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Abstract
This paper presents adaptive link selection algorithms for distributed
estimation and considers their application to wireless sensor networks and
smart grids. In particular, exhaustive search–based least–mean–squares
(LMS) / recursive least squares (RLS) link selection algorithms and
sparsity–inspired LMS / RLS link selection algorithms that can exploit the
topology of networks with poor–quality links are considered. The proposed
link selection algorithms are then analyzed in terms of their stability,
steady–state and tracking performance, and computational complexity. In
comparison with existing centralized or distributed estimation strategies, key
features of the proposed algorithms are: 1) more accurate estimates and
faster convergence speed can be obtained; and 2) the network is equipped
with the ability of link selection that can circumvent link failures and improve
the estimation performance. The performance of the proposed algorithms for
distributed estimation is illustrated via simulations in applications of wireless
sensor networks and smart grids.

Keywords: Adaptive link selection; distributed estimation; wireless sensor
networks; smart grids

Introduction
Distributed signal processing algorithms have become a key approach for statistical infer-
ence in wireless networks and applications such as wireless sensor networks and smart
grids [1, 2, 3, 4, 5]. It is well known that distributed processing techniques deal with the
extraction of information from data collected at nodes that are distributed over a geographic
area [1]. In this context, for each specific node, a set of neighbor nodes collect their local
information and transmit the estimates to a specific node. Then, each specific node com-
bines the collected information together with its local estimate to generate an improved
estimate.

Prior and Related Work
Several works in the literature have proposed strategies for distributed processing which
include incremental [1, 6, 7, 8], diffusion [2, 9], sparsity–aware [3, 10] and consensus–
based strategies [11]. With the incremental strategy, the processing follows a Hamiltonian
cycle, i.e., the information flows through these nodes in one direction, which means each
node passes the information to its adjacent node in a uniform direction. However, in order to
determine an optimum cyclic path that covers all nodes (considering the noise, interference,
path loss and channels between neighbor nodes), this method needs to solve an NP–hard
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problem. In addition, when any of the nodes fails, data communication through the cycle is
interrupted and the distributed processing breaks down [1].

In distributed diffusion strategies [2, 10], the neighbors for each node are fixed and the
combining coefficients are calculated after the network topology is deployed and starts
its operation. One potential risk of this approach is that the estimation procedure may be
affected by poorly performing links. More specifically, the fixed neighbors and the pre–
calculated combining coefficients may not provide an optimized estimation performance
for each specified node because there are links that are more severely affected by noise or
fading. Moreover, when the number of neighbor nodes is large, each node requires a large
bandwidth and transmit power. In [12, 13], the idea of partial diffusion was introduced
for reducing communications between neighbor nodes. Prior work on topology design and
adjustment techniques includes the studies in [14, 15, 16] and [17], which are not dynamic
in the sense that they cannot track changes in the network and mitigate the effects of poor
links.

Contributions
The adaptive link selection algorithms for distributed estimation problems are proposed and
studied in this chapter. Specifically, we develop adaptive link selection algorithms that can
exploit the knowledge of poor links by selecting a subset of data from neighbor nodes. The
first approach consists of exhaustive search–based LMS/RLS link selection (ES–LMS/ES–
RLS) algorithms, whereas the second technique is based on sparsity–inspired LMS/RLS
link selection (SI–LMS/SI–RLS) algorithms. With both approaches, distributed processing
can be divided into two steps. The first step is called the adaptation step, in which each node
employs LMS or RLS to perform the adaptation through its local information. Following
the adaptation step, each node will combine its collected estimates from its neighbors and
local estimate, through the proposed adaptive link selection algorithms. The proposed algo-
rithms result in improved estimation performance in terms of the mean–square error (MSE)
associated with the estimates. In contrast to previously reported techniques, a key feature
of the proposed algorithms is that the combination step involves only a subset of the data
associated with the best performing links.

In the ES–LMS and ES–RLS algorithms, we consider all possible combinations for each
node with its neighbors and choose the combination associated with the smallest MSE
value. In the SI–LMS and SI–RLS algorithms, we incorporate a reweighted zero attraction
(RZA) strategy into the adaptive link selection algorithms. The RZA approach is often em-
ployed in applications dealing with sparse systems in such a way that it shrinks the small
values in the parameter vector to zero, which results in better convergence and steady–state
performance. Unlike prior work with sparsity–aware algorithms [3, 18, 19, 20, 21, 22, 23],
the proposed SI–LMS and SI–RLS algorithms exploit the possible sparsity of the MSE
values associated with each of the links in a different way. In contrast to existing methods
that shrink the signal samples to zero, SI–LMS and SI–RLS shrink to zero the links that
have poor performance or high MSE values. By using the SI–LMS and SI–RLS algorithms,
data associated with unsatisfactory performance will be discarded, which means the effec-
tive network topology used in the estimation procedure will change as well. Although the
physical topology is not changed by the proposed algorithms, the choice of the data com-
ing from the neighbor nodes for each node is dynamic, leads to the change of combination
weights and results in improved performance. We also remark that the topology could be
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altered with the aid of the proposed algorithms and a feedback channel which could inform
the nodes whether they should be switched off or not. The proposed algorithms are con-
sidered for wireless sensor networks and also as a tool for distributed state estimation that
could be used in smart grids.

In summary, the main contributions of this chapter are:
• We present adaptive link selection algorithms for distributed estimation that are able

to achieve significantly better performance than existing algorithms.
• We devise distributed LMS and RLS algorithms with link selection capabilities to

perform distributed estimation.
• We analyze the MSE convergence and tracking performance of the proposed algo-

rithms and their computational complexities and we derive analytical formulas to
predict their MSE performance.

• A simulation study of the proposed and existing distributed estimation algorithms is
conducted along with applications in wireless sensor networks and smart grids.

This paper is organized as follows. Section II describes the system model and the problem
statement. In Section III, the proposed link selection algorithms are introduced. We analyze
the proposed algorithms in terms of their stability, steady–state and tracking performance,
and computational complexity in Section IV. The numerical simulation results are provided
in Section V. Finally, we conclude the paper in Section VI.

Notation: We use boldface upper case letters to denote matrices and boldface lower case
letters to denote vectors. We use (·)T and (·)−1 denote the transpose and inverse operators
respectively, (·)H for conjugate transposition and (·)∗ for complex conjugate.

System Model and Problem Statement

Figure 1 Network topology with N nodes

k

Nk

We consider a set of N nodes, which have limited processing capabilities, distributed
over a given geographical area as depicted in Fig. 1. The nodes are connected and form a
network, which is assumed to be partially connected because nodes can exchange informa-
tion only with neighbors determined by the connectivity topology. We call a network with
this property a partially connected network whereas a fully connected network means that
data broadcast by a node can be captured by all other nodes in the network in one hop [24].
We can think of this network as a wireless network, but our analysis also applies to wired
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networks such as power grids. In our work, in order to perform link selection strategies, we
assume that each node has at least two neighbors.

The aim of the network is to estimate an unknown parameter vector ω0, which has length
M . At every time instant i, each node k takes a scalar measurement dk(i) according to

dk(i) = ω
H
0 xk(i) + nk(i), i = 1, 2, . . . , I, (1)

where xk(i) is the M × 1 random regression input signal vector and nk(i) denotes the
Gaussian noise at each node with zero mean and variance σ2

n,k. This linear model is able to
capture or approximate well many input-output relations for estimation purposes [25] and
we assume I > M . To compute an estimate of ω0 in a distributed fashion, we need each
node to minimize the MSE cost function [2]

Jk
(
ωk(i)

)
= E

∣∣dk(i)− ωH
k (i)xk(i)

∣∣2, (2)

where E denotes expectation and ωk(i) is the estimated vector generated by node k at time
instant i. Equation (3) is also the definition of the MSE and the global network cost function
could be described as

J(ω) =
N∑

k=1

E|dk(i)− ωHxk(i)|2. (3)

To solve this problem, diffusion strategies have been proposed in [2, 9] and [26]. In these
strategies, the estimate for each node is generated through a fixed combination strategy
given by

ωk(i) =
∑
l∈Nk

cklψl(i), (4)

where Nk denotes the set of neighbors of node k including node k itself, ckl ≥ 0 is the
combining coefficient and ψl(i) is the local estimate generated by node l through its local
information.

There are many ways to calculate the combining coefficient ckl which include the Hast-
ings [27], the Metropolis [28], the Laplacian [29] and the nearest neighbor [30] rules. In
this work, due to its simplicity and good performance we adopt the Metropolis rule [28]
given by

ckl =


1

max{|Nk|,|Nl|} , if k ̸= l are linked

1−
∑

l∈Nk/k

ckl, for k = l. (5)

where |Nk| denotes the cardinality of Nk. The set of coefficients ckl should satisfy [2]∑
l∈Nk ∀k

ckl = 1. (6)

For the combination strategy mentioned in (4), the choice of neighbors for each node is
fixed, which results in some problems and limitations, namely:
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• Some nodes may face high levels of noise or interference, which may lead to inac-
curate estimates.

• When the number of neighbors for each node is high, large communication band-
width and high transmit power are required.

• Some nodes may shut down or collapse due to network problems. As a result, local
estimates to their neighbors may be affected.

Under such circumstances, a performance degradation is likely to occur when the network
cannot discard the contribution of poorly performing links and their associated data in the
estimation procedure. In the next section, the proposed adaptive link selection algorithms
are presented, which equip a network with the ability to improve the estimation procedure.
In the proposed scheme, each node is able to dynamically select the data coming from its
neighbors in order to optimize the performance of distributed estimation techniques.

Proposed Adaptive Link Selection Algorithms
In this section, we present the proposed adaptive link selection algorithms. The goal of the
proposed algorithms is to optimize the distributed estimation and improve the performance
of the network by dynamically changing the topology. These algorithmic strategies give the
nodes the ability to choose their neighbors based on their MSE performance. We develop
two categories of adaptive link selection algorithms; the first one is based on an exhaustive
search, while the second is based on a sparsity–inspired relaxation. The details will be
illustrated in the following subsections.

Exhaustive Search–Based LMS/RLS Link Selection
The proposed ES–LMS and ES–RLS algorithms employ an exhaustive search to select the
links that yield the best performance in terms of MSE. First, we describe how we define
the adaptation step for these two strategies. In the ES–LMS algorithm, we employ the
adaptation strategy given by

ψk(i) = ωk(i) + µkxk(i)
[
dk(i)− ωH

k (i)xk(i)
]∗
, (7)

where µk is the step size for each node. In the ES–RLS algorithm, we employ the following
steps for the adaptation:

Φ−1
k (i) = λ−1Φ−1

k (i− 1)− λ−2Φ−1
k (i− 1)xk(i)x

H
k (i)Φ−1

k (i− 1)

1 + λ−1xH
k (i)Φ−1

k (i− 1)xk(i)
, (8)

where λ is the forgetting factor. Then, we let

P k(i) = Φ−1
k (i) (9)

and

kk(i) =
λ−1P k(i)xk(i)

1 + λ−1xH
k (i)P k(i)xk(i)

. (10)

ψk(i) = ωk(i) + k(i)
[
dk(i)− ωH

k (i)xk(i)
]∗
, (11)
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P k(i+ 1) = λ−1P k(i)− λ−1kk(i)x
H
k (i)P k(i). (12)

Following the adaptation step, we introduce the combination step for both ES–LMS and
ES–RLS algorithms, based on an exhaustive search strategy. At first, we introduce a tenta-
tive set Ωk using a combinatorial approach described by

Ωk ∈ 2|Nk|\∅, (13)

where the set Ωk is a nonempty set with 2|Nk| elements. After the tentative set Ωk is defined,
we write the cost function (2) for each node as

Jk
(
ψ(i)

)
, E

∣∣dk(i)−ψH(i)xk(i)
∣∣2, (14)

where

ψ(i) ,
∑
l∈Ωk

ckl(i)ψl(i) (15)

is the local estimator and ψl(i) is calculated through (7) or (11), depending on the al-
gorithm, i.e., ES–LMS or ES–RLS. With different choices of the set Ωk, the combining
coefficients ckl will be re–calculated through (5), to ensure condition (6) is satisfied.

Then, we introduce the error pattern for each node, which is defined as

eΩk
(i) , dk(i)−

[ ∑
l∈Ωk

ckl(i)ψl(i)

]H
xk(i). (16)

For each node k, the strategy that finds the best set Ωk(i) must solve the following opti-
mization problem:

Ω̂k(i) = arg min
Ωk∈2Nk\∅

|eΩk
(i)|. (17)

After all steps have been completed, the combination step in (4) is performed as described
by

ωk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i). (18)

At this stage, the main steps of the ES–LMS and ES–RLS algorithms have been completed.
The proposed ES–LMS and ES–RLS algorithms find the set Ω̂k(i) that minimizes the error
pattern in (16) and (17) and then use this set of nodes to obtain ωk(i) through (18). The
ES–LMS/ES–RLS algorithms are briefly summarized as follows:
Step 1 Each node performs the adaptation through its local information based on the LMS

or RLS algorithm.
Step 2 Each node finds the best set Ωk(i), which satisfies (17).
Step 3 Each node combines the information obtained from its best set of neighbors through

(18).
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Table 1 The ES-LMS Algorithm

Initialize: ωk(1)=0, for k = 1, 2, . . . , N
For each time instant i = 1, 2, ..., I

For each node k = 1, 2, . . . , N
ψk(i) = ωk(i) + µkxk(i)[dk(i)− ωH

k (i)xk(i)]
∗

end
For each node k = 1, 2, . . . , N

find all possible sets of Ωk

eΩk
(i) = dk(i)− [

∑
l∈Ωk

ckl(i)ψl(i)]
Hxk(i)

Ω̂k(i) = argmin
Ωk

|eΩk
(i)|

ωk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i)

end
end

Table 2 The ES-RLS Algorithm

Initialize: ωk(1)=0, for k = 1, 2, . . . , N

Φ−1
k (0) = δ−1I, δ = small positive constant

For each time instant i = 1, 2, ..., I
For each node k = 1, 2, . . . , N

Φ−1
k (i) = λ−1Φ−1

k (i− 1)

−
λ−2Φ−1

k (i− 1)xk(i)x
H
k (i)Φ−1(i− 1)

1 + λ−1xH
k (i)Φ−1(i− 1)xk(i)

P k(i) = Φ−1
k (i)

kk(i) =
λ−1P k(i)xk(i)

1 + λ−1xH
k (i)P k(i)xk(i)

ψk(i) = ωk(i) + k(i)[dk(i)− ωH
k (i)xk(i)]

∗

P k(i+ 1) = λ−1P k(i)− λ−1k(i)xH
k (i)P k(i)

end
For each node k = 1, 2, . . . , N

find all possible sets of Ωk

eΩk
(i) = dk(i)− [

∑
l∈Ωk

ckl(i)ψl(i)]
Hxk(i)

Ω̂k(i) = argmin
Ωk

|eΩk
(i)|

ωk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i)

end
end

The details of the proposed ES–LMS and ES–RLS algorithms are shown in Tables 1 and
2. When the ES–LMS and ES–RLS algorithms are implemented in networks with a large
number of small and low–power sensors, the computational complexity cost may become
high, as the algorithm in (17) requires an exhaustive search and needs more computations
to examine all the possible sets Ωk(i) at each time instant.

Sparsity–Inspired LMS/RLS Link Selection
The ES–LMS/ES–RLS algorithms previously outlined need to examine all possible sets to
find a solution at each time instant, which might result in high computational complexity
for large networks operating in time–varying scenarios. To solve the combinatorial prob-
lem with reduced complexity, we propose sparsity-inspired based SI–LMS and SI–RLS
algorithms, which are as simple as standard diffusion LMS or RLS algorithms and are suit-
able for adaptive implementations and scenarios where the parameters to be estimated are
slowly time–varying. The zero–attracting strategy (ZA), reweighted zero–attracting strat-
egy (RZA) and zero–forcing (ZF) are reported in [3] and [31] as for sparsity aware tech-
niques. These approaches are usually employed in applications dealing with sparse systems
in scenarios where they shrink the small values in the parameter vector to zero, which re-
sults in better convergence rate and steady–state performance. Unlike existing methods that
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shrink the signal samples to zero, the proposed SI–LMS and SI–RLS algorithms shrink to
zero the links that have poor performance or high MSE values. To detail the novelty of the
proposed sparsity–inspired LMS/RLS link selection algorithms, we illustrate the process-
ing in Fig.2.

Figure 2 Sparsity aware signal processing strategies
MSE Value

Sparsity Aware

Technique

MSE Value

Nodes
a ) Sparsity Aware Technique

MSE Value

Nodes

SILMS/SIRLS

Algorithms

MSE Value

Nodes
b ) SILMS and SIRLS Algorithms

Nodes

Fig. 2 (a) shows a standard type of sparsity–aware processing. We can see that, after being
processed by a sparsity–aware algorithm, the nodes with small MSE values will be shrunk
to zero. In contrast, the proposed SI–LMS and SI–RLS algorithms will keep the nodes with
lower MSE values and reduce the combining weight of the nodes with large MSE values
as illustrated in Fig. 2 (b). When compared with ES–type algorithms, the SI–LMS/RLS
algorithms do not need to consider all possible combinations of nodes, which means the
SI–LMS/RLS algorithms have lower complexity. In the following, we will show how the
proposed SI–LMS/SI–RLS algorithms are employed to realize the link selection strategy
automatically.

In the adaptation step, we follow the same procedure in (7)–(11) as that of the ES–LMS
and ES–RLS algorithms for the SI–LMS and SI–RLS algorithms, respectively. Then we
reformulate the combination step. First, we introduce the log–sum penalty into the com-
bination step in (4). Different penalty terms have been considered for this task. We have
adopted a heuristic approach [3, 32] known as reweighted zero–attracting strategy into the
combination step in (4) because this strategy has shown an excellent performance and is
simple to implement. The log–sum penalty is defined as:

f1(ek(i)) =
∑
l∈Nk

log
(
1 + ε|ekl(i)|

)
, (19)

where the error ekl(i)(l ∈ Nk), which stands for the neighbor node l of node k including
node k itself, is defined as

ekl(i) , dk(i)−ψH
l (i)xk(i) (20)

and ε is the shrinkage magnitude. Then, we introduce the vector and matrix quantities
required to describe the combination step. We first define a vector ck that contains the
combining coefficients for each neighbor of node k including node k itself as described by

ck , [ckl], l ∈ Nk. (21)
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Then, we define a matrix Ψk that includes all the estimated vectors, which are generated
after the adaptation step of SI–LMS and of SI–RLS for each neighbor of node k including
node k itself as given by

Ψk , [ψl(i)], l ∈ Nk. (22)

Note that the adaptation steps of SI–LMS and SI–RLS are identical to (7) and (11), respec-
tively. An error vector êk that contains all error values calculated through (20) for each
neighbor of node k including node k itself is expressed by

êk , [ekl(i)], l ∈ Nk. (23)

To devise the sparsity–inspired approach, we have modified the vector êk in the following
way:

1 The element with largest absolute value |ekl(i)| in êk will be kept as |ekl(i)|.
2 The element with smallest absolute value will be set to −|ekl(i)|. This process will

ensure the node with smallest error pattern has a reward on its combining coefficient.
3 The remaining entries will be set to zero.

At this point, the combination step can be defined as [32]

ωk(i) =

|Nk|∑
j=1

[
ck,j − ρ

∂f1(êk,j)

∂êk,j

]
ψk,j , (24)

where ck,j , êk,j stand for the jth element in the ck, êk and ψk,j stands for the jth column
in Ψk. The parameter ρ is used to control the algorithm’s shrinkage intensity. We then
calculate the partial derivative of êk[j]:

∂f1(êk,j)

∂êk,j
=

∂
(
log(1 + ε|ekl(i)|)

)
∂
(
ekl(i)

)
= ε

sign(ekl(i))

1 + ε|ekl(i)|
l ∈ Nk

= ε
sign(êk,j)

1 + ε|êk,j |
. (25)

To ensure that
|Nk|∑
j=1

(
ck,j − ρ

∂f1(êk,j)
∂êk,j

)
= 1, we replace êk,j with ξmin in the denominator

of (25), where the parameter ξmin stands for the minimum absolute value of ekl(i) in êk.
Then, (25) can be rewritten as

∂f1(êk,j)

∂êk,j
≈ ε

sign(êk,j)

1 + ε|ξmin|
. (26)

At this stage, the log-sum penalty performs shrinkage and selects the set of estimates
from the neighbor nodes with the best performance, at the combination step. The func-
tion sign(a) is defined as

sign(a) =

{
a/|a| a ̸= 0

0 a = 0.
(27)
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Then, by inserting (26) into (24), the proposed combination step is given by

ωk(i) =

|Nk|∑
j=1

[
ck,j − ρε

sign(êk,j)

1 + ε|ξmin|

]
ψk,j . (28)

Note that the condition ck,j − ρε
sign(êk,j)
1+ε|ξmin| ≥ 0 is enforced in (28). When ck,j −

ρε
sign(êk,j)
1+ε|ξmin| = 0, it means that the corresponding node has been discarded from the com-

bination step. In the following time instant, if this node still has the largest error, there will
be no changes in the combining coefficients for this set of nodes.

To guarantee the stability, the parameter ρ is assumed to be sufficiently small and the
penalty takes effect only on the element in êk for which the magnitude is comparable to
1/ε [3]. Moreover, there is little shrinkage exerted on the element in êk whose |êk[j]| ≪
1/ε. The SI–LMS and SI–RLS algorithms perform link selection by the adjustment of the
combining coefficients through (28). At this point, it should be emphasized that:

• The process in (28) satisfies condition (6), as the penalty and reward amounts of
the combining coefficients are the same for the nodes with maximum and minimum
error, respectively, and there are no changes for the rest nodes in the set.

• When computing (28), there are no matrix–vector multiplications. Therefore, no ad-
ditional complexity is introduced. As described in (24), only the jth element of ck, êk
and jth column of Ψk are used for calculation.

For the neighbor node with the largest MSE value, after the modifications of êk, its ekl(i)
value in êk will be a positive number which will lead to the term ρε

sign(êk,j)
1+ε|ξmin| in (28) being

positive too. This means that the combining coefficient for this node will be shrunk and
the weight for this node to build ωk(i) will be shrunk too. In other words, when a node
encounters high noise or interference levels, the corresponding MSE value might be large.
As a result, we need to reduce the contribution of that node.

In contrast, for the neighbor node with the smallest MSE, as its ekl(i) value in êk will be
a negative number, the term ρε

sign(êk,j)
1+ε|ξmin| in (28) will be negative too. As a result, the weight

for this node associated with the smallest MSE to build ωk(i) will be increased. For the
remaining neighbor nodes, the entry ekl(i) in êk is zero, which means the term ρε

sign(êk,j)
1+ε|ξmin|

in (28) is zero and there is no change for the weights to build ωk(i). The main steps for the
proposed SI–LMS and SI–RLS algorithms are listed as follows:
Step 1 Each node carries out the adaptation through its local information based on the

LMS or RLS algorithm.
Step 2 Each node calculates the error pattern through (20).
Step 3 Each node modifies the error vector êk.
Step 4 Each node combines the information obtained from its selected neighbors through

(28).
The SI–LMS and SI–RLS algorithms are detailed in Table 3. For the ES–LMS/ES–RLS

and SI–LMS/SI–RLS algorithms, we design different combination steps and employ the
same adaptation procedure, which means the proposed algorithms have the ability to equip
any diffusion–type wireless networks operating with other than the LMS and RLS algo-
rithms. This includes, for example, the diffusion conjugate gradient strategy [33]. Apart
from using weights related to the node degree, other signal dependent approaches may also
be considered, e.g., the parameter vectors could be weighted according to the signal-to-
noise ratio (SNR) (or the noise variance) at each node within the neighborhood.
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Table 3 The SI-LMS and SI-RLS Algorithms

Initialize: ωk(−1)=0, k = 1, 2, . . . , N
P (0) = δ−1I, δ = small positive constant

For each time instant i = 1, 2, ..., I
For each node k = 1, 2, . . . , N

The adaptation step for computing ψk(i)
is exactly the same as the ES-LMS and ES-RLS
for the SI-LMS and SI-RLS algorithms respectively

end
For each node k = 1, 2, . . . , N

ekl(i) = dk(i)−ψH
l (i)xk(i) l ∈ Nk

ck = [ckl] l ∈ Nk

Ψk = [ψl(i)] l ∈ Nk

êk = [ekl(i)] l ∈ Nk

Find the maximum and minimum absolute terms in ek
Modified êk as êk=[0· · ·0,|ekl(i)|︸ ︷︷ ︸

max

,0· · ·0,−|ekl(i)|︸ ︷︷ ︸
min

,0· · ·0]

ξmin = min
(
|ekl(i)|

)
ωk(i) =

|Nk|∑
j=1

[
ck,j − ρε

sign(ek,j)

1+ε|ξmin|

]
ψk,j

end
end

Analysis of the proposed algorithms
In this section, a statistical analysis of the proposed algorithms is developed, including a
stability analysis and an MSE analysis of the steady–state and tracking performance. In
addition, the computational complexity of the proposed algorithms is also detailed. Before
we start the analysis, we make some assumptions that are common in the literature [25].

Assumption I: The weight-error vector εk(i) and the input signal vector xk(i) are statis-
tically independent, and the weight–error vector for node k is defined as

εk(i) , ωk(i)− ω0, (29)

where ω0 denotes the optimum Wiener solution of the actual parameter vector to be esti-
mated, and ωk(i) is the estimate produced by a proposed algorithm at time instant i.

Assumption II: The input signal vector xl(i) is drawn from a stochastic process, which is
ergodic in the autocorrelation function [25].

Assumption III: The M × 1 vector q(i) represents a stationary sequence of independent
zero–mean vectors and positive definite autocorrelation matrix Q = E[q(i)qH(i)], which
is independent of xk(i), nk(i) and εl(i).

Assumption IV (Independence): All regressor input signals xk(i) are spatially and tempo-
rally independent. This assumption allows us to consider the input signalxk(i) independent
of ωl(i), l ∈ Nk.

Stability Analysis

In general, to ensure that a partially-connected network performance can converge to the
global network performance, the estimates should be propagated across the network [34].
The work in [14] shows that it is central to the performance that each node should be able
to reach the other nodes through one or multiple hops [34].
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To discuss the stability analysis of the proposed ES–LMS and SI–LMS algorithms, we
first substitute (7) into (18) and obtain

ωk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i+ 1)

=
∑

l∈Ω̂k(i)

[ωl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i)

=
∑

l∈Ω̂k(i)

[ω0 + εl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i)

=
∑

l∈Ω̂k(i)

ω0ckl +
∑

l∈Ω̂k(i)

[εl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i)

subject to
∑
l

ckl(i) = 1

= ω0 +
∑

l∈Ω̂k(i)

[εl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i). (30)

Then, we have

εk(i+ 1) =
∑

l∈Ω̂k(i)

[εl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i). (31)

By employing Assumption IV, we start with (31) for the ES–LMS algorithm and define the
global vectors and matrices:

ε(i+ 1) , [ε1(i+ 1), · · · , εN (i+ 1)]T (32)

M , diag{µ1IM , ..., µNIM} (33)

D(i+ 1) , diag{x1(i+ 1)xH
1 (i+ 1), ...,xN (i+ 1)xH

N (i+ 1)} (34)

and the NM × 1 vector

g(i+ 1) = [xT
1 (i+ 1)n1(i+ 1), · · · ,xT

N (i+ 1)nN (i+ 1)]T . (35)

We also define an N × N matrix C where the combining coefficients {ckl} correspond
to the {l, k} entries of the matrix C and the NM × NM matrix CG with a Kronecker
structure:

CG = C ⊗ IM (36)

where ⊗ denotes the Kronecker product.
By inserting el(i + 1) = e0−l(i + 1) − εHl (i)xl(i + 1) into (31), the global version of

(31) can then be written as

ε(i+ 1) = CT
G

[
I −MD(i+ 1)

]
ε(i) +CT

GMg(i+ 1), (37)
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where e0−l(i + 1) is the estimation error produced by the Wiener filter for node l as de-
scribed by

e0−l(i+ 1) = dl(i)− ωH
0 xl(i). (38)

If we define

D , E[D(i+ 1)]

= diag{R1, ...,RN}
(39)

and take the expectation of (37), we arrive at

E{ε(i+ 1)} = CT
G

[
I −MD

]
E{ε(i)}. (40)

Before we proceed, let us defineX = I−MD. We say that a square matrixX is stable if
it satisfiesXi → 0 as i → ∞. A known result in linear algebra states that a matrix is stable
if, and only if, all its eigenvalues lie inside the unit circle. We need the following lemma to
proceed [9].

Lemma 1: Let CG and X denote arbitrary NM × NM matrices, where CG has real,
non-negative entries, with columns adding up to one. Then, the matrix Y = CT

GX is stable
for any choice of CG if, and only if,X is stable.

Proof : Assume thatX is stable, it is true that for every square matrixX and every α > 0,
there exists a submultiplicative matrix norm || · ||τ that satisfies ||X||τ ≤ τ(X)+α, where
the submultiplicative matrix norm ||AB|| ≤ ||A|| · ||B|| holds and τ(X) is the spectral
radius of X [35, 36]. Since X is stable, τ(X) < 1, and we can choose α > 0 such that
τ(X) + α = v < 1 and ||X||τ ≤ v < 1. Then we obtain [9]

||Y i||τ = ||(CT
GX)i||τ

≤ ||(CT
G)

i||τ · ||Xi||τ
≤ vi||(CT

G)
i||τ .

(41)

Since CT
G has non–negative entries with columns that add up to one, it is element–wise

bounded by unity. This means its Frobenius norm is bounded as well and by the equivalence
of norms, so is any norm, in particular ||(CT

G)
i||τ . As a result, we have

lim
i→∞

||Y i||τ = 0, (42)

so Y i converges to the zero matrix for large i. Therefor, Y is stable.
In view of Lemma 1 and (82), we need the matrix I −MD to be stable. As a result, it

requires I−µkRk to be stable for all k, which holds if the following condition is satisfied:

0 < µk <
2

λmax

(
Rk

) (43)

where λmax

(
Rk

)
is the largest eigenvalue of the correlation matrix Rk. The difference

between the ES–LMS and SI–LMS algorithms is the strategy to calculate the matrix C.
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Lemma 1 indicates that for any choice of C, only X needs to be stable. As a result, SI–
LMS has the same convergence condition as in (43). Given the convergence conditions, the
proposed ES–LMS/ES–RLS and SI–LMS/SI–RLS algorithms will adapt according to the
network connectivity by choosing the group of nodes with the best available performance
to construct their estimates.

MSE Steady–State Analysis

In this part of the analysis, we devise formulas to predict the excess MSE (EMSE) of the
proposed algorithms. The error signal at node k can be expressed as

ek(i) = dk(i)− ωH
k (i)xk(i)

= dk(i)− [ω0 − εk(i)]Hxk(i)

= dk(i)− ωH
0 xk(i) + ε

H
k (i)xk(i)

= e0−k + εHk (i)xk(i).

(44)

With Assumption I, the MSE expression can be derived as

Jmse−k(i) = E[|ek(i)|2]

= E
[(
e0−k + εHk (i)xk(i)

)(
e∗0 + x

H
k (i)εk(i)

)]
= Jmin−k + E[εHk (i)xk(i)x

H
k (i)εk(i)]

= Jmin−k + tr{E[εk(i)εHk (i)xk(i)x
H
k (i)]}

= Jmin−k + tr{E[xk(i)x
H
k (i)]E[εk(i)εHk (i)]}

= Jmin−k + tr{Rk(i)Kk(i)}, (45)

where tr(·) denotes the trace of a matrix and Jmin−k is the minimum mean–square error
(MMSE) for node k [25]:

Jmin−k = σ2
d,k − pHk (i)R−1

k (i)pk(i), (46)

Rk(i) = E[xk(i)x
H
k (i)] is the correlation matrix of the inputs for node k, pk(i) =

E[xk(i)d
∗
k(i)] is the cross–correlation vector between the inputs and the measurement

dk(i), and Kk(i) = E[εk(i)εHk (i)] is the weight–error correlation matrix. From [25], the
EMSE is defined as the difference between the mean–square error at time instant i and the
minimum mean–square error. Then, we can write

Jex−k(i) = Jmse−k(i)− Jmin−k

= tr{Rk(i)Kk(i)}.
(47)

For the proposed adaptive link selection algorithms, we will derive the EMSE formulas
separately based on (47) and we assume that the input signal is modeled as a stationary
process.
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ES–LMS
To update the estimate ωk(i), we employ

ωk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i+ 1)

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i+ 1)e∗l (i+ 1)]

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i+ 1)(dl(i+ 1)− xH
l (i+ 1)ωl(i))].

(48)

Then, subtracting ω0 from both sides of (48), we arrive at

εk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i+ 1)(dl(i+ 1)− xH
l (i+ 1)ωl(i))]

−
∑

l∈Ω̂k(i)

ckl(i)ω0

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i) + µlxl(i+ 1)

(
dl(i+ 1)− xH

l (i+ 1)(εl(i) + ω0)
)]

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i) + µlxl(i+ 1)

(
dl(i+ 1)− xH

l (i+ 1)εl(i)− xH
l (i+ 1)ω0

)]

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i)− µlxl(i+ 1)xH

l (i+ 1)εl(i) + µlxl(i+ 1)e∗0−l(i+ 1)

]

=
∑

l∈Ω̂k(i)

ckl(i)

[(
I − µlxl(i+ 1)xH

l (i+ 1)
)
εl(i) + µlxl(i+ 1)e∗0−l(i+ 1)

]
.

(49)

Let us introduce the random variables αkl(i):

αkl(i) =

{
1, if l ∈ Ω̂k(i)

0, otherwise.
(50)

At each time instant, each node will generate data associated with network covariance ma-
tricesAk with size N ×N which reflect the network topology, according to the exhaustive
search strategy. In the network covariance matrices Ak, a value equal to 1 means nodes k
and l are linked and a value 0 means nodes k and l are not linked.

For example, suppose a network has 5 nodes. For node 3, there are two neighbor
nodes, namely, nodes 2 and 5. Through Eq. (13), the possible configurations of set Ω3 are
{3, 2}, {3, 5} and {3, 2, 5}. Evaluating all the possible sets for Ω3, the relevant covariance
matricesA3 with size 5× 5 at time instant i are described in Fig. 3.

Then, the coefficients αkl are obtained according to the covariance matrices Ak. In this
example, the three sets of αkl are respectively shown in Table 4.

The parameters ckl will then be calculated through Eq. (5) for different choices of ma-
trices Ak and coefficients αkl. After αkl and ckl are calculated, the error pattern for each
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Figure 3 Covariance matrices A3 for different sets of Ω3

Table 4 Coefficients αkl for different sets of Ω3

{2, 3}


α31 = 0
α32 = 1
α33 = 1
α34 = 0
α35 = 0

{3, 5}


α31 = 0
α32 = 0
α33 = 1
α34 = 0
α35 = 1

{2, 3, 5}


α31 = 0
α32 = 1
α33 = 1
α34 = 0
α35 = 1

possible Ωk will be calculated through (16) and the set with the smallest error will be

selected according to (17).

With the newly defined αkl, (49) can be rewritten as

εk(i+ 1) =
∑
l∈Nk

αkl(i)ckl(i)

[(
I − µlxl(i+ 1)xH

l (i+ 1)
)
εl(i) + µlxl(i+ 1)e∗0−l(i+ 1)

]
.

(51)

Starting from (47), we then focus onKk(i+ 1).

Kk(i+ 1) = E[εk(i+ 1)εHk (i+ 1)]. (52)

In (51), the term αkl(i) is determined through the network topology for each subset, while

the term ckl(i) is calculated through the Metropolis rule. We assume that αkl(i) and ckl(i)

are statistically independent from the other terms in (51). Upon convergence, the parame-

ters αkl(i) and ckl(i) do not vary because at steady state the choice of the subset Ω̂k(i) for

each node k will be fixed. Then, under these assumptions, substituting (51) into (52) we
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arrive at:

Kk(i+ 1) =
∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

]((
I − µlRl(i+ 1)

)
Kl(i)×

(
I − µlRl(i+ 1)

)
+ µ2

l e0−l(i+ 1)e∗0−l(i+ 1)×Rl(i+ 1)

)
+

∑
l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((
I − µlRl(i+ 1)

)
Kl,q(i)

(
I − µqRl(i+ 1)

)
+ µlµqe0−l(i+ 1)e∗0−q(i+ 1)Rl,q(i+ 1)

)
+

∑
l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((
I − µqRq(i+ 1)

)
KH

l,q(i)
(
I − µlRl(i+ 1)

)
+ µlµqe0−q(i+ 1)e∗0−l(i+ 1)RH

l,q(i+ 1)

)
(53)

where Rl,q(i + 1) = E[xl(i + 1)xH
q (i + 1)] and Kl,q(i) = E[εl(i)εHq (i)]. To further

simplify the analysis, we assume that the samples of the input signalxk(i) are uncorrelated,

i.e., Rk = σ2
x,kI with σ2

x,k being the variance. Using the diagonal matrices Rk = Λk =

σ2
x,kI andRl,q = Λl,q = σx,lσx,qI we can write

Kk(i+ 1) =
∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

]((
I − µlΛl

)
Kl(i)

(
I − µlΛl

)
+ µ2

l e0−l(i+ 1)e∗0−l(i+ 1)Λl

)
+

∑
l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]
×
((
I − µlΛl

)
Kl,q(i)

(
I − µqΛq

)

+ µlµqe0−l(i+ 1)e∗0−q(i+ 1)Λl,q

)
+

∑
l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((
I − µqΛq

)
KH

l,q(i)
(
I − µlΛl

)
+ µlµqe0−q(i+ 1)e∗0−l(i+ 1)ΛH

l,q

)
.

(54)



Xu et al. Page 18 of 34

Due to the structure of the above equations, the approximations and the quantities involved,
we can decouple (54) into

Kn
k (i+ 1) =

∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

]((
1− µlλ

n
l

)
Kn

l (i)
(
1− µlλ

n
l

)
+ µ2

l e0−l(i+ 1)e∗0−l(i+ 1)λn
l

)
+

∑
l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]((
1− µlλ

n
l

)
Kn

l,q(i)
(
1− µqλ

n
q

)

+ µlµqe0−l(i+ 1)e∗0−q(i+ 1)λn
l,q

)
+

∑
l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((

1− µqλ
n
q

)
(Kn

l,q(i))
H
(
1− µlλ

n
l

)
+ µlµqe0−q(i+ 1)e∗0−l(i+ 1)λn

l,q

)
,

(55)

where Kn
k (i+1) is the nth element of the main diagonal ofKk(i+1). With the assumption

that αkl(i) and ckl(i) are statistically independent from the other terms in (51), we can
rewrite (55) as

Kn
k (i+ 1) =

∑
l∈Nk

E
[
α2
kl(i)

]
E
[
c2kl(i)

]((
1− µlλ

n
l

)2
Kn

l (i) + µ2
l e0−l(i+ 1)e∗0−l(i+ 1)λn

l

)

+ 2×
∑

l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)

]
E
[
ckl(i)ckq(i)

]((
1− µlλ

n
l

)(
1− µqλ

n
q

)
Kn

l,q(i)

+ µlµqe0−l(i+ 1)e∗0−q(i+ 1)λn
l,q

)
. (56)

By taking i → ∞, we can obtain (57).

Kn
k (ES-LMS) =

∑
l∈Nk

α2
klc

2
klµ

2
lJmin−lλ

n
l + 2

∑
l,q∈Nk
l ̸=q

αklαkqcklckqµlµqe0−le
∗
0−qλ

n
l,q

1−
∑

l∈Nk

α2
klc

2
kl(1− µlλn

l )
2 − 2

∑
l,q∈Nk
l ̸=q

αklαkqcklckq(1− µlλn
l )(1− µqλn

q )
.

(57)

We assume that the choice of covariance matrix Ak for node k is fixed upon the proposed
algorithms convergence, as a result, the covariance matrixAk is deterministic and does not
vary. In the above example, we assume the choice ofA3 is fixed as shown in Fig. 4.

Then the coefficients αkl will also be fixed and given by



α31 = 0

α32 = 1

α33 = 1

α34 = 0

α35 = 1
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Figure 4 Covariance matrix A3 upon convergence

as well as the parameters ckl that are computed using the Metropolis combining rule. As
a result, the coefficients αkl and the coefficients ckl are deterministic and can be taken out
from the expectation. The MSE is then given by

Jmse−k = Jmin−k +Mσ2
x,k

M∑
n=1

Kn
k (ES-LMS). (58)

SI–LMS
For the SI–LMS algorithm, we do not need to consider all possible combinations. This
algorithm simply adjusts the combining coefficients for each node with its neighbors in
order to select the neighbor nodes that yield the smallest MSE values. Thus, we redefine
the combining coefficients through (28)

ckl−new = ckl − ρε
sign(|ekl|)
1 + ε|ξmin|

(l ∈ Nk). (59)

For each node k, at time instant i, after it receives the estimates from all its neighbors, it
calculates the error pattern ekl(i) for every estimate received through Eq. (20) and finds the
nodes with the largest and smallest errors. An error vector êk is then defined through (23),
which contains all error patterns ekl(i) for node k.

Then a procedure which is detailed after Eq. (23) is carried out and modifies the er-
ror vector êk. For example, suppose node 5 has three neighbor nodes, which are nodes
3, 6 and 8. The error vector ê5 has the form described by ê5 = [e53, e55, e56, e58] =

[0.023, 0.052,−0.0004,−0.012]. After the modification, the error vector ê5 will be edited
as ê5 = [0, 0.052,−0.0004, 0]. The quantity hkl is then defined as

hkl = ρε
sign(|ekl|)
1 + ε|ξmin|

(l ∈ Nk), (60)

and the term ’error pattern’ ekl in (60) is from the modified error vector êk.
From [32], we employ the relation E[sign(ekl)] ≈ sign(e0−k). According to Eqs. (1)

and (38), when the proposed algorithm converges at node k or the time instant i goes to
infinity, we assume that the error e0−k will be equal to the noise variance at node k. Then,
the asymptotic value hkl can be divided into three situations due to the rule of the SI–LMS
algorithm:

hkl =


ρε sign(|e0−k|)

1+ε|e0−k| for the node with the largest MSE

ρε sign(−|e0−k|)
1+ε|e0−k| for the node with the smallest MSE

0 for all the remaining nodes.

(61)
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Under this situation, after the time instant i goes to infinity, the parameters hkl for each
neighbor node of node k can be obtained through (61) and the quantity hkl will be deter-
ministic and can be taken out from the expectation.

Finally, removing the random variables αkl(i) and inserting (59), (60) into (57), the
asymptotic values Kn

k for the SI-LMS algorithm are obtained as in (62).

Kn
k (SI-LMS) =∑

l∈Nk

(ckl − hkl)
2µ2

lJmin−lλ
n
l + 2

∑
l,q∈Nk
l ̸=q

(ckl − hkl)(ckq − hkq)µlµqe0−le
∗
0−qλ

n
l,q

1−
∑

l∈Nk

(ckl − hkl)2(1− µlλn
l )

2 − 2
∑

l,q∈Nk
l ̸=q

(ckl − hkl)(ckq − hkq)(1− µlλn
l )(1− µqλn

q )
.

(62)

At this point, the theoretical results are deterministic, and the MSE for SI–LMS algorithm
is given by

Jmse−k = Jmin−k +Mσ2
x,k

M∑
n=1

Kn
k (SI-LMS). (63)

ES–RLS

For the proposed ES–RLS algorithm, we start from (11), after inserting (11) into (18), we
have

ωk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i+ 1)

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + kl(i+ 1)e∗l (i+ 1)]

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + kl(i+ 1)(dl(i+ 1)− xH
l (i+ 1)ωl(i))]. (64)

Then, subtracting the ω0 from both sides of (48), we arrive at

εk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + kl(i+ 1)(dl(i+ 1)− xH
l (i+ 1)ωl(i))]

−
∑

l∈Ω̂k(i)

ckl(i)ω0

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i) + kl(i+ 1)

(
dl(i+ 1)− xH

l (i+ 1)(εl(i) + ω0)
)]

=
∑

l∈Ω̂k(i)

ckl(i)

[(
I − kl(i+ 1)xH

l (i+ 1)
)
εl(i) + kl(i+ 1)e∗0−l(i+ 1)

]
.

(65)
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Then, with the random variables αkl(i), (65) can be rewritten as

εk(i+ 1) =
∑
l∈Nk

αkl(i)ckl(i)

[(
I − kl(i+ 1)xH

l (i+ 1)
)
εl(i) + kl(i+ 1)e∗0−l(i+ 1)

]
.

(66)

Since kl(i+ 1) = Φ−1
l (i+ 1)xl(i+ 1) [25], we can modify the (66) as

εk(i+ 1) =
∑
l∈Nk

αkl(i)ckl(i)

[(
I −Φ−1

l (i+ 1)xl(i+ 1)xH
l (i+ 1)

)
εl(i)

+Φ−1
l (i+ 1)xl(i+ 1)e∗0−l(i+ 1)

]
. (67)

At this point, if we compare (67) with (51), we can find that the difference between (67)
and (51) is, the Φ−1

l (i+ 1) in (67) has replaced the µl in (51). From [25], we also have

E[Φ−1
l (i+ 1)] =

1

i−M
R−1

l (i+ 1) for i > M + 1. (68)

As a result, we can arrive

Kk(i+ 1) =
∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

]((
I − Λ−1

l Λl

i−M

)
Kl(i)

(
I − ΛlΛ

−1
l

i−M

)
(69)

+
Λ−1

l ΛlΛ
−1
l

(i−M)2
e0−l(i+ 1)e∗0−l(i+ 1)

)
+

∑
l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((
I − Λ−1

l Λl

i−M

)
Kl,q(i)

(
I −

ΛqΛ
−1
q

i−M

)
+

Λ−1
l Λl,qΛ

−1
q

(i−M)2
e0−l(i+ 1)

× e∗0−q(i+ 1)

)
+

∑
l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((
I −

ΛqΛ
−1
q

i−M

)
KH

l,q(i)
(
I − Λ−1

l Λl

i−M

)
+

Λ−1
q ΛH

l,qΛ
−1
l

(i−M)2
e0−q(i+ 1)e∗0−l(i+ 1)

)
.

(70)

Due to the structure of the above equations, the approximations and the quantities involved,
we can decouple (70) into

Kn
k (i+ 1) =

∑
l∈Nk

E
[
α2
kl(i)c

2
kl(i)

]((
1− 1

i−M

)2
Kn

l (i) +
e0−l(i+ 1)e∗0−l(i+ 1)

λn
l (i−M)2

)

+
∑

l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]((
1− 1

i−M

)2
Kn

l,q(i)

+
λn
l,qe0−l(i+ 1)e∗0−q(i+ 1)

(i−M)2λn
l λ

n
q

)
+

∑
l,q∈Nk
l ̸=q

E
[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×
((

1− 1

i−M

)2
(Kn

l,q(i))
H +

λn
l,qe0−q(i+ 1)e∗0−l(i+ 1)

(i−M)2λn
q λ

n
l

)
(71)
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where Kn
k (i+1) is the nth elements of the main diagonals ofKk(i+1). With the assump-

tion that, upon convergence, αkl and ckl do not vary, because at steady state, the choice of
subset Ω̂k(i) for each node k will be fixed, we can rewrite (71) as (72). Then, the MSE is
given by

Kn
k (ES-RLS) =

∑
l∈Nk

α2
klc

2
kl

Jmin−l

λn
l (i−M)2

+ 2
∑

l,q∈Nk
l ̸=q

αklαkqcklckq
λn
l,qe0−le

∗
0−q

(i−M)2λn
l λ

n
q

1−
∑

l∈Nk

α2
klc

2
kl

(
1− 1

i−M

)2

− 2
∑

l,q∈Nk
l ̸=q

αklαkqcklckq

(
1− 1

i−M

)2 .

(72)

Jmse−k = Jmin−k +Mσ2
x,k

M∑
n=1

Kn
k (ES-RLS). (73)

On the basis of (72), we have that when i tends to infinity, the MSE approaches the MMSE
in theory [25].

SI–RLS
For the proposed SI–RLS algorithm, we insert (59) into (72), remove the random variables
αkl(i), and following the same procedure as for the SI–LMS algorithm, we can obtain (74),
where hkl and hkq satisfy the rule in (61). Then, the MSE is given by

Kn
k (SI-RLS) =∑
l∈Nk

(ckl − hkl)
2 Jmin−l

λn
l (i−M)2

+ 2
∑

l,q∈Nk
l ̸=q

(ckl − hkl)(ckq − hkq)
λn
l,qe0−le

∗
0−q

(i−M)2λn
l λ

n
q

1−
∑

l∈Nk

(ckl − hkl)2
(
1− 1

i−M

)2

− 2
∑

l,q∈Nk
l ̸=q

(ckl − hkl)(ckq − hkq)
(
1− 1

i−M

)2 .

(74)

Jmse−k = Jmin−k +Mσ2
x,k

M∑
n=1

Kn
k (SI-RLS). (75)

In conclusion, according to (62) and (74), with the help of modified combining coefficients,
for the proposed SI–type algorithms, the neighbor node with lowest MSE contributes the
most to the combination, while the neighbor node with the highest MSE contributes the
least. Therefore, the proposed SI–type algorithms perform better than the standard diffusion
algorithms with fixed combining coefficients.

Tracking Analysis
In this subsection, we assess the proposed ES–LMS/RLS and SI–LMS/RLS algorithms in
a non–stationary environment, in which the algorithms have to track the minimum point
of the error–performance surface [37, 38]. In the time–varying scenarios of interest, the
optimum estimate is assumed to vary according to the model ω0(i+ 1) = βω0(i) + q(i),
where q(i) denotes a random perturbation [35] and β = 1 in order to facilitate the analysis.
This is typical in the context of tracking analysis of adaptive algorithms [35, 25, 39, 40].
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ES–LMS

For the tracking analysis of the ES–LMS algorithm, we employ Assumption III and start
from (48). After subtracting the ω0(i+ 1) from both sides of (48), we obtain

εk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i+ 1)(dl(i+ 1)− xH
l (i+ 1)ωl(i))]

−
∑

l∈Ω̂k(i)

ckl(i)ω0(i+ 1)

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i+ 1)(dl(i+ 1)

− xH
l (i+ 1)ωl(i))]−

∑
l∈Ω̂k(i)

ckl(i)

(
ω0(i) + q(i)

)

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i) + µlxl(i+ 1)

(
dl(i+ 1)− xH

l (i+ 1)(εl(i) + ω0)
)]

− q(i)

=
∑

l∈Ω̂k(i)

ckl(i)

[(
I − µlxl(i+ 1)xH

l (i+ 1)
)
εl(i) + µlxl(i+ 1)e∗0−l(i+ 1)

]
− q(i).

(76)

Using Assumption III, we can arrive at

Jex−k(i+ 1) = tr{Rk(i+ 1)Kk(i+ 1)}+ tr{Rk(i+ 1)Q}. (77)

The first part on the right side of (77), has already been obtained in the MSE steady–state
analysis part in Section IV B. The second part can be decomposed as

tr{Rk(i+ 1)Q} = tr
{
E
[
xk(i+ 1)xH

k (i+ 1)
]
E
[
q(i)qH(i)

]}
= Mσ2

x,ktr{Q}. (78)

The MSE is then obtained as

Jmse−k = Jmin−k +Mσ2
x,k

M∑
n=1

Kn
k (ES-LMS) +Mσ2

x,ktr{Q}. (79)

SI–LMS

For the SI–LMS recursions, we follow the same procedure as for the ES-LMS algorithm,
and obtain

Jmse−k = Jmin−k +Mσ2
x,k

M∑
n=1

Kn
k (SI-LMS) +Mσ2

x,ktr{Q}. (80)



Xu et al. Page 24 of 34

ES–RLS
For the SI–RLS algorithm, we follow the same procedure as for the ES–LMS algorithm
and arrive at

Jmse−k(i+ 1) = Jmin−k +Mσ2
x,k

M∑
n=1

Kn
k (i+ 1)(ES-RLS) +Mσ2

x,ktr{Q}.

(81)

SI–RLS
We start from (75), and after a similar procedure to that of the SI–LMS algorithm, we have

Jmse−k(i+ 1) = Jmin−k +Mσ2
x,k

M∑
n=1

Kn
k (i+ 1)(SI-RLS) +Mσ2

x,ktr{Q}.

(82)

In conclusion, for time-varying scenarios there is only one additional term Mσ2
x,ktr{Q} in

the MSE expression for all algorithms, and this additional term has the same value for all
algorithms. As a result, the proposed SI–type algorithms still perform better than the stan-
dard diffusion algorithms with fixed combining coefficients, according to the conclusion
obtained in the previous subsection.

Computational Complexity
In the analysis of the computational cost of the algorithms studied, we assume complex-
valued data and first analyze the adaptation step. For both ES–LMS/RLS and SI–LMS/RLS
algorithms, the adaptation cost depends on the type of recursions (LMS or RLS) that each
strategy employs. The details are shown in Table 5.

Table 5 Computational complexity for the adaptation step per node per time instant

Adaptation Method Multiplications Additions
LMS 2M + 1 2M
RLS 4M2 + 16M + 2 4M2 + 12M − 1

In the combination step, we analyze the computational complexity in Table 6. The overall
complexity for each algorithm is summarized in Table 7. In the above three tables, t is the
number of nodes chosen from |Nk| and M is the length of the unknown vectorω0. The pro-
posed algorithms require extra computations as compared to the existing distributed LMS
and RLS algorithms. This extra cost ranges from a small additional number of operations
for the SI-LMS/RLS algorithms to a more significant extra cost that depends on |Nk| for
the ES-LMS/RLS algorithms.

Table 6 Computational complexity for the combination step per node per time instant

Algorithms Multiplications Additions

ES–LMS/RLS M(t+ 1)
|Nk|!

t!(|Nk| − t)!
Mt

|Nk|!
t!(|Nk| − t)!

SI–LMS/RLS (2M + 4)|Nk| (M + 2)|Nk|

Simulations
In this section, we investigate the performance of the proposed link selection strategies
for distributed estimation in two scenarios: wireless sensor networks and smart grids. In
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Table 7 Computational complexity per node per time instant

Algorithm Multiplications Additions

ES–LMS
[
(t+ 1)|Nk|!
t!(|Nk| − t)!

+ 8

]
M + 2

[
|Nk|!

(t− 1)!(|Nk| − t)!
+ 8

]
M

ES–RLS 4M2 +

[
(t+ 1)|Nk|!
t!(|Nk| − t)!

+ 16

]
M + 2 4M2 +

[
|Nk|!

(t− 1)!(|Nk| − t)!
+ 12

]
M − 1

SI–LMS (8 + 2|Nk|)M + 4|Nk|+ 2 (8 + |Nk|)M + 2|Nk|
SI–RLS 4M2 + (16 + 2|Nk|)M + 4|Nk|+ 2 4M2 + (12 + |Nk|)M + 2|Nk| − 1

these applications, we simulate the proposed link selection strategies in both static and
time–varying scenarios. We also show the analytical results for the MSE steady–state and
tracking performances that we obtained in Section IV.

Diffusion Wireless Sensor Networks

Figure 5 Wireless sensor networks topology with 20 nodes
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In this subsection, we compare the proposed ES–LMS/ES–RLS and SI–LMS/SI–RLS
algorithms with the diffusion LMS algorithm [2], the diffusion RLS algorithm [41] and the
single–link strategy [42] in terms of their MSE performance. A reduced–communication
diffusion LMS algorithm with a performance comparable or worse to the standard diffusion
LMS algorithm, which has been reported in [43] may also be considered if a designer needs
to reduce the required bandwidth.

The network topology is illustrated in Fig. 5 and we employ N = 20 nodes in the sim-
ulations. The average node degree of the wireless sensor network is 5. The length of the
unknown parameter vector ω0 is M = 10 and it is generated as a complex random vec-
tor. The input signal is generated as xk(i) = [xk(i) xk(i − 1) ... xk(i − M + 1)]

and xk(i) = uk(i) + αkxk(i − 1), where αk is a correlation coefficient and uk(i) is a
white noise process with variance σ2

u,k = 1 − |αk|2, to ensure the variance of xk(i) is
σ2
x,k = 1. The xk(0) is defined as a Gaussian randan number with zero mean and vari-

ance σ2
x,k. The noise samples are modeled as circular Gaussian noise with zero mean and
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variance σ2
n,k ∈ [0.001, 0.01]. The step size for the diffusion LMS ES–LMS and SI–LMS

algorithms is µ = 0.2. For the diffusion RLS algorithm, both ES–RLS and SI–RLS, the
forgetting factor λ is set to 0.97 and δ is equal to 0.81. In the static scenario, the sparsity
parameters of the SI–LMS/SI–RLS algorithms are set to ρ = 4 × 10−3 and ε = 10. The
Metropolis rule is used to calculate the combining coefficients ckl. The MSE and MMSE
are defined as in (3) and (46), respectively. The results are averaged over 100 independent
runs.

Figure 6 Network MSE curves in a static scenario
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In Fig. 6, we can see that ES–RLS has the best performance for both steady-state MSE
and convergence rate, and obtains a gain of about 8 dB over the standard diffusion RLS
algorithm. SI–RLS is worse than the ES–RLS, but is still significantly better than the stan-
dard diffusion RLS algorithm by about 5 dB. Regarding the complexity and processing
time, SI–RLS is as simple as the standard diffusion RLS algorithm, while ES–RLS is more
complex. The proposed ES–LMS and SI–LMS algorithms are superior to the standard dif-
fusion LMS algorithm.

In the time–varying scenario, the sparsity parameters of the SI–LMS and SI–RLS algo-
rithms are set to ρ = 6 × 10−3 and ε = 10. The unknown parameter vector ω0 varies
according to the first–order Markov vector process:

ω0(i+ 1) = βω0(i) + q(i), (83)

where q(i) is an independent zero–mean Gaussian vector process with variance σ2
q = 0.01

and β = 0.9998.
Fig. 7 shows that, similarly to the static scenario, ES–RLS has the best performance,

and obtains a 5 dB gain over the standard diffusion RLS algorithm. SI–RLS is slightly
worse than the ES–RLS, but is still better than the standard diffusion RLS algorithm by
about 3 dB. The proposed ES–LMS and SI–LMS algorithms have the same advantage
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Figure 7 Network MSE curves in a time—varying scenario
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over the standard diffusion LMS algorithm in the time-varying scenario. Notice that in the
scenario with large |Nk|, the proposed SI-type algorithms still have a better performance
when compared with the standard techniques.

To illustrate the link selection for the ES–type algorithms, we provide Figs. 8 and 9. From
these two figures, we can see that upon convergence the proposed algorithms converge to a
fixed selected set of links Ω̂k.

MSE Analytical Results
The aim of this section is to validate the analytical results obtained in Section IV. First, we
verify the MSE steady–state performance. Specifically, we compare the analytical results
in (58), (63), (73) and (75) to the results obtained by simulations under different SNR
values. The SNR indicates the input signal variance to noise variance ratio. We assess the
MSE against the SNR, as show in Figs. 10 and 11. For ES–RLS and SI–RLS algorithms,
we use (73) and (75) to compute the MSE after convergence. The results show that the
analytical curves coincide with those obtained by simulations, which indicates the validity
of the analysis. We have assessed the proposed algorithms with SNR equal to 0dB, 10dB,
20dB and 30dB, respectively, with 20 nodes in the network. For the other parameters, we
follow the same definitions used to obtain the network MSE curves in a static scenario. The
details have been shown on the top of each sub figure in Figs. 10 and 11. The theoretical
curves for ES–LMS/RLS and SI–LMS/RLS are all close to the simulation curves.

The tracking analysis of the proposed algorithms in a time–varying scenario is discussed
as follows. Here, we verify that the results (79), (80), (81) and (82) of the subsection on
the tracking analysis can provide a means of estimating the MSE. We consider the same
model as in (83), but with β is set to 1. In the next examples, we employ N = 20 nodes
in the network and the same parameters used to obtain the network MSE curves in a time–
varying scenario. A comparison of the curves obtained by simulations and by the analytical
formulas is shown in Figs. 12 and 13. From these curves, we can verify that the gap between
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Figure 8 Set of selected links for node 16 with ES–LMS in a static scenario
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Figure 9 Link selection state for node 16 with ES–LMS in a time—varying scenario
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the simulation and analysis results are extraordinary small under different SNR values. The

details of the parameters are shown on the top of each sub figure in Figs. 12 and 13.
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Figure 10 MSE performance against SNR for ES–LMS and SI–LMS
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Figure 11 MSE performance against SNR for ES–RLS and SI–RLS
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Smart Grids

The proposed algorithms provide a cost–effective tool that could be used for distributed
state estimation in smart grid applications. In order to test the proposed algorithms in a
possible smart grid scenario, we consider the IEEE 14–bus system [44], where 14 is the
number of substations. At every time instant i, each bus k, k = 1, 2, . . . , 14, takes a scalar
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Figure 12 MSE performance against SNR for ES–LMS and SI–LMS in a time—varying
scenario
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Figure 13 MSE performance against SNR for ES–RLS and SI–RLS in a time—varying
scenario
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measurement dk(i) according to

dk(i) = Xk

(
ω0(i)

)
+ nk(i), k = 1, 2, . . . , 14, (84)
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where ω0(i) is the state vector of the entire interconnected system, and Xk(ω0(i)) is a
nonlinear measurement function of bus k. The quantity nk(i) is the measurement error
with mean equal to zero and which corresponds to bus k.

Initially, we focus on the linearized DC state estimation problem. The state vector ω0(i)

is taken as the voltage phase angle vector ω0 for all buses. Therefore, the nonlinear mea-
surement model for state estimation (84) is approximated by

dk(i) = ω
H
0 xk(i) + nk(i), k = 1, 2, . . . , 14, (85)

where xk(i) is the measurement Jacobian vector for bus k. Then, the aim of the distributed
estimation algorithm is to compute an estimate ofω0, which can minimize the cost function
given by

Jk(ωk(i)) = E|dk(i)− ωH
k (i)xk(i)|2. (86)

We compare the proposed algorithms with the M–CSE algorithm [4], the single link
strategy [42], the standard diffusion RLS algorithm [41] and the standard diffusion LMS
algorithm [2] in terms of MSE performance. The MSE comparison is used to determine the
accuracy of the algorithms, and compare the rate of convergence. We define the IEEE–14
bus system as in Fig. 14.

Figure 14 IEEE 14–bus system for simulation
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All buses are corrupted by additive white Gaussian noise with variance σ2
n,k ∈

[0.001, 0.01]. The step size for the standard diffusion LMS [2], the proposed ES–LMS
and SI–LMS algorithms is 0.15. The parameter vector ω0 is set to an all–one vector. For
the diffusion RLS, ES–RLS and SI–RLS algorithms the forgetting factor λ is set to 0.945
and δ is equal to 0.001. The sparsity parameters of the SI–LMS/RLS algorithms are set to
ρ = 0.07 and ε = 10. The results are averaged over 100 independent runs. We simulate the
proposed algorithms for smart grids under a static scenario.

From Fig. 15, it can be seen that ES–RLS has the best performance, and significantly
outperforms the standard diffusion LMS [2] and the M–CSE [4] algorithms. The ES–LMS
is slightly worse than ES–RLS, which outperforms the remaining techniques. SI–RLS is
worse than ES–LMS but is still better than SI–LMS, while SI–LMS remains better than the
diffusion RLS, LMS, M–CSE algorithms and the single link strategy.
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Figure 15 MSE performance curves for smart grids
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Conclusions
In this paper, we have proposed ES–LMS/RLS and SI–LMS/RLS algorithms for distributed
estimation in applications such as wireless sensor networks and smart grids. We have com-
pared the proposed algorithms with existing methods. We have also devised analytical
expressions to predict their MSE steady–state performance and tracking behavior. Sim-
ulation experiments have been conducted to verify the analytical results and illustrate that
the proposed algorithms significantly outperform the existing strategies, in both static and
time–varying scenarios, in examples of wireless sensor networks and smart grids.
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