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Adaptive MBER Decision Feedback Multiuser
Receivers in Frequency Selective Fading Channels

Rodrigo C. de Lamare, Student Member, IEEE,and Raimundo Sampaio-Neto

Abstract—In this letter we investigate adaptive minimum
bit error rate (BER) decision feedback multiuser receivers for
DS-CDMA systems in fast frequency selective Rayleigh fading
channels. We examine stochastic gradient adaptive algorithms and
introduce fast algorithms for minimizing the BER cost function
from training data.

Index Terms—Adaptive algorithms, BER cost functions, deci-
sion feedback, multiuser detection.

I. INTRODUCTION

A DAPTIVE decision feedback (DFE) multiuser receivers
(MUDs) employing the minimum mean squared error

(MMSE) criterion usually show superior performance to linear
MUDs and have simple adaptive implementation [1], [2].
However, it is well known that the mean squared error (MSE)
cost function is not optimal in digital communications, and the
most appropriate cost function is the bit error rate (BER) [3],
[4]. The approximate minimum BER (AMBER) [3] and the
least BER (LBER) [4] are two of the most successful and suit-
able cost functions for adaptive implementation, even though
they usually require long training sequences to outperform
MMSE techniques. In this work, we extend the AMBER and
the LBER techniques to the DFE MUD case and investigate
faster algorithms that can speed up the convergence of these
receivers, requiring shorter training data. Finally, we assess
the convergence, tracking and BER performance of these
algorithms in fast frequency selective Rayleigh fading channels
through computer simulations.

II. DS-CDMA SYSTEM MODEL

We consider a synchronous DS-CDMA system withusers,
chips per symbol and binary symbols , where the sub-

script denotes user. These symbols are spread with signature
sequences , modulated and transmitted
through a communication channel characterized by:

, where the operator introduces a delay of one
chip time in the transmitted signal. The received signal after fil-
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tering by a chip-pulse matched filter and sampled at the chip
rate is given by or alternatively by

...
...

...
. . .

. . .
...

(1)

where the Gaussian noise vector
with , is the noise-free signal vector,
the user bit vector is given by ,
the user signature sequence matrix is described by

, the user signal amplitude matrix is repre-
sented by , and the
matrix implements channel convolution as in [4]. The
multiple access interference (MAI) is originated from the
nonorthogonality between the user signature sequences,
whereas the intersymbol interference (ISI) spandepends on
the length of the channel response. For , (no ISI),
for , , for , .

III. DFE MUD

DFE receivers employ the decisions of associated users to
cancel the MAI, outperforming linear MUDs and improving the
performance of the system [1], [2]. The output of the one-shot
DFE multiuser receiver is described by

(2)

where is the received vector and is the vector
of decisions. The feedforward matrix is , the
feedback matrix is and is constrained to have
zeros along the diagonal to avoid cancelling the desired sym-
bols. In this work, we employ a full matrix , except for the
diagonal, which corresponds to parallel decision feedback [2].
The detected symbol for the DFE MUD is given by

, where is the th estimated symbol for user.

IV. M INIMUM BER COST FUNCTIONS

Given a user transmitted training sequence, the bit error
probability , for the DFE receiver, is expressed by

(3)

where is given through (2) and is the desired symbol
taken from the training sequence for userand symbol .
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A. The AMBER Cost Function

The MUD solution for linear receivers ( in (2)) that
minimizes the BER cost function via the AMBER algorithm [3]
employs a vector function to approximate an expres-
sion for a coefficient vector that achieves a MBER per-
formance in linear receivers as described by

(4)

where is the desired transmitted symbol for user, taken
from the training sequence, is the Gaussian error function
and are the received samples without noise taken from the
outputs of chip-matched filters. For linear MUDs the quantity

inside the expected value
operator in (6) corresponds to the conditional bit error prob-
ability given the product . This quantity can be re-
placed in (6) by an error indicator function given by [3]

where is the estimated
symbol. The cost function gradient reduces to

(5)

Since , and and are
statistically independent, we have

and thus the instantaneous value
of the function is given by .

B. The LBER Cost Function

The MUD BER depends on the distribution of the decision
variable , which is a function of the weights of the receiver.
The sign-adjusted decision variable for the DFE MUD

is drawn from a Gaussian mixture, described by

(6)

where the first term of (6) is the noise free sign-adjusted MUD
output. A single point kernel density estimate [4] is given by

(7)

where is the radius parameter of the kernel density estimate.
The probability of error for useris estimated by

(8)

The gradient terms of are

(9)

(10)

V. ADAPTIVE ALGORITHMS

In this section, we describe stochastic gradient (SG) and Gra-
dient-Newton (GN) (fast) algorithms that adjust the parameters
of the MUD’s based on the minimization of the MSE and the
BER cost functions. We have chosen the GN technique because
the error surfaces of the MBER cost functions exhibit local
minima and with the GN approach one can control the rate of
convergence by carefully tuning the step size.

A. SG Algorithms

The AMBER algorithm for the DFE MUD, devised as an
extension of the linear case, is obtained via a SG optimization
and is expressed by

(11)

(12)

where and are the algorithm step sizes,
is a modified error indicator function

whose threshold increases the rate of convergence [3].
The LBER algorithm for the DFE MUD is obtained substi-

tuting the gradient terms in
and and adjusting the re-
ceiver weights such that

(13)

(14)

where is related to the noise standard deviation.

B. GN Algorithms

GN algorithms [5] incorporate second-order statistics of input
signals. They usually have a faster convergence rate than SG
techniques, although they require a higher computational com-
plexity. The update equation of Newton’s method is given by

where is the au-
tocorrelation matrix of the observation vector and
is the gradient vector to be minimized. To avoid the required in-
version of , we use the matrix inversion lemma, described
in [5]. The GN-AMBER solution for the DFE MUD is derived
in an analogous form to its SG version and is given by

(15)

(16)

The GN-LBER algorithm for the DFE MUD is also devised in
a similar way to its SG counterpart

(17)

(18)

where and are the step sizes.



DE LAMARE AND SAMPAIO-NETO: DFE MULTIUSER RECEIVERS IN FREQUENCY SELECTIVE FADING CHANNELS 75

Fig. 1. Convergence performance of the algorithms atE =N = 10 dB.

Fig. 2. BER performance of the DFE-MUD.

VI. SIMULATIONS

The performance of the DFE MUD’s with the adaptive al-
gorithms was evaluated in a three-path fast frequency selective
Rayleigh fading channel with coefficients

, where , , are independent se-
quences of independent unit power Rayleigh random variables

, that change at each transmitted symbol. In
all situations, the MUDs operate with Gold sequences of length

, process 200 symbols in training mode (TR) and then
switch to the decision-directed (DD) mode. The optimized pa-
rameters of the algorithms are: , ;

; ; ; ; and
. The channel parameters are: ; ;

and .

Fig. 3. BER performance with a varying number of users.

The convergence performance of the algorithms for a system
with users are shown in Fig. 1, where the MUDs process
200 symbols in TR and 800 symbols in DD, averaged over 100
independent experiments. The average BER performance versus

is shown in Fig. 2 for a system with users where
each MUD processes 10symbols averaged over 100 indepen-
dent experiments. In Fig. 3 the average BER performance of the
system with a varying number of users is shown. The results
show that the MBER GN algorithms are superior to the other
techniques, saving transmitting power and increasing system’s
capacity. It is also worth noting that the DFE-MUD-AMBER
shows a very good trade-off between performance and com-
plexity. Since complexity is comparable to the LMS with sav-
ings of almost 4 dB in for BER on the order of 10 .

VII. CONCLUSIONS

MBER algorithms for DFE MUDs have been proposed and
evaluated in fast frequency selective Rayleigh fading channels.
The fast algorithms have shown a performance superior to sto-
chastic gradient MBER and previously reported MMSE algo-
rithms.
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