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Design of LDPC Codes Based on
Progressive Edge Growth Techniques for Block Fading Channels

André G. D. Uchôa, Cornelius Healy, Rodrigo C. de Lamare, and Richard D. Souza

Abstract—A novel algorithm to design Root-Check LDPC
codes based on Progressive Edge Growth (PEG) techniques for
block-fading channels is proposed. The performance of the new
codes is investigated in terms of the Frame Error Rate (FER)
and the Bit Error Rate (BER). Numerical results show that the
codes constructed by the proposed algorithm outperform codes
constructed by the existing methods by 0.5dB.

Index Terms—LDPC, Root-Check, PEG, outage probability.

I. INTRODUCTION

DUE to multi-path propagation and mobility, wireless
systems are characterized by time-varying channels with

fluctuating signal strength. In applications subject to delay
constraints and slowly-varying channels, only limited inde-
pendent fading realizations are experienced. In such non-
ergodic scenarios, the channel capacity is zero since there
is an irreducible probability, termed outage probability [1],
that the transmitted data rate is not supported by the channel.
The block-fading channel is a simple and useful model that
captures the essential characteristics of non-ergodic channels
[2]. Codes designed for block-fading channels are expected to
achieve the limited channel diversity and to offer good coding
gains.

In [3] the authors proposed a family of Low-Density Parity-
Check codes (LDPC) called Root-LDPC codes for non-ergodic
block-fading channels. The Root-LDPC codes are shown to
achieve full diversity on block-fading channels and perform
close to the outage limit when decoded using the iterative
Sum-Product (SP) decoding algorithm. In the bipartite graph
representation of Root-LDPC codes, a subset of connections
are deterministically selected to guarantee full diversity for
information bits and the remaining connections are generated
randomly. In [4] the construction of structured Root-LDPC
codes is proposed by means of tiling circulant matrices, i.e.,
by designing Quasi-Cyclic Low-Density Parity-Check (QC-
LDPC) codes. It is also shown that the QC-LDPC codes can
perform as good as randomly generated Root-LDPC codes
over block-fading channels.

It is known that the girth, i.e., the length of the shortest
cycle present in the graph of the code, has a significant effect
on code performance. For regular codes, the number of inde-
pendent messages passed in SP decoding is proportional to the
girth of the code [5], which means that a better performance is
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achieved by codes with larger girths. Consequently, a number
of code construction methods aim to produce codes of large
girth. In [4] an algorithm to obtain QC-LDPC codes with large
girths is presented. Among the algorithms capable of produc-
ing LDPC codes with high performance for short to moderate
lengths is the Progressive Edge Growth (PEG) algorithm [6].
The codes produced by the PEG algorithm exhibit improved
performance compared to random construction methods [6].

The contribution of this letter is to present a PEG-based
algorithm to design LDPC codes with Root-Check properties,
thus providing Root-LDPC codes with larger girths than
those obtained by previously reported methods. A strategy
that imposes constraints on a PEG-based algorithm which
are required by Root-Check LDPC codes is devised. The
codes generated by the proposed algorithm can achieve a
significantly better performance in terms of FER and BER
than previous works [3], [4]. The new design can save up to
0.5dB in terms of signal to noise ratio (SNR) to achieve the
same FER or BER when compared to the known designs.

II. SYSTEM MODEL

Consider a block fading channel, where 𝐹 is the number
of independent fading blocks per codeword of length 𝑁 .
Following [4], the t-th received symbol is given by:

𝑦𝑡 = ℎ𝑓𝑥𝑡 + 𝑛𝑡, (1)

where 𝑡 = {1, 2, ⋅ ⋅ ⋅ , 𝑁}, 𝑓 = {1, 2, ⋅ ⋅ ⋅ , 𝐹}, 𝑓 and 𝑡 are
related by 𝑓 = ⌈𝐹 𝑡

𝑁 ⌉, where ⌈𝜙⌉ returns the smallest integer
not smaller than 𝜙, ℎ𝑓 is the real Rayleigh fading coefficient
of the 𝑓 -th block, 𝑥𝑡 is the transmitted signal, and 𝑛𝑡 is
additive white Gaussian noise with zero mean and variance
𝑁0/2. In this paper, we assume that the transmitted symbols
𝑥𝑡 are binary phase shift keying (BPSK) modulated. We
assume that the receiver has perfect channel state information,
and that the SNR is defined as 𝐸𝑏/𝑁0, where 𝐸𝑏 is the
energy per information bit. The information transmission rate
is 𝑅 = 𝐾/𝑁 , where 𝐾 is the number of information bits per
codeword of length 𝑁 . We consider 𝑅 = 1/𝐹 , since then it
is possible to design a practical diversity achieving code [4].

The performance of a communication system in a non-
ergodic block fading channel can be investigated by means
of the outage probability [2], [7]–[9], which is defined as:

𝑃𝑜𝑢𝑡 = 𝒫(𝐼 < 𝑅), (2)

where 𝒫(𝜙) is the probability of event 𝜙. The mutual infor-
mation 𝐼𝐺, supposing Gaussian channel inputs, is [4]:

𝐼𝐺 =
1
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so that an outage occurs when the average accumulated mu-
tual information among blocks is smaller than the attempted
information transmission rate.

The mutual information 𝐼𝐵𝑃𝑆𝐾 , supposing BPSK inputs,
does not have a closed form and it is given by [4]:

𝐼𝐵𝑃𝑆𝐾 =
1
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(4)
where

𝑔(𝜏) =

∫ ∞

−∞

1√
2𝜋

𝑒−
(𝑤−𝜏)2

2 log2
2

1 + 𝑒−2𝑤𝜏
d𝑤. (5)

The value of 𝑔(𝜏) can be computed by using the Gauss-
Hermite quadrature method. The FER performance of the
LDPC codes designed in this paper is compared to the outage
probability, considering both Gaussian and BPSK inputs.

III. PROPOSED DESIGN ALGORITHM

First of all, we will introduce some definitions and nota-
tions. Then, we will present the pseudo-code of our proposed
algorithm. In this work the case of a block-fading channel with
𝐹 = 2 is considered. The LDPC code in systematic form is
specified by its sparse parity check matrix H:

H = [I𝑀 P], (6)

where I𝑀 is the identity matrix of size 𝑀 = 𝑁 − 𝐾 , and
P is an 𝑀 -by-𝐾 matrix. The generator matrix for the code
is G = [P′ I𝐾 ]. Following the notation described in [4], the
parity check matrix for a Root-Check LDPC code 𝐶(3, 6) with
rate 𝑅 = 1/2, can be specified as:

H𝑅𝐶 =

[
I H2 0 H3

H2 I H3 0

]
(7)

where I is an identity matrix of size 𝑁
4 , H2 is a square matrix

with Hamming weight 2 of size 𝑁
4 and H3 is a square matrix

with Hamming weight 3 of size 𝑁
4 . The Hamming weights 2

and 3 mean that the sum of each column and each row from
each square matrix have only 2 and 3 entries with ones [4].

The variable node degree sequence 𝐷𝑠 is defined as the
set of column weights of the H designed, and is prescribed
by the variable node degree distribution 𝜆(𝑥) as described in
[10]. Moreover, 𝐷𝑠 is arranged in non-decreasing order. The
proposed algorithm, called PEG Root-Check, constructs H by
operating progressively on variable nodes to place the edges
required by 𝐷𝑠. The Variable Node (VN) of interest is labeled
𝑣𝑗 and the candidate check nodes are individually referred to
as 𝑐𝑖. The PEG Root-Check algorithm chooses a check node
𝑐𝑖 to connect to the variable node of interest 𝑣𝑗 by expanding
a constrained sub-graph from 𝑣𝑗 up to maximum depth 𝑙. The
set of check nodes found in this sub-graph is denoted 𝑁 𝑙

𝑣𝑗
while the set of check nodes of interest, those not currently
found in the sub-graph, are denoted 𝑁 𝑙

𝑣𝑗 . For the PEG Root-
Check algorithm, a check node is chosen at random from the
minimum weight check nodes of this set.

A. Pseudo-code for the PEG Root-Check Algorithm

Initialization: A matrix of size 𝑀 × 𝑁 is created with
identity matrices of size 𝑀

2 in the positions shown in (7) and
zeros in all other positions. We define the indicator vectors z1
and z2 as:

z1 = [01×𝑀
2
,11×𝑀

2
], (8)

z2 = [11×𝑀
2
,01×𝑀

2
], (9)

which are modeled on the indicator of the original PEG
algorithm [6] for tracking 𝑁 𝑙

𝑣𝑗 as the sub-tree expands. The
degree sequence as defined for LDPC codes must be altered to
take into account the structure imposed by Root-Check codes,
namely the identity matrices of (7). The Root-Check code
degree sequence is:

𝐷𝑠 = [𝐷𝑣1 − 1, 𝐷𝑣2 − 1, . . . , 𝐷𝑣𝑁
2

− 1, 𝐷𝑣𝑁
2
+1, . . . , 𝐷𝑣𝑁 ].

(10)
Imposing z1 and z2 for appropriate sets of VNs forces the
parity-check matrix to have the form of (7). The pseudo-code
for our proposed PEG Root-Check algorithm is detailed in
Algorithm 1.

Algorithm 1 PEG Root-Check Algorithm for 𝐹 = 2

1. for 𝑗 = 1 : 𝑁 do
2. for 𝑘 = 0 : 𝐷𝑠(𝑗)− 1 do
3. if (𝑗 ≤ 𝑁

4 ) ∥ (𝑁2 < 𝑗 ≤ 3𝑁
4 ) then

4. z𝑃𝐸𝐺 = z1
5. else
6. z𝑃𝐸𝐺 = z2
7. end if
8. if 𝑘 == 0 & 𝑗 > 𝑁

2 then
9. Choose candidate at random from minimum

weight CNs of the CN set indicated by z𝑃𝐸𝐺.
10. else
11. Expand the tree from the VN of interest under the

current setting. As the tree expands, for any CNs
newly added to the tree the corresponding entry of
z𝑃𝐸𝐺 is set to 0.

12. Expand the tree to depth l s.t. the weight of z𝑃𝐸𝐺

stops decreasing but is greater than 0 or the weight
of z𝑃𝐸𝐺 ∕= 0 but the weight of z𝑃𝐸𝐺 at the next
level l+1, = 0.

13. Place the edge (𝑐𝑖, 𝑉𝑗) randomly among the min-
imum weight check nodes of the set indicated by
z𝑃𝐸𝐺

14. end if
15. end for
16. end for

IV. SIMULATIONS

The performance of the proposed PEG-Root-Check LDPC
codes when used in a Rayleigh block-fading channel with
𝐹 = 2 independent fading blocks is analyzed. All LDPC codes
simulated here are (3,6) regular LDPC codes with rate 𝑅 = 1

2 .
The BPSK outage limit in (4) and the Gaussian outage limit
in (3) are drawn in dashed line and solid line, respectively, in
each figure for reference. In Fig. 1, it is compared the FER
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Fig. 1. FER performance comparison for Root-Check QC-LDPC codes,
Random Root-Check LDPC codes, PEG LDPC codes and PEG-Root-Check
LDPC codes over a block-fading channel with 𝐹 = 2 and 𝐿 = 1200. The
maximum number of iterations is 20.

performance among the proposed PEG-Root-Check LDPC
codes, Random Root-Check LDPC codes [3] and Root-Check
QC-LDPC codes [4]. The codeword length 𝐿 is 1200 bits.
Standard SP algorithm is employed at the decoder with a
maximum of 20 iterations. Following [3], [4], a maximum
of 20 iterations are enough to obtain a good performance in
terms of FER for block-fading channels. The performance of a
PEG based LDPC code [6] is also shown. From the results, it
can be noted that the proposed PEG-Root-Check LDPC code
outperforms the other Root-Check based LDPC codes and it
can save up to 0.5dB for the same FER performance. In the
case of the PEG-Root-Check LDPC codes the minimum girth
is 12. In fact, all Root-Check-based codes are able to achieve
the full diversity order of the channel, while PEG LDPC codes
fail to achieve full diversity. The curves presented for the
proposed PEG-Root-Check LDPC codes show that a Root-
Check LDPC code generated with the proposed PEG-based
algorithm produces a better performance in terms of FER.

Fig. 2 shows the FER and BER performance of PEG-
Root-Check LDPC codes and Root-Check QC-LDPC codes
with different codeword lengths. Two codeword lengths 𝐿 =
200, 400, bits are considered. At the high SNR region we
can observe that the proposed PEG-Root-Check LDPC codes
outperform the Root-Check QC-LDPC codes for the same
FER/BER performance. It must be mentioned that for different
codeword length we can still save up to 0.5dB in terms of SNR
for the same FER/BER performance. Moreover, note that the
proposed design is less than 1.5 dB away from the theoretical
limit given by the BPSK outage probability.

V. CONCLUSION

A novel PEG-based algorithm has been proposed to design
Root-Check LDPC codes. Based on simulations, the proposed
method was compared to Random Root-Check LDPC and
Root-Check QC-LDPC codes. The results demonstrate that
the PEG-Root-Check LDPC codes generated by our proposed
algorithm outperform the previously reported codes [3], [4] in
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Fig. 2. FER and BER performance comparison for PEG-Root-Check LDPC
codes and Root-Check QC-LDPC codes with codeword length 𝐿 = 200 and
400 bits over a block-fading channel with 𝐹 = 2. The maximum number of
iterations is 20.

a wide range of SNR values and provide a gain of up to 0.5
dB. Moreover, it must be mentioned that a PEG-based code
can be structured for linear complexity [11] so that the gains
come at no extra cost in the operation of the code.
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