H}+\sigma_{s}^{2} \mathbf{I}+\sigma_{\text {iso }}^{2} \mathbf{Q}_{\text {iso }}$, where $\mathbf{Q}_{\mathbf{x}}$ consists of terms due to d zero-mean uncorrelated interferences, where for the i th interferer σ_{i}^{2} and \mathbf{a}_{i} denote the source power and ASV, a term modeling sensor noise $\sigma_{s}^{2} \mathbf{I}$, with sensor noise power σ_{s}^{2}, and a term modeling an isotropic ambient noise $\sigma_{\text {iso }}^{2} \mathbf{Q}_{\text {iso }}$, with power $\sigma_{\text {iso }}^{2}$. The isotropic noise covariance is given by $\left[\mathbf{Q}_{\text {iso }}\right]_{m, n}=\operatorname{sinc}\left[\pi g_{m n}\right]$,

Fig. 1. Relative complexities of different data-dependent RDRCBs.
where $g_{m n}$ is the distance between the m th and nth sensors in units of wavelength. The i th source (SOI or interference) ASV is simulated according to $\mathbf{a}_{i}=\mathbf{a}\left(\overline{\boldsymbol{\theta}}_{i}+\delta_{i}\right)+\sigma_{e, i} \mathbf{e}_{i}$, where \mathbf{e}_{i} is a zero-mean complex circularly symmetric random vector with unit norm. When $\delta_{i} \neq 0$ an AOA error exists and when $\sigma_{e, i} \neq 0$, an arbitrary error exists. Unless stated otherwise, in the following, we have assumed $d=3, \bar{\theta}_{0}=89.9^{\circ}, \bar{\phi}_{0}=94.8^{\circ}, \sigma_{0}^{2}=40 \mathrm{~dB}, \bar{\theta}_{1}=70^{\circ}, \bar{\phi}_{1}=90^{\circ}$, $\sigma_{1}^{2}=30 \mathrm{~dB}, \bar{\theta}_{2}=88^{\circ}, \bar{\phi}_{2}=90^{\circ}, \sigma_{2}^{2}=20 \mathrm{~dB}, \bar{\theta}_{3}=130^{\circ}, \bar{\phi}_{3}=$ 90° and $\sigma_{3}^{2}=15 \mathrm{~dB}$. We assume δ_{0} is a random vector such that the azimuth angle perturbation is uniformly distributed over the interval $[-0.72,0.72]^{\circ}$ and the elevation angle perturbation is uniformly distributed over $[-3.6,3.6]^{\circ}$, whilst for $i=1$ to $d, \delta_{i}=0$. For $i=0$ to $d, \sigma_{e, i}=1$. Therefore, the SOI ASV is subjected to both AOA and arbitrary errors. We assume azimuth and elevation beams spaced at $1 / M_{h}$ and $1 / M_{v}$ in cosine space and, using the methods described in [15], design tight-spherical uncertainty sets and non-degenerate minimum volume ellipsoidal (NDMVE) sets, whose error sphere radii are set to $\check{\epsilon}=10$, based on the expected AOA errors given the spacing of the beams. We refer the reader to [15] for further details. We assume that $N=5$ and that only $K=80$ snapshots are available to estimate the SCM (2), representing a highly snapshot deficient scenario, not uncommon in, e.g., passive sonar. Fig. 2 shows the azimuth spectra, illustrating that the RDRCB variants are able to correctly estimate the power, whereas the non-robust MVDRbased variants suffer severe SOI cancellation. Fig. 3 shows the output SINR versus the SOI power, obtained using MC $=200$ Monte Carlo simulations. The results show that the CG and O-Krylov results are the same, whilst the NO-Krylov results diverge for very high SOI powers. This divergence is a result of numerical instability in the NO-PoR algorithm. It is clear that the robust RDRCB versions, exploiting spherical or non-degenerate NDMVE sets, provide much better robustness at higher SOI powers compared to the standard MVDR-based implementations.

6. REFERENCES

[1] S. D. Somasundaram, "Reduced Dimension Robust Capon Beamforming for Large Aperture Passive Sonar Arrays," IET Radar, Sonar Navig., vol. 5, no. 7, pp. 707-715, Aug. 2011.
[2] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, "Robust Adaptive Beamforming Using Worst-Case Performance Opti-

Fig. 2. Azimuth spectra, for the horizontal elevation, where the true AOAs and powers are shown by the black circles.

Fig. 3. SINR versus SOI power.
mization: A Solution to the Signal Mismatch Problem," IEEE Trans. Signal Process., vol. 51, no. 2, pp. 313-324, Feb. 2003.
[3] P. Stoica, Z. Wang, and J. Li, "Robust Capon Beamforming," IEEE Sig. Process. Lett., vol. 10, no. 6, pp. 172-175, Jun. 2003.
[4] J. Li, P. Stoica, and Z. Wang, "On Robust Capon Beamforming and Diagonal Loading," IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1702-1715, Jul. 2003.
[5] R. G. Lorenz and S. P. Boyd, "Robust Minimum Variance Beamforming," IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1684-1696, May 2005.
[6] J. Li and P. Stoica, Robust Adaptive Beamforming, Wiley, New York, 2005.
[7] S. D. Somasundaram, "A Framework for Reduced Dimension Robust Capon Beamforming," in Proc. IEEE Workshop on Statistical Signal Processing, Nice, France, Jun. 28-30 2011, pp. 425-428.
[8] M. L. Honig and J. S. Goldstein, "Adaptive reduced-rank in-
terference suppression based on the multistage wiener filter," IEEE Trans. on Communications, vol. 50, pp. 986-994, 2002.
[9] H. Ge, I. P. Kirsteins, and L. L. Scharf, "Data Dimension Reduction Using Krylov Subspaces: Making Adaptive Beamformers Robust to Model Order-Determination," in $31^{\text {st }}$ IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, Fr, May. 2006, vol. 4, pp. 1001-1004.
[10] M. Haardt R. C. de Lamare and R. Sampaio-Neto, "Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression," IEEE Trans. Sig. Proc., vol. 56, no. 2, pp. 2470-2482, 2008.
[11] G. Dietl, "Conjugate Gradient Implementation of Multi-Stage Nested Wiener Filter for Reduced-Dimension Processing," in MSc. Dissertation, Munich University of Technology, Munich, Germany, May 2001.
[12] L. Wang and R. C. de Lamare, "Constrained adaptive filtering algorithms based on conjugate gradient techniques for beamforming," IET Signal Processing, vol. 4, pp. 686-697, 2010.
[13] P. Stoica and R. L. Moses, Spectral Analysis of Signals, Prentice Hall, 2005.
[14] G. Strang, Linear Algebra and its Applications (3rd Edition), Harcourt Brace Jovanovich, 1988.
[15] S. D. Somasundaram, A. Jakobsson, and N. H. Parsons, "Robust and Automatic Data-Adaptive Beamforming for MultiDimensional Arrays," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4642-4656, Nov. 2012.

[^0]: *This work was supported by MOD under contract from the Centre for Defence Enterprise.

