Information Theory and Channel Coding

Prof. Rodrigo C. de Lamare
CETUC, PUC-Rio, Brazil
delamare@cetuc.puc-rio.br

XI. Polar codes

A. Introduction
B. Encoding and code structure
C. Decoding

- Polar codes are the first provably capacity-achieving efficient coding scheme.
- The encoding of polar codes has low complexity $\left(n \log _{2} n\right)$.
- The decoding of polar codes can be carried out via successive cancellation decoding with cost ($n \log _{2} n$), list decoding or belief propagation.
- They have been adopted for control channels in extended Mobile Broadband (eMBB) of 56 systems.

A. Introduction

- Let us consider the block diagram of a polar coding system.

- A unique feature of polar codes is the use of polarization of bit channels, which results in noisy useless channels and error-free channels.
- Bits that are transmitted over useless channels are frozen.
- A building block of polar codes is the basic channel transformation illustrated by

where W is a discrete memoryless channel (DMC).
- For an error-free/ perfect channel:
- Y determines X
- No need to encode data.
- For a useless channel:
- Y is independent of X
- No need to encode.
- Concatenation of DMCs:
- Channels that are perfect or useless but nothing in between-> polarization
- In a polar coding system a given DMC W is used n times to transmit a codeword.

Definition: Basic Channel Transformation (BCT)

Inputs: $X_{1}=U_{1} \oplus U_{2}$

$$
X_{2}=U_{2}
$$

Example 1

Consider that W is a binary erasure channel (BEC) with erasure probability ϵ
and the $B C T$

What are W^{-}, W^{+}? Consider $U_{1}, U_{2} \in\{0,1\}$

Solution:

W^{-}: input \mathcal{U}_{1}, output $\left(Y_{1}, Y_{2}\right)$
i) No erasure: $\left(Y_{1}, Y_{2}\right)=\left(U_{1} \oplus U_{2}, U_{2}\right)$
ii) Erasure on the 1st $\operatorname{BEC}:\left(Y_{1}, Y_{2}\right)=\left(?, U_{2}\right)$
iii) Erasure on the 2nd BEC: $\left(Y_{1}, Y_{2}\right)=\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right.$, ? $)$
iv) Two erasures: $\left(Y_{1}, Y_{2}\right)=(?, ?)$

$$
\begin{array}{ll}
x_{0}=0 \bigcirc \underset{p}{p} \stackrel{1-p}{p} y_{0}=0 \\
x_{1}=1-p \\
y_{1}=1
\end{array}
$$

W^{+}: input \mathcal{U}_{2}, output $\left(Y_{1}, Y_{2}, \mathcal{U}_{1}\right)$
i) No erasure: $\left(Y_{1}, Y_{2}, \mathcal{U}_{1}\right)=\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}, \mathcal{U}_{2}, \mathcal{U}_{1}\right)$
ii) Erasure on the 1st $\operatorname{BEC}:\left(Y_{1}, Y_{2}, \mathcal{U}_{1}\right)=\left(?, \mathcal{U}_{2}, \mathcal{U}_{1}\right)$

iii) Erasure on the 2nd BEC: $\left(Y_{1}, Y_{2}, \mathcal{U}_{1}\right)=\left(\mathcal{U}_{1} \oplus \mathcal{U}_{2}\right.$, ?, $\left.\mathcal{U}_{1}\right)$
iv) Two erasures: $\left(Y_{1}, Y_{2}, \mathcal{U}_{1}\right)=\left(?, ?, \mathcal{U}_{1}\right)$

Polarization

- The polarization effect can be obtained by recursively applying the $B C T$.

- 1st copy of W : input X_{1}, output Y_{1}
- 2nd copy of W : input X_{2}, output $Y_{2} \quad U_{1}=\widetilde{U_{1}}$

$$
W^{-}: \widetilde{U_{1}} \rightarrow\left(Y_{1}, Y_{2}\right), \text { where } X_{1}=\widetilde{\widetilde{U_{1}}} \oplus \widetilde{\widetilde{U_{2}}}
$$

$$
W^{+}: \widetilde{\widetilde{U_{2}}} \rightarrow\left(Y_{1}, Y_{2}, \widetilde{\widetilde{U_{1}}}\right), \text { where } X_{2}=\widetilde{\widetilde{U_{2}}}
$$

- 3rd copy of W : input X_{3}, output Y_{3}
- 4th copy of W : input X_{4}, output Y_{4}

$$
\begin{aligned}
& W^{-}: \widetilde{\widetilde{U_{1}}} \rightarrow\left(Y_{1}, Y_{2}\right), \text { where } X_{1}=\widetilde{\widetilde{U_{1}}} \oplus \widetilde{\widetilde{U_{2}}} \\
& W^{+}: \widetilde{\widetilde{U_{2}}} \rightarrow\left(Y_{1}, Y_{2}, \widetilde{U_{1}}\right), \text { where } X_{2}=\widetilde{\widetilde{U_{2}}}
\end{aligned}
$$

- Application of BCT to W^{-}:

1st copy of W : input $\widetilde{U_{1}}$, output $\left(\mathrm{Y}_{1}, Y_{2}\right)$ 2nd copy of W : input $\widetilde{U_{3}}$, output $\left(Y_{3}, Y_{4}\right)$ $W^{--}: \widetilde{U_{1}} \rightarrow\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$, where $\widetilde{\widetilde{U_{1}}}=\widetilde{U_{1}} \oplus \widetilde{U_{3}}$ $W^{-+}: \widetilde{U_{2}} \rightarrow\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, \widetilde{U_{1}}\right)$, where $\widetilde{U_{3}}=\widetilde{U_{3}} \quad U_{3}=\widetilde{U_{2}}$

- Application of BCT to W^{+}:

1st copy of W : input $\widetilde{U_{2}}$, output $\left(Y_{1}, Y_{2}, U_{1}\right) U_{2}=\widetilde{U_{3}}$ 2nd copy of W : input $\widetilde{U_{4}}$, output $\left(Y_{3}, Y_{4}, \widetilde{\widetilde{U}_{3}}\right)$ $W^{+-}: \widetilde{U_{2}} \rightarrow\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, \widetilde{U_{1}}, \widetilde{U_{3}},\right)$, where $\widetilde{U_{2}}=\widetilde{U_{2}} \oplus \widetilde{U_{4}}$

$$
\left.W^{++}: \widetilde{U_{2}} \rightarrow\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, \widetilde{U_{1}}, \widetilde{U_{3}}, U_{2}\right)^{2}\right), \text { where } \widetilde{\widetilde{U}_{4}}=\widetilde{U_{4}}, \widetilde{U_{4}}=\widetilde{U_{4}}
$$

$$
U_{1}=\widetilde{U_{1}}
$$

$$
0_{3}
$$

$$
=\widetilde{U_{2} \oplus \widetilde{U_{4}}}
$$

- By renaming $U_{1}=\widetilde{U_{1}}, U_{2}=\widetilde{U_{2}}, U_{3}=\widetilde{U_{3}}, U_{4}=\widetilde{U_{4}}$, we obtain

$$
\begin{aligned}
& W^{--}: U_{1} \rightarrow\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right) \\
& W^{-+}: U_{2} \rightarrow\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, U_{1}\right) \\
& W^{+-}: U_{3} \rightarrow\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, U_{1}, U_{2}\right) \\
& W^{++}: U_{4} \rightarrow\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, U_{1}, U_{2}, U_{3}\right)
\end{aligned}
$$

General procedure

- $W_{n}^{s_{1} \ldots s_{l}}: U_{\left(s_{1} \ldots s_{l}\right)+1} \rightarrow\left(Y_{1}, \ldots, Y_{2}^{l}, \mathcal{U}_{1}, \ldots, \mathcal{U}_{\left(s_{1} \ldots s_{l}\right)}\right)$,
where $s_{1} \ldots s_{l} \in\{0,-, 1,+\}$
$n=2^{l}$
Inputs are $u_{\left(s_{1} \ldots s_{l}\right)}$
Binary string is $\left(s_{1} \ldots s_{l}\right)$
- The mutual information associated with this procedure is given by

$$
I\left(W_{n}^{s_{1} \ldots s_{l}}\right)=I\left(\mathcal{U}_{\left(s_{1} \ldots S_{l}\right)}, Y_{1}, \ldots, Y_{2^{l}}, \mathcal{U}_{1}, \ldots, \mathcal{U}_{\left(s_{1} \ldots s_{l}\right)}\right)
$$

- By measuring the capacity of these concatenated channels, we obtain

$$
C\left(W_{n}\right)=I\left(W_{n}^{s_{1} \ldots S_{l}}\right),
$$

which is illustrated by

Example 2

Consider the BCT as the following Kronecker matrix

$$
\boldsymbol{T}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Illustrate how this matrix can be used for polarization with $l=1,2$

Solution:

We can write for $l=1$ the inputs X_{1} and X_{2} as follows:

$$
\boldsymbol{x}=\left[X_{1} X_{2}\right]=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\boldsymbol{u} \boldsymbol{T}
$$

For $l=2$ the inputs X_{1}, X_{2}, X_{3} and X_{4} as follows:

$$
\boldsymbol{x}=\left[\begin{array}{lll}
X_{1} & X_{2} & X_{3} X_{4}
\end{array}\right]=\left[\begin{array}{lll}
U_{1} & U_{2} & U_{3}
\end{array} U_{4}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]=\widetilde{\boldsymbol{u}}(\boldsymbol{T} \otimes \boldsymbol{I})=\widetilde{\boldsymbol{u}}\left[\begin{array}{ll}
\boldsymbol{T} & \boldsymbol{T} \\
\boldsymbol{T} & \mathbf{0}
\end{array}\right]
$$

B. Encoding

- The encoding stage of polar codes relies on the following steps:
- To repeatedly apply the BCT to n DMCs.
- To select among the polarized channels those that are best.
- The message bits m are transmited over good channels
- The useless channels transmit the frozen bits \boldsymbol{u}_{f}.
- The encoding can be illustrated by

- For a codeword with length $n=2^{l}$, we define the $\left(n, k, \mathcal{F}, \boldsymbol{u}_{f}\right)$ polar coding scheme $\mathcal{C}_{T_{n}}$ as follows.
- The length n codeword c of the polar code is given by

$$
\boldsymbol{c}=\boldsymbol{u} \boldsymbol{T}_{n}
$$

where $\boldsymbol{T}_{n}=\boldsymbol{P}_{n} \boldsymbol{T}^{\odot l}$ is the l-fold BCT transformation, \boldsymbol{P}_{n} is a permutation matrix and $\boldsymbol{u} \in \mathbb{R}^{n}$ is the input vector structured as

$$
\boldsymbol{u}=\left[\boldsymbol{m} \mid \boldsymbol{u}_{f}\right]
$$

where $u_{f} \in \mathbb{R}^{n-k}$ contains the $n-k$ frozen bits.

- The code rate is given by

$$
R=\frac{k}{n}
$$

- The encoding complexity is given by $\mathrm{O}\left(n \log _{2} n\right)$, which involves saving arithmetic operations with the l-fold BCT.
- It is common to employ other channel codes such as cyclic redundancy check (CRC) codes to further enhance the performance of polar codes.

Example 3

Consider the BCT as the following Kronecker matrix

$$
\boldsymbol{T}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Show how this matrix can be used to produce a codeword with length $n=4$ using bit reversal ordering via the matrix

$$
\boldsymbol{P}_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Solution:

We can write for $l=1$ the inputs X_{1} and X_{2} as follows:

$$
\boldsymbol{c}=\left[X_{1} X_{2}\right]=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\boldsymbol{u} \boldsymbol{T}
$$

For $l=2$ the inputs X_{1}, X_{2}, X_{3} and X_{4} constitute the codeword as follows:

$$
\boldsymbol{c}=\left[\begin{array}{lll}
X_{1} & X_{2} & X_{3}
\end{array} X_{4}\right]=\left[\begin{array}{lll}
U_{1} & U_{2} & U_{3}
\end{array} U_{4}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]=\widetilde{\boldsymbol{u}}(\boldsymbol{T} \otimes \boldsymbol{I})=\widetilde{\boldsymbol{u}}\left[\begin{array}{ll}
\boldsymbol{T} & \boldsymbol{T} \\
\boldsymbol{T} & \mathbf{0}
\end{array}\right]
$$

Using the bit-reversal matrix, we can write

$$
\tilde{\boldsymbol{u}}=\boldsymbol{u} \boldsymbol{P}_{4}
$$

and

$$
\begin{aligned}
\boldsymbol{c}= & \widetilde{\boldsymbol{u}}(\boldsymbol{T} \otimes \boldsymbol{I})=\boldsymbol{u} \boldsymbol{P}_{4}\left[\begin{array}{ll}
\boldsymbol{T} & \boldsymbol{T} \\
\boldsymbol{T} & \mathbf{0}
\end{array}\right] \\
& =\boldsymbol{u} \boldsymbol{P}_{4} \boldsymbol{T}^{\odot}{ }^{-2}=\boldsymbol{u} \boldsymbol{T}_{4} \\
& =\left[U_{1} U_{2} U_{3} U_{4}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore, in general we have

$$
\boldsymbol{T}_{n}=\boldsymbol{P}_{n} \boldsymbol{T}^{\odot} \boldsymbol{l}
$$

Puncturing

- Puncturing is important to adjust the codeword and/or the rate to the requirements of standards and applications.
- Due to the nature of polar codes they have codewords that are powers of 2 , i.e., $n=2^{l}$, which often requires puncturing of the frozen bits.

Example 4

Encode the message $\boldsymbol{m}=\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lllll}\mathcal{U}_{3} & \mathcal{U}_{5} \mathcal{U}_{6} & \mathcal{U}_{7} & \mathcal{U}_{8}\end{array}\right]$ using the frozen bits $\boldsymbol{u}_{\boldsymbol{f}}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ designated by the set $\mathcal{F}=\{1,2,4\}$ and the matrix

$$
\boldsymbol{T}_{8}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Consider also puncturing to produce a rate $R=\frac{5}{7}$ polar code

Solution:

The codeword is given by

$$
c=\widetilde{u}(T \otimes I)=u P_{8} T^{\odot}{ }^{\odot}=u T_{8}
$$

$$
\left.\begin{array}{l}
=\left[\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
\end{array}\right]\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

In order to puncture this code to obtain a rate $\mathrm{R}=\frac{5}{7}$ polar code, we need to discard 1 frozen bit, which would result in

$$
\boldsymbol{c}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

C. Decoding

- The most used decoding strategy is based on successive cancellation and is given by the following decisions:

$$
\hat{u}_{k}=\left\{\begin{array}{cc}
u_{k,} & \text { if } k \in \mathcal{F} \\
\psi_{k}\left(\boldsymbol{r}, \widehat{u}_{k-1}\right) & \text { if } k \notin \mathcal{F}^{\prime}
\end{array}\right.
$$

where the decoding functions is given by

$$
\psi_{k}\left(\boldsymbol{r}, \hat{u}_{k-1}\right)=\left\{\begin{array}{cc}
1, & \text { if } \log \left(\frac{P\left(\boldsymbol{r}, \hat{u}_{k-1} \mid m=1\right)}{P\left(\boldsymbol{r}, \hat{u}_{k-1} \mid m=-1\right)}\right) \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Example 5

Compare the performance of an LDPC code and a polar code with puncturing, $n=1920$ and rate $R=\frac{1}{4}$.

