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Abstract
In this work, we propose buffer-aided distributed space-time coding (DSTC)
schemes and relay selection algorithms for cooperative direct-sequence
code-division multiple access (DS-CDMA) systems. We first devise a relay
pair selection algorithm that can form relay pairs and then select the
optimum set of relays among both the source-relay phase and the
relay-destination phase according to the signal-to-interference-plus-noise
ratio (SINR) criterion. Multiple relays equipped with dynamic buffers are then
introduced in the network, which allows the relays to store data received from
the sources and wait until the most appropriate time for transmission. A
greedy relay pair selection algorithm is then developed to reduce the high
cost of the exhaustive search required when a large number of relays are
involved. The proposed techniques effectively improve the quality of the
transmission with an acceptable delay as the buffer size is adjustable. An
analysis of the computational complexity of the proposed algorithms, the
delay and a study of the greedy algorithm are then carried out. Simulation
results show that the proposed dynamic buffer-aided DSTC schemes and
algorithms outperform prior art.

Keywords: DS-CDMA networks; cooperative systems; relay selection;
greedy algorithms; space time coding; dynamic buffer

Introduction
The ever-increasing demand for performance and reliability in wireless communications
has encouraged the development of numerous innovative techniques. Cooperative diversity
is one of the key techniques that has been considered in recent years [1, 2, 3, 4] as an effec-
tive tool to improving transmission performance and system reliability. Several cooperative
schemes have been proposed [5, 6, 7], and among the most effective ones are Amplify-and-
Forward (AF), Decode-and-Forward (DF) [7, 8, 9, 10] and various distributed space-time
coding (DSTC) techniques [11, 12, 13, 14, 15, 16]. For an AF protocol, relays cooperate
and amplify the received signals with a given transmit power. With the DF protocol, relays
decode the received signals and then forward the re-encoded message to the destination.
DSTC schemes exploit spatial and temporal transmit diversity by using a set of distributed
antennas. With DSTC multiple redundant copies of data are sent to the receiver to improve
the quality and reliability of data transmission. Applying DSTC at the relays provides mul-
tiple processed signal copies to compensate for the fading, helping to achieve the attainable
diversity and coding gains so that the interference can be more effectively mitigated. As a
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result, better performance can be achieved when appropriate signal processing and relay
selection strategies are adopted.

Prior and Related Work
In cooperative relaying systems, strategies that employ multiple relays have been recently
introduced in [17, 18, 19, 20, 21, 22, 23]. The aim of relay selection is to find the optimum
relay so the signal can be transmitted and received with increased reliability. Recently, a
new cooperative scheme with relays equipped with buffers has been introduced and ana-
lyzed in [24, 25, 26, 27]. In [24], a brief introduction to buffer-aided relaying protocols for
wireless network is described and some practical challenges are discussed. A further study
of the throughput and diversity gain of the buffer-aided system has been subsequently in-
troduced in [25]. In [26], a selection technique that is able to achieve the full diversity gain
by selecting the strongest available link in every time slot is detailed. In [27], a max-max
relay selection (MMRS) scheme for half-duplex relays with buffers is proposed. In partic-
ular, relays with the optimum source-relay links and relay-destination links are chosen and
controlled for transmission and reception, respectively.

Contributions
In this work, we propose buffer-aided DSTC schemes and relay pair selection algorithms
for cooperative direct-sequence code-division multiple access (DS-CDMA) systems. In the
proposed cooperative schemes, a relay pair selection algorithm that selects the optimum
set of relays according to the signal-to-interference-plus noise ratio (SINR) criterion is per-
formed at the initial stage. In particular, if an exhaustive search is performed then all relay
pairs are examined and compared, while for the proposed greedy relay pair selection a re-
duced number of relay pairs are evaluated. Therefore, a link combination associated with
the optimum relay group is then selected, which determines if the corresponding buffers
are ready for either transmission or reception. After that, the data transmission of the co-
operative DS-CDMA system begins. In particular, the direct transmission from the first
phase occurs between the source and the selected relay combination when the buffers are
in the reception mode. On the other hand, when the corresponding buffers are switched
to the transmission mode, the proposed DSTC scheme is performed for each user from
the selected relay combination to the destination during the second phase. With dynamic
buffers equipped at each of the relays, the proposed buffer-aided schemes take advantage
of the storage of multiple blocks of data so the most appropriate ones can be selected at
a suitable time instant. The key advantage of introducing the dynamic buffers in the sys-
tem is their ability to store multiple blocks of data according to a chosen criterion so that
the most appropriate ones can be selected at a suitable time instant with the highest effi-
ciency. Furthermore, when referring to the cooperative DS-CDMA systems, the problem of
multiple access interference (MAI) that arises from nonorthogonal received waveforms in
DS-CDMA systems needs to be faced. The use of buffers and relay selection can effectively
help in the interference mitigation by allowing transmissions performed over channels with
better propagation conditions.

The contributions of this paper are summarized as follows:
• We propose a buffer-aided DSTC scheme that is able to store enough data packets

in the corresponding buffer entries according to different criteria so that more appro-
priate symbols can be selected in a suitable time instant.
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• We propose a relay selection algorithm that chooses a relay pair rather than a single
relay as the DSTC scheme needs the cooperation of a pair of antennas.

• A greedy relay pair selection technique is then introduced to reduce the high cost
brought by the exhaustive search that is required when a large number of relays are
involved in the transmission.

• We propose a dynamic approach so that the buffer size is adjustable according to
different situations.

• An analysis of the computational complexity, the average delay and the greedy algo-
rithm are also presented.

The rest of this paper is organized as follows. In Section II, the system model is de-
scribed. In Section III, the dynamic buffer-aided cooperative DSTC schemes are explained.
In Section IV, the greedy relay pair selection strategy is proposed. In Section V, the dy-
namic buffer design is given and explained. The computational complexity is studied, the
analysis of the delay and the greedy algorithm are then developed in Section VI. In Sec-
tion VII, simulation results are presented and discussed. Finally, conclusions are drawn in
Section VIII.

DSTC Cooperative DS-CDMA System Model
We consider the uplink of a synchronous DS-CDMA system with K users, L relays
equipped with finite-size buffers capable of storing J packets and N chips per symbol that
experiences channels with flat fading. The system is equipped with a cooperative protocol
at each relay and we assume that the transmit data are organized in packets comprising P

symbols. The received signals are filtered by a matched filter and sampled at chip rate to
obtain sufficient statistics. As shown in Fig. 1, the whole transmission is divided into two
phases. In the first phase, the source transmits the data to each of the relay over two con-
secutive time instants, the decoded data over two time slots, b̂rld,k(2i − 1) and b̂rld,k(2i),
is stored at relay l and is prepared to send data to the destination. A DSTC scheme is then
employed at the following phase, where the corresponding 2 × 2 Alamouti [28, 29, 30]
detected symbol matrix over relay m and relay n for user k among two consecutive time
instants is given by

Bk =

[
b̂rmd,k(2i− 1) −b̂∗rnd,k(2i)

b̂rnd,k(2i) b̂∗rmd,k(2i− 1)

]
. (1)

Consequently, the received signal for user k from relay m and n to the destination over two
consecutive time slots yields the 2N × 1 received vectors described by

yrm,nd
(2i− 1) = hk

rmdb̂rmd,k(2i− 1) + hk
rndb̂rnd,k(2i) + n(2i− 1), (2)

yrm,nd
(2i) = hk

rndb̂
∗
rmd,k(2i− 1)− hk

rmdb̂
∗
rnd,k(2i) + n(2i), (3)

where hk
rld

= akrldskhrld,k denotes an N × 1 effective signature vector for user k from the
l-th relay to the destination with m,n ∈ [1, 2, ..., L]. The quantity akrld represents the k-th
user’s amplitude from the l-th relay to the destination, sk = [sk(1), sk(2), ...sk(N)]T is the
N ×1 signature sequence for user k and hrld,k are the complex channel fading coefficients
for user k from the l-th relay to the destination. The N×1 noise vectors n(2i−1) and n(2i)
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contain samples of zero mean complex Gaussian noise with variance σ2, b̂rld,k(2i−1) and
b̂rld,k(2i) are the decoded symbols at the output of relay l after using a cooperative protocol
at time instants (2i− 1) and (2i), respectively. Equivalently, (2) and (3) can be rewritten as

yrm,nd
= Hk

rm,ndbrm,nd,k + nrm,nd, (4)

where yrm,nd
=

[
yTrm,nd

(2i− 1), (y∗
rm,nd

(2i))T
]T

represents the received signal from re-
lay m and n over two time instants. The 2 N x 2 Alamouti matrix with the effective signa-
tures for user k is given by

Hk
rm,nd =

 hk
rmd hk

rnd

(hk
rnd)

∗ − (hk
rmd)

∗

 , (5)

the 2 × 1 vector brm,nd,k =
[
b̂rmd,k(2i− 1), b̂rnd,k(2i)

]T
is the processed vector when

the DF protocol is employed at relays m and n at the corresponding time instant, and
nrm,nd =

[
n(2i− 1)T , (n∗(2i))T

]T is the noise vector that contains samples of zero mean
complex Gaussian noise with variance σ2.

At the destination, various multiuser detection (MUD) schemes can be employed. For
linear MUD, the detected symbols can be obtained as given by

b̂rm,nd,k = Q
(
(wk

rm,nd)
Hyrm,nd

)
(6)

where wk
rm,nd

is the receive filter for user k at the destination and Q
()

represents the
decision device.

Similarly, maximum likelihood (ML) detection can also be applied at the destination.
The ML detector solves the following problem

b̃rm,nd,k = arg min∥yrm,nd
− Hk

rm,ndbrm,nd,k∥2, (7)

and the symbols obtained by the ML algorithm when the Alamouti scheme is used are
computed as given by

b̃rmd,k(2i− 1) = (hk
rmd)

Hyrm,nd,k
(2i− 1) + (hk

rnd)
T y∗rm,nd,k

(2i)

=
(
(hk

rmd)
Hhk

rmd + (hk
rnd)

T (hk
rnd)

∗
)
b̂rmd,k(2i− 1) +

(
(hk

rmd)
Hn(2i− 1) + (hk

rnd)
T n∗(2i)

)

b̃rnd,k(2i) = (hk
rnd)

Hyrm,nd,k
(2i− 1)− (hk

rmd)
T y∗rm,nd,k

(2i)

=
(
(hk

rnd)
Hhk

rnd + (hk
rmd)

T (hk
rmd)

∗
)
b̂rnd,k(2i) +

(
(hk

rnd)
Hn(2i− 1)− (hk

rmd)
T n∗(2i)

)
(8)

Consequently, after testing all possible symbols for ML detection, the most likely detection
symbols are selected. This scheme groups the relays into different pairs and a more reliable
transmission can be achieved if proper relay pair selection is performed.
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Proposed Buffer-aided Cooperative DSTC Scheme
In this section, we present a buffer-aided cooperative DSTC scheme, where each relay is
equipped with a buffer so that the processed data can be stored and the buffer can wait until
the channel pair associated with the best performance is selected. Consequently, processed
data are stored at the corresponding buffer entries and then re-encoded when the appropriate
time interval comes. Specifically, the buffer with size J can store up to J packets of data
and can either forward or wait for the best time instant to send data. This method effectively
improves the quality of the transmission, guarantees that the most suitable signal is selected
from the buffer entries and sent to the destination with a higher reliability.

The algorithm begins with a SINR calculation for all possible channel combinations. In
the case of the Alamouti code, every two relays are combined into a group and all possible
lists of corresponding channel pairs are considered. Thus, when referring to the SINR for a
specific relay pair, the signal transmitted or received by other relays are seen as interference.
The corresponding SINR is then calculated and recorded as follows:

SINRsrm,n =

K∑
k=1

wH
skrm

ρskrmwskrm + wH
skrn

ρskrnwskrn

K∑
k=1

L∑
l=1

l̸=m,n

wH
skrl

ρskrlwskrl + σ2wH
skrm

wskrm + σ2wH
skrn

wskrn

, (9)

SINRrm,nd =

K∑
k=1

(wk
rmd)

Hρkrmdwk
rmd + (wk

rnd
)Hρkrndwk

rnd

K∑
k=1

L∑
l=1

l ̸=m,n

(wk
rld

)Hρkrldwk
rld

+ σ2(wk
rmd)

Hwk
rmd + σ2(wk

rnd
)Hwk

rnd

, (10)

where ρskrl = hH
skrl

hskrl is the correlation coefficient of the desired user k between the
source and relay l, ρkrld = (hk

rld
)Hhk

rld
is the correlation coefficient for user k from relay

l to the destination. hskrl = askrlskhskrl is the channel vector from user k to relay l. In
Eq. (9), SINRsrm,n denotes the SINR for the combined paths from all users to relay m and
relay n, wskrl is the detector used at the relays. When the RAKE receiver is adopted at the
corresponding relay, wskrl is expressed as

wskrl = hskrl , (11)

similarly, if the linear minimum mean-square error (MMSE) receiver [31] is employed at
the relays, wskrl is equal to

wskrl =

( K∑
k=1

hskrlh
H
skrl

+ σ2I
)−1

hskrl , (12)

hskrl = askrlskhskrl is the effective signature vector from user k to the relay l. Similarly,
in Eq. (10), SINRrm,nd represents the SINR for the combined paths from relay m and
relay n to the destination. The receiver filter wk

rld
is employed by the detector used at the

destination. When the RAKE receiver is adopted at the destination, wk
rld

is expressed as

wk
rld

= hk
rld

. (13)
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Similarly, if the linear MMSE receiver [31, 32, 33, 34] is employed at the relays, wk
rld

is
equal to

wk
rld

=

( K∑
k=1

hk
rld

(hk
rld

)H + σ2I
)−1

hk
rld

. (14)

The above equations correspond to a cooperative system under the assumption that signals
from all users are transmitted to the selected relays m and n. Both RAKE and MMSE
receivers are considered here for the purpose of complexity, it should be mentioned that
other detectors [35, 36, 37, 38, 39] can also be used. We then sort all these SINR values in
a decreasing order and select the one with the highest SINR as given by

SINRp,q = arg max
m,n∈[1,2,...,L]

{SINRsrm,n ,SINRrm,nd}, (15)

where SINRp,q denotes the highest SINR associated with the relay p and relay q. After
the highest SINR corresponding to the combined paths is selected, two different situations
need to be considered as follows.

Source-relay link:

If the highest SINR belongs to the source-relay link, then the signal sent to the target
relays p and q over two time instants is given by

ysrl(2i− 1) =

K∑
k=1

hskrlbk(2i− 1) + n(2i− 1), l ∈ [p, q], (16)

ysrl(2i) =
K∑

k=1

hskrlbk(2i) + n(2i), l ∈ [p, q]. (17)

The received signal is then processed by the detectors as the DF protocol is adopted. There-
fore, the decoded symbols that are stored and sent to the destination from the l-th relay are
obtained as

b̂rld,k(2i− 1) = Q(wH
skrl

ysrl(2i− 1)), (18)

and

b̂rld,k(2i) = Q(wH
skrl

ysrl(2i)), (19)

where Q(·) denotes the slicer. After that, the buffers are switched to the reception mode, the
decoded symbol is consequently stored in the corresponding buffer entries. Clearly, these
operations are performed when the corresponding buffer entries are not full, otherwise, the
second highest SINR is chosen as given by

SINRpre
p,q = SINRp,q (20)
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SINRu,v ∈ max{SINRsrm,n , SINRrm,nd} \ SINRpre
p,q, (21)

where SINRu,v denotes the second highest SINR associated with the updated relay pair
Ωu,v . {SINRsrm,n , SINRrm,nd} \ SINRpre

p,q denotes a complementary set where we drop
the SINRpre

p,q from the link SINR set {SINRsrm,n , SINRrm,nd}. Consequently, the above
process repeats in the following time instants.

Relay-destination link:

If the highest SINR is selected from the relay-destination link, in the following two con-
secutive time instants, the buffers are switched to transmission mode and the decoded sym-
bol for user k is re-encoded with the Alamouti matrix as in (1) so that DSTC is performed
from the selected relays p and q to the destination as given by

yrp,qd,k(2i− 1) = hk
rpdb̂rpd,k(2i− 1) + hk

rqdb̂rqd,k(2i) + n(2i− 1), (22)

yrp,qd,k(2i) = hk
rqdb̂

∗
rpd,k(2i− 1)− hk

rpdb̂
∗
rqd,k(2i) + n(2i). (23)

The received signal is then processed by the detectors at the destination. Clearly, the above
operation is conducted under the condition that the corresponding buffer entries are not
empty, otherwise, the second highest SINR is chosen according to (20) and (21) and the
above process is repeated.

It is worth noting that for the purpose of simplicity, the above technique employed fixed-
size buffers at the relays so that the transmission delay can be controlled with accurate
estimation. The key advantage of the proposed scheme is its ability to select the most ap-
propriate symbols before they are forwarded to the next phase. In practice, the performance
highly depends on the buffer size J , the number of users K and the accuracy of the detec-
tion at the relays. The proposed buffer-aided cooperative DSTC scheme is detailed in Table
1.

Greedy Relay Pair Selection Technique
In this section, a greedy relay pair selection algorithm is introduced. For this relay selection
problem [40], the exhaustive search of all possible relay pairs is the optimum way to ob-
tain the best performance. However, the major problem that prevents us from applying this
method when a large number of relays involved in the transmission is its considerable com-
putational complexity. When L relays (L/2 relay pairs if L is an even number) participate
in the transmission, a cost of L(L − 1) link combinations is required as both source-relay
links and relay-destination links need to be considered. Consequently, this fact motivates
us to seek alternative approaches that can achieve a good balance between performance and
complexity.

We propose a greedy relay pair selection algorithm that can approach the global optimum
with a reduced computational complexity. The algorithm starts with a single link selection
where we examine the SINR for each of the links as given by

SINRsrp =

K∑
k=1

wH
skrp

ρskrpwskrp

K∑
k=1

L∑
l=1
l ̸=p

wH
skrl

ρskrlwskrl + σ2wH
skrp

wskrp

, (24)
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Table 1 The proposed buffer-aided cooperative DSTC scheme

% List all possible relay pairs
% Select the combination with the highest SINR
SINRp,q = max{SINRsrm,n ,SINRrm,nd}
%Source-relay link

if SINRp,q ∈ [SINRsrm,n ],m, n ∈ [1, L]
if the buffers entries are not full

ysrl
(2i− 1) =

K∑
k=1

hskrlbk(2i− 1) + nsrl (2i− 1), l ∈ [p, q],

ysrl
(2i) =

K∑
k=1

hskrlbk(2i) + nsrl(2i), l ∈ [p, q].

%Apply the detectors at relay n and relay q to obtain
b̂rld,k(2i− 1) and b̂rld,k(2i) and store them
in the corresponding buffer entries (l ∈ [p, q])
break

else %choose the second highest SINR
SINRpre

p,q = SINRp,q

SINRp,q ∈ max{SINRsrm,n ,SINRrm,nd} \ SINRpre
p,q

end
else %Relay-destination link

SINRp,q ∈ [SINRrm,nd],m, n ∈ [1, L]
if the buffers entries are not empty

yrp,qd,k
(2i− 1) = hk

rpd
b̂rpd,k(2i− 1) + hk

rqd
b̂rqd,k(2i) + n(2i− 1),

yrp,qd,k
(2i) = hk

rqd
b̂∗rpd,k(2i− 1)− hk

rpd
b̂∗rqd,k(2i) + n(2i).

%Apply the detectors/ML at the destination for detection
break

else%choose the second highest SINR
SINRpre

p,q = SINRp,q

SINRp,q ∈ max{SINRsrm,n , SINRrm,nd} \ SINRpre
p,q

end
end

%Re-calculated the SINR for different link combinations and
repeat the above process

SINRrpd =

K∑
k=1

(wk
rpd

)Hρkrpdwk
rpd

K∑
k=1

L∑
l=1
l̸=p

(wk
rld

)Hρkrldwk
rld

+ σ2(wk
rpd

)H(wk
rpd

)

, (25)

where SINRsrp and SINRrpd denote the SINR from the source to an arbitrary relay p and
from relay p to the destination, respectively. We then select the link with the highest SINR
and its associated relay q is recorded as the base relay and given by

SINRbase
q = arg max

p∈[1,2,...,L]
{SINRsrp , SINRrpd}. (26)

Consequently, all possible relay pairs involved with base relay q are listed as Ωp,q, where
p ∈ [1, L], p ̸= q. The SINR for these (L− 1) relay pairs are then calculated as in (9) and
(10). After that, the optimum relay pair Ωn,q is chosen according to (15) and the algorithm
begins if the corresponding buffers are available for either transmission or reception.

Transmission mode:
When the buffers are switched to the transmission mode, a buffer space check is conducted
firstly to ensure the corresponding buffers are not empty. We then have,

Ωbuffer
n ̸= ∅, n ∈ [1, 2, ..., L], (27)
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and

Ωbuffer
q ̸= ∅, q ∈ [1, 2, ..., L], (28)

where Ωbuffer
n and Ωbuffer

q represents the buffer n and the buffer q associated with the relay
pair Ωn,q. In this situation, the DSTC scheme is performed afterwards as in (22) and (23)
through the selected relay pair. Conversely, empty buffer entries indicate that the selected
relay pair is not capable of forwarding the data to the destination. In this case, we drop this
relay pair, select another relay pair among the remaining (L − 2) candidate pairs with the
highest SINR as given by

SINRm,q = arg max
p ̸=n,q

p∈[1,2,...,L]

{SINRp,q}, (29)

The algorithm then repeats the new selected relay pair Ωm,q. Otherwise, if all possible relay
pairs Ωp,q (p ̸= n, q, p ∈ [1, L]) are not available, we then reset the base relay associated
with the second highest SINR as described by

SINRpre
q = SINRbase

q , (30)

SINRbase
q = max{SINRsrp , SINRrpd} \ SINRpre

q , (31)

where {SINRsrp , SINRrpd} \ SINRpre
q denotes a complementary set where we drop the

SINRpre
q from the link SINR set {SINRsrp ,SINRrpd}. After this selection process, a new

relay pair is chosen and the transmission procedure repeats as above according to the buffer
status.

Reception mode:
When the buffers are switched to reception mode, similarly, a buffer space check is per-
formed initially to ensure there is enough space for storing the processed data, namely,

Ωbuffer
n ̸= U, n ∈ [1, 2, ..., L], (32)

and

Ωbuffer
q ̸= U, q ∈ [1, 2, ..., L], (33)

where U represents a full buffer set. In this case, if the buffers are not full, then, the sources
send the data to the selected relay pair Ωn,q over two time instants according to (16) and
(17). Otherwise, the algorithm reselects a new relay pair as in (29), (30) and (31).

In summary, the relay pair selection algorithm solves a combinatorial problem using
exhaustive searches by comparing the SINR of all links and combinations. Alternatively, a
low-complexity algorithm (for example, the proposed greedy algorithm) could be used to
reduce the computational complexity of the pair selection task.

The greedy relay pair selection algorithm is show in Table 2.
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Table 2 The proposed greedy relay pair selection algorithm

%Choose a single relay with the highest SINR that
corresponds to a specific base relay q
SINRbase

q = max{SINRsrp ,SINRrpd}, p ∈ [1, L]
For p = 1 : L % all relay pairs associated with relay q

if p ̸= q
Ωrelaypair = [p, q]

% when the links belong to the source-relay phase

SINRsrp,q =

K∑
k=1

wH
skrp

ρskrpwskrp+wH
skrq

ρskrq wskrq

K∑
k=1

L∑
l=1

l̸=p,q

wH
skrl

ρskrl
wskrl

+σ2wH
skrp

wskrp+σ2wH
skrq

wskrq

,

% when the links belong to the relay-destination phase

SINRrp,qd =

K∑
k=1

(wk
rpd)

Hρkrpdwk
rpd+(wk

rqd)
Hρkrqdwk

rqd

K∑
k=1

L∑
l=1

l̸=p,q

(wk
rld

)Hρk
rld

wk
rld

+σ2(wk
rpd

)Hwk
rpd

+σ2(wk
rqd

)Hwk
rqd

,

% record each calculated relay pair SINR
end

end
SINRn,q = max{SINRsrp,q , SINRrp,qd}
if%Reception mode

if the buffers entries are not full

ysrn,q
(2i− 1) =

K∑
k=1

hskrn,q bk(2i− 1) + n(2i− 1),

ysrn,q
(2i) =

K∑
k=1

hskrn,q bk(2i) + n(2i).

%Apply the detectors at relay n and relay q to obtain
b̂rn,qd,k(2i− 1) and b̂rn,qd,k(2i) and store them
in the corresponding buffer entries

else %choose another link with the second highest SINR
SINRpre

q = SINRbase
q

SINRbase
q ∈ max{SINRsrp ,SINRrpd} \ SINRpre

q

%Repeat the above greedy relay pair selection process
end

else%Transmission mode
if the buffers entries are not empty

yrn,qd,k
(2i− 1) = hk

rndb̂rnd,k(2i− 1) + hk
rqd

b̂rqd,k(2i) + n(2i− 1),

yrn,qd,k
(2i) = hk

rqd
b̂∗rnd,k(2i− 1)− hk

rndb̂
∗
rqd,k

(2i) + n(2i).
%Apply the detectors/ML at the destination for detection

else%choose another link with the second highest SINR
SINRpre

q = SINRbase
q

SINRbase
q ∈ max{SINRsrp , SINRrpd} \ SINRpre

q

%Repeat the above greedy relay pair selection process
end

end
%Repeat the above greedy relay pair selection process
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Proposed Dynamic Buffer Scheme
The size J of the buffers also plays a key role in the performance of the system, which
improves with the increase of the size as buffers with greater size allow more data pack-
ets to be stored. In this case, extra degrees of freedom in the system or choices for data
transmission are available. Hence, in this section, we release the limitation on the size of
the buffer to further explore the additional advantage brought by dynamic buffer design
where the buffer size can vary according to different criteria such as the input SNR and the
channel condition. When considering the input SNR, larger buffer space is required when
the transmission is operated in low SNR region so that the most proper data can be selected
among a greater number of candidates. On the other hand, in the high SNR region, a small
buffer size is employed as most of the processed symbols are appropriate when compared
with the situation in the low SNR region. In this work, we assume that the buffer size J is
inversely proportional to the input SNR, namely, with the increase of the SNR, the buffer
size decreases automatically. The algorithm for calculating the buffer size J is detailed in
Table. 3.

Table 3 The algorithm to calculate the buffer size J

If SNRcur = SNRpre + d1

then Jcur = Jpre − d2,

where SNRcur and SNRpre represent the input SNR after and before
increasing its value,

Jcur and Jpre denote the corresponding buffer size before and after
decreasing its value,

d1 and d2 are the step sizes for the SNR and the buffer size, respectively.

The buffer size can be determined by the current selected channel pair condition. In par-
ticular, we set a threshold γ that denotes the channel power, if the current selected channel
power is under γ, the buffer size increases as more candidates need to be saved in order to
select the best symbol, on the contrary, if the current selected channel pair power exceeds
γ, we decrease the buffer size as there is a high possibility that the transmission is not
significantly affected. The approach based on the channel power for varying the buffer can
be summarized in Table. 4.

Table 4 The algorithm for calculate buffer size J based on the channel power

If min ∥hskrl∥2 ≤ γ or min ∥hrld∥
2 ≤ γ, l ∈ [1, L]

Jcur = Jpre + d3
else

Jcur = Jpre − d3
end

where d3 represents the step size when adjusting the buffer size.

Analysis of the Proposed Algorithms
In this section, we analyse the computational complexity required by the proposed relay
pair selection algorithm, the problem of the average delay brought by the proposed schemes
and algorithms, followed by the discussion of the proposed greedy algorithm.
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Computational Complexity
The proposed greedy relay pair selection method considers the combination effect of the
channel condition so that the DSTC algorithm can be applied with a collection of relays.
When compared with the exhaustive search that lists all possible subsets of relay pairs, less
than L(L− 1) types of link combinations (associated with the corresponding L(L− 1)/2

relay pairs) are examined as the proposed method explores the link combination when both
single relay and relay pair are involved. For the greedy relay selection strategy, the pro-
posed scheme explores a moderate to large number of relay pairs at each stage, however,
the algorithm stops when the corresponding entries satisfy the current system requirement
(transmission mode or reception mode), in this case, the maximum number of relay pair
that we have to examine is (L− 1) + (L− 2) + ...+ 1 = L(L− 1)/2. On the other hand,
when consider the exhaustive search, the total number of relay pairs that must be verified is
C2

L = L(L− 1)/2. It should be mentioned that when calculating the associated SINR, we
have to double the number of calculation flops as we have to consider and compare both
the SINR for source-relay links and relay-destination links. The detailed computational
complexity is listed in Table. 5. When compare these two algorithms, the proposed greedy
relay pair selection algorithm is an order of magnitude less costly. The complexly of chan-
nel estimation and receive filter computation are also listed in Table. 5. It can been seen
that, when a large number of relays participate in the transmission, with a careful control
of the buffer size J , a good balance of complexity and performance is achieved.

Table 5 Computational complexity

Processing Algorithm Multiplications Additions
Relay pair Exhaustive 7KNL3 (2KN +K)L3 + 2L
selection Search −7KNL2 −(2KN +K + 2)L2

Relay pair Greedy 21KNL2 6KNL2 + 3KL2

selection Search −7KNL −3KL− L+ 1
Channel Exhaustive Search (2N + 1)KL (2N − 1)KL
estimation Greedy Search
Receive filter Exhaustive Search 4NJ (4N − 2)J
computation Greedy Search
(RAKE)

Average Delay Analysis
The improvement of the performance brought by the buffer-aided relays comes at the
expense of the transmission delay. Hence, it is of great importance to investigate the
performance-delay trade-off of the proposed buffer-aided DSTC schemes [41]. In this sub-
section, we analyze the average delay of the proposed schemes and algorithms.

We assume that the source always has data to transmit and the delay is mostly caused
by the buffers that equip the relays. Let T (i) and Q(i) denote the delay of packets of M
symbols transmitted by the source and the queue length at time instant i for DSTC schemes,
respectively.

According to Little’s law [42], the average delay, which is also the average time that
packets are stored in the corresponding buffer is given by

T =
Q

Ra
time slots, (34)

where Q = E[Q(i)] represents the average queue length at the relay buffer, Ra (in pack-
ets/slot) is the average arrival rate into the queue.
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In this analysis, we assume both the source and relay transmit at a constant instantaneous
rate R (R = 1 packets/slot = M symbols/slot) when they are selected for transmission
and the transmission is operated with one packets of M symbols per each time slot. We also
for simplicity define the error probability for the source-relay link and relay-destination
link as Psr and Prd (P = Psr = Prd), respectively. For a buffer with size J (J packets are
stored in the buffer), the average queue length is described by [41]

Q =

J∑
j=0

jPGj = JPGJ , (35)

where PGj represents the buffer state probability that has been explained in [41], PGJ =

Pfull denotes the probability when the buffer is full. Similarly, we then define PG0 =

Pempty as the probability for empty buffer. Therefore, the average arrival rate into the buffer
can be calculated as

Ra = (1− PGJ
)P + PG0

P, (36)

Similarly, the average departure rate from the buffer is given by as

Rd = (1− PG0)P + PGJP. (37)

Consequently, the above equations can be further derived as

T =
Q

Ra
=

PGJ

(1− PGJ
)P + PG0P

J packets/slot (38)

Clearly, the above results demonstrate that the transmission delay is linear with the buffer
size.

Apart from that, the DSTC scheme will introduce further delay. For the DSTC scheme,
the relay pair need to wait an extra time slot for the second packets to arrive. Then, the
relay pair can transmit the packets to the destination using DSTC scheme. In other word,
the DSTC scheme takes two time–slots to transmit two packets, as a result, it brings extra
delay obviously [43, 44, 45]. Meanwhile, the relay pair selection processing also brings
delay. For both exhaustive and greedy selection, they need to calculate the best relay pair
from the candidates pool. This processing need extra computation time until the best relay
pair is selected.

Greedy Relay Selection Analysis
The proposed greedy relay pair selection method is a stepwise forward selection algorithm,
where we optimize the selection based on the SINR criterion at each stage. We begin the
process with a single link selection where we examine the SINR for each of the links and
choose the link with the highest SINR, the associated relay is then selected and the candi-
date relay pair is generated by adding the remaining relays, respectively. The optimum relay
pair is subsequently selected according to the SINR criterion. Since buffers are equipped
at each relay, it is possible that the corresponding relay pair entries are not available for
either transmission or reception. In this case, the candidate relay pair from the first step
with the second highest SINR is then chosen. Clearly, if all remaining candidate relay pairs
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are not selected due to the unavailability of the associated buffers, we reset the base relay
and newly generated relay pairs are grouped in the second stage by adding other relays,
respectively. Obviously, the number of all possible relay pair candidates at each stage is
reduced gradually as the discarded relay pair from previous stages will not appear in the
current stage. Hence, the relay pairs grouped at each step are presented as follows:

Stage 1 : {Ω1
1,Ω

1
2, ...,Ω

1
L−1},

Stage 2 : {Ω2
1,Ω

2
2, ...,Ω

2
L−2},

...

Stage s : {Ωs
1,Ω

s
2, ...,Ω

s
L−s},

...

Stage L− 1 : {Ω1
1},

where Ωs
i denotes the i-th relay pair at the s-th stage. Clearly, the maximum number of

relay pairs that we have to consider for all L − 1 stages is (L − 1) + (L − 2) + ... + 1 =

L(L− 1)/2, since this algorithm stops when selected relay pair with its associated buffers
are available, the associated complexity for the proposed greedy relay selection strategy is
less than L(L− 1)/2.

Compared with the exhaustive search, which is considered as the optimum relay selection
method, the number of relay pairs examined for the processing is given by

Stage 1 : {Ω1
1,Ω

1
2, ...,Ω

1
L(L−1)

2

},

The total number of relay combinations can then be calculated as C2
L = L(L − 1)/2,

where each term Cn
m = m(m−1)...(m−n+1)

n! represents the number of combinations that we
choose, i.e., n elements from m elements(m ≥ n).

Because the number of relay pairs that we have to consider for the greedy algorithm is
less than exhaustive search, the proposed greedy algorithm provides a much lower cost in
terms of flops and running time when compared with the exhaustive search. In fact, the idea
behind the proposed algorithm is to choose relay pairs in a greedy fashion. At each stage,
we select the set of relays with the highest SINR. Then we consider the availability of the
buffers, if the corresponding buffer entries do not satisfy the system mode, we reselect the
relay pair in the following stages. After several stages, the algorithm is able to identify the
optimum (or a near optimum) relay set that can satisfy the current transmission. To this
end, we state the following proposition.

Proposition: the proposed greedy algorithm achieves an SINR that is upper bounded as
follows:

SINRΩgreedy ≤ SINRΩexhaustive (39)

Proof:
We investigate the upper bound by comparing the proposed algorithm and the exhaustive

search at the first stage. At stage 1, since Ωs
greedy is a candidate subset of the exhaustive
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search, we have

Ω1
exhaustive = max {Ω1

exhautive(i), i ∈ [1, C2
L]}, (40)

Ωs
greedy ∈ {Ω1

exhautive(i), i ∈ [1, C2
L]}, (41)

where Ω1
exhaustive(i) represents the i-th relay pair selected at the 1st stage of the exhaustive

relay selection method.
Assuming both strategies select the same relay pair and the greedy algorithm is conducted

at stage s, we have

Ωs
greedy = {p, q},

Ω1
exhaustive = {p, q},

this situation again leads to the equality that SINRΩs
greedy

= SINRΩ1
exhaustive

. In contrast, if
the exhaustive search chooses another relay set that belongs to {Ω1

exhautive(i), i ∈ [1, C2
L]}

that provides a higher SINR, clearly, Ωs
greedy ̸= Ω1

exhaustive, we can then obtain the in-
equality that SINRΩs

greedy
≤ SINRΩ1

exhaustive
.

Simulations
In this section, a simulation study of the proposed buffer-aided DSTC techniques for coop-
erative systems is carried out. The DS-CDMA network uses randomly generated spreading
codes of length N = 16. The corresponding channel coefficients are modeled as uniformly
random variables and are normalized to ensure the mean signal value over all transmis-
sions is unity for all analyzed techniques. We assume perfectly known channels at the
receivers and we also present an example with channel estimation. Equal power alloca-
tion is employed. We consider packets with 1000 BPSK symbols and step size d = 2

when evaluating the dynamic schemes. We consider fixed buffer–aided exhaustive/greedy
(FBAE/FBAG) relay pair selection strategies (RPS) and dynamic buffer–aided exhaus-
tive/greedy (DBAE/DBAG) RPS.

In order to verify that the fixed buffer-aided relay pair DSTC cooperative scheme con-
tributes to the performance gain, we compare the performance between the situations of
the transmission with fixed size buffers and without buffers in Fig. 3. The first example
shown in Fig. 3(a) illustrates the performance comparison between the proposed buffer-
aided DSTC transmission with different RPS and DSTC transmission with different RPS
and no buffers when better decoding techniques are adopted. The system has 3 users, 6 re-
lays, perfect decoding is assumed at each relay and the matched filter is adopted at the des-
tination. Specifically, for the no relay selection (RS) DSTC technique, all relays participate
in the DSTC transmission (every two consecutive relays are working in pairs). Similarly,
for the non buffer-aided schemes, the RPS process only occurs during the second phase
(relay-destination), where the random selection algorithm chooses an arbitrary relay pair,
the proposed greedy algorithm chooses two relays associated with two optimum relay-
destination links and the exhaustive relay pair schemes examines all possible relay pairs
and selects the one with the highest SINR. In contrast, the proposed buffer-aided scheme
automatically selects the relay pair over both source-relay links and relay-destination links.
Moreover, with the help of the buffers, the most appropriate data are sent and better overall
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system performance can be achieved. As for different decoding methods, we have also
evaluated the BER performance when the ML detector is applied at the destination and
the results show that ML detector significantly outperforms the simple RAKE receiver, as
expected. Apart from that, the performance for a single-user buffer-aided exhaustive RPS
DSTC is presented here for comparison purposes. Consequently, the results reveal that our
proposed buffer-aided strategies (J = 6) perform better than the one without buffers. In
particular, Fig. 3(a) also illustrates that our proposed buffer-aided schemes can approach
the single-user bound very closely.

Another example depicted in Fig. 3(b) compares the proposed buffer-aided DSTC trans-
mission with different RPS and non-buffer aided DSTC transmission with different RPS.
In this scenario, where we apply the linear MMSE receiver at each of the relay and the
RAKE at the destination in an uplink cooperative scenario with 3 users, 6 relays and buffer
size J = 6. Similarly, the system gain brought by the use of the ML detector at the des-
tination and the performance bounds for a single-user buffer-aided exhaustive RPS DSTC
are presented for comparison purposes. The results also indicate that the proposed buffer-
aided strategies (J = 6) have the highest diversity gain when compared with the ones
without buffers. Furthermore, the BER performance curves of the greedy RPS algorithm
approaches the exhaustive RPS, while keeping the complexity reasonably low for practical
use.

In the second example, we compare the proposed buffer-aided DSTC transmission with
different RPS strategies and DSTC transmission with RPS and no buffers with channel esti-
mation. The results are shown in Fig. 4. In this scenario, where we apply the linear MMSE
receiver at each of the relay and the RAKE at the destination in an uplink cooperative sce-
nario with 3 users, 6 relays and buffer size J = 6. Clearly, it can been seen that, due to the
introduction of channel estimation, the performance for all algorithms are slightly degraded
when compared with the assumption of perfect CSI. However, our proposed buffer-aided
strategies (J = 6) still perform better than the one without buffers when referring to the
diversity gain.

The third example illustrates the performance comparison for the fixed buffer-aided de-
sign in Fig. 5(a) and dynamic buffer-aided design in Fig. 5(b) in a cooperative DSTC system
with different relay pair selection strategies (RPS). The overall network has 3 users, 6 re-
lays, the linear MMSE receiver is applied at each relay and the RAKE receiver is adopted
at the destination. For dynamic algorithms, the buffer size J decreases when approaching
higher SNR region. In both figures, the buffer-aided exhaustive RPS algorithm performs
better than the greedy one. When we compare the two figures in Fig. 5, the dynamic buffer
techniques are more flexible than the fixed buffer ones as they explore the most suitable
buffer size for the current transmission according to a given criterion. In this case, there
is a greater possibility to select the most appropriate data when the transmission is op-
erated in poor condition as more candidates are stored in the buffer space. On the other
hand, the transmission delay can be avoided when the outer condition improves as most of
the candidates are appropriate. Simulation results verify these points and indicate that the
DBAE/DBAG RPS outperform the FBAE/FBAG (J = 8) RPS and the advantage increases
when adopting the single user case. Furthermore, it can also be seen that the BER perfor-
mance curves of the greedy relay pair selection algorithm [46] approaches the exhaustive
search, whilst keeping the complexity reasonably low for practical utilization.

The fourth example compares the FBAE/FBAG RPS scheme in Fig. 6(a) and the
DBAE/DBAG RPS strategy in Fig. 6(b) in a DSTC cooperative system, where we apply the
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linear MMSE receiver at each of the relay and the RAKE receiver at the destination in an
uplink cooperative scenario with 3 users, 6 relays and fixed buffer size J = 8. Similarly, the
performance for a single-user buffer-aided exhaustive RPS DSTC is presented for compar-
ison purposes. In both figures, the buffer-aided exhaustive search RPS algorithm performs
better than the greedy one. The average dynamic buffer size J is highly dependant on the
threshold γ and the step size d, clearly, with careful control on these parameters, better
performance can be achieved. The simulation results also indicate that the proposed dy-
namic design perform better than the fixed buffer size ones when we apply the same relay
selection method, as depicted in Fig. 6.

The algorithms are then assessed in terms of the BER versus buffer size J in Fig. 7 with
a fixed SNR=15dB. In this scenario, we assume perfect decoding at the relays as accurate
detection at relays would highly influence the following transmission and apply the RAKE
at the destination. The results indicate that the overall BER degrades as the size of the buffer
increases. It also shows that with larger buffer sizes, the system experiences diminishing
returns in performance. In this case, a good balance between the transmission delay and
the buffer size can be obtained when the buffer size is carefully considered.

In the last part, we demonstrate the influence of the dynamic buffer size on the average
delay. We examine via simulations the proposed algorithms by measuring the average de-
lay in packets versus the packet size in symbols in Fig. 8. This figure presents the average
delay for different algorithms, when a certain number of symbols (that form packets) are
transmitted. For the average delay, we measure the number of extra packets that are em-
ployed when compared with transmitted symbols. There exists a linear relation between the
average delay and transmitted symbols, as outlined in the delay analysis. This is because
for each certain number of transmitted packets, the average delay is similar. As a result,
when the transmitted symbols increase with a fixed numbers of packets, the average delay
also increases with a similar numbers of packets. Therefore, with the increase of trans-
mitted packet size, the average delay increases together. When we compare the proposed
algorithms, the dynamic buffer size reduces the average delay. In particular, the proposed
multiuser buffer–aided greedy DSTC algorithm with dynamic buffer scheme has the lowest
delay, followed by the greedy DSTC algorithm, the exhaustive DSTC algorithm with and
without the dynamic buffer scheme.

Conclusions
In this work, we have presented a dynamic buffer-aided DSTC scheme for cooperative
DS-CDMA systems with different relay pair selection techniques. With the help of the
dynamic buffers, this approach effectively improves the transmission performance and help
to achieve a good balance between bit error rate (BER) and delay. We have developed
algorithms for relay-pair selection based on an exhaustive search and on a greedy approach.
A dynamic buffer design has also been devised to improve the performance of buffer-
aided schemes. Simulation results show that the performance of the proposed scheme and
algorithms can offer good gains as compared to previously reported techniques.
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Figure legends
Figure 1: Uplink of a cooperative DS-CDMA system.
Figure 2: Proposed buffer-aided cooperative scheme.
Figure 3(a):Performance comparison for buffer-aided scheme and non buffer-aided scheme in cooperative DS-CDMA
system with perfect decoding at the relay, RAKE at the destination.
Figure 3(b):Performance comparison for buffer-aided scheme and non buffer-aided scheme in cooperative DS-CDMA
system with MMSE at the relay, RAKE at the destination.
Figure 4: Performance comparison for buffer-aided scheme and non buffer-aided scheme in cooperative DS-CDMA
system with MMSE at the relay, RAKE at the destination with channel estimation applied.
Figure 5(a): Performance comparison for fixed buffer design (input SNR criterion).
Figure 5(b): Performance comparison for dynamic buffer design (input SNR criterion).
Figure 6(a): Performance comparison for fixed buffer design (channel power criterion).
Figure 6(b): Performance comparison for dynamic buffer design (channel power criterion).
Figure 7: BER versus size of the buffers for uplink cooperative system.
Figure 8: Packet size comparison for uplink cooperative system.
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