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A. Introduction

• Coding techniques until the 1990s were heavily based on the use of
algebraic structures for BCH and Reed-Solomon (RS) codes.

• Additionally, designers relied on intensive use of memory and shift 
registers for powerful convolutional codes. 

• Concatenated coding strategies involving BCH and RS along convolutional
codes and interleavears have also been considered.

• Most of the above mentioned approaches would require long codes (𝑛
large) and/or large constraint lengths (𝐾 large) to approach capacity.



• The trouble with increasing 𝑛 and/or 𝐾 is the exponential computational
complexity for decoding.

• For convolutional codes, we could illustrate this trade-off as follows: 
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• Concatenated codes with interleavers have been introduced back in 
1965 by Forney and could in principle limit the growth in complexity.

• The basic idea of concatenated codes relies on splitting the decoding
into several simpler tasks.

• Concatenated codes based on RS and convolutional codes were very
successful for satellite and space communications with the structure:
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• Turbo codes are linear concatenated codes that were invented by Claude 
Berrou, Alan Glavieux and Punya Thitimajshima in 1993.

• Turbo codes can approach Shannon’s theoretical limit by
using concatenated convolutional codes with interleavers
and iterative MAP decoding.

• The basic idea consists of designing a code that is a concatenation of a 
convolutional code and another convolutional code with interleaved input.

• Decoding for such “random”-like concatenated code with sufficient
structure is carried out by 2 MAP decoders that exchange information. 

Near optimum error correcting coding and decoding: Turbo-codes. C Berrou, A Glavieux. 
IEEE Transactions on communications 44 (10), 1261-1271, 1996



B. Encoding and code structure

• Let us now describe the encoding procedure of the original turbo codes, 
which employ a parallel concatenation structure. 

• The codeword is described by

𝒄 = [𝑐𝑜 𝑐1 …𝑐𝑛−1]

= [𝑚𝑜 𝑧0
1 𝑧0

2 | 𝑚1 𝑧1
1 𝑧1

2| … |𝑚𝑘−1 𝑧𝑘−1
1 𝑧𝑘−1

2 ],

where the code rate is 𝑅 =
1

3
.

Encoder 1

Encoder 2𝜋

𝒎 𝒎 = [𝑚0 𝑚1…𝑚𝑘−1] Systematic bits

𝒛1 = [𝑧0
1 z1

1…𝑧𝑘−1
1 ]

𝒛2 = [𝑧0
2 z1

2…𝑧𝑘−1
2 ]

Parity bits

Parity bits



• Recursive convolutional codes are often used as constituent codes.

• The constituent codes can be block codes.

• The concatenation can be serial.

• More than 2 encoders can be employed, resulting in turbo codes with
lower code rates.

Encoder 1

Encoder 2𝜋

𝒎 𝒎 = [𝑚0 𝑚1…𝑚𝑘−1] Systematic bits

𝒛1 = [𝑧0
1 z1

1…𝑧𝑘−1
1 ]

𝒛2 = [𝑧0
2 z1

2…𝑧𝑘−1
2 ]

Parity bits

Parity bits



• Let us now assume transmission of the codewords produced by a turbo 
encoder using a parallel concatenated scheme.

• Assume that the channel is AWGN, which results in

𝒓 = 𝒄 + 𝒏, ℝ1 × 𝑛 ,

where 𝒏 = [𝑛𝟎 𝑛1 …𝑛𝑘−1 ] is the vector with noise samples.

Turbo 
encoder

Channel
Turbo 
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𝒎 𝒄 𝒓 ෝ𝒄



• The received data of the turbo coding system can be written as

𝒓 = 𝑟0 𝑟1 … 𝑟𝑛−1 = 𝒄 + 𝒏

= 𝑢0 𝜉0
1 𝜉0

2 𝑢1 𝜉1
1 𝜉1

2 … | 𝑢𝑛−1 𝜉𝑘−1
1 𝜉𝑘−1

2 ,

where 𝒖 = 𝑢0 𝑢1 … 𝑢𝑘−1 = 𝒎+ 𝒏𝑚 is the vector of noisy systematic bits, 

𝝃1 = 𝜉0
1 𝜉1

1 … 𝜉𝑘−1
1 = 𝒛1 + 𝒏𝑧1 is the vector of noisy parity bits of encoder 1,

𝝃2 = 𝜉0
2 𝜉1

2 … 𝜉𝑘−1
2 = 𝒛𝟐 + 𝒏𝑧2 is the vector of noisy parity bits of encoder 2,

and 𝒏 = 𝑛0
𝑚 𝑛0

𝑧1 𝑛0
𝑧2 𝑛1

𝑚 𝑛1
𝑧1 𝑛1

𝑧2 … |𝑛𝑘−1
𝑚 𝑛𝑘−1

𝑧1 𝑛𝑘−1
𝑧2 is the noise vector.



Example 1

Consider a turbo encoder with parallel concatenation whose constituent
recursive systematic convolutional code (RSC) is given by

𝐺 𝐷 =
1

1+𝐷2

The turbo scheme is to encode the message 𝒎 = [1 1 0 0 1 0 1 0 1 1] using
the interleaver 𝜋 = {8, 3, 7, 6, 9, 0, 2, 5, 1, 4}.

a) Obtain the encoder and the state diagram of the RSC.
b) Compute the parity bits of the RSCs and the interleaved message.
c) Determine the codeword 𝐜.

d) Assume that the system uses puncturing to increase the code rate to
1

2
and compute the punctured codeword.

RSC 1

RSC 2𝜋

𝒎

𝒛1 = [𝑧0
1 z1

1…𝑧𝑘−1
1 ]

𝒛2 = [𝑧0
2 z1

2…𝑧𝑘−1
2 ]



Solution:

a) The encoder and the state diagram are given by
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𝑑
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b) The parity bits of the first RSC with 𝒎 = [1 1 0 0 1 0 1 0 1 1]
is given by

𝐳1 = 1 1 1 1 0 1 1 1 0 0

The interleaved message with 𝜋 = {8, 3, 7, 6, 9, 0, 2, 5, 1, 4} is

𝒎′ = 1 0 0 1 1 1 0 0 1 1

and the parity bits of the second RSC are

𝐳2 = 1 0 1 1 0 0 0 0 1 1

c) The codeword produced by the turbo encoder is then

𝒄 = 𝑐𝑜 𝑐1 …𝑐𝑛−1 = [𝑚𝑜 𝑧0
1 𝑧0

2| 𝑚1 𝑧1
1 𝑧1

2|… |𝑚𝑘−1 𝑧𝑘−1
1 𝑧𝑘−1

2 ],
= 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1 0 01 0 10 1| 1 1 1

where the code rate is 𝑅 =
1

3
.

𝑎

𝑏 𝑐

𝑑

0/0

0/1

1/1
0/0

0/1

1/0

1/0 1/1



d) In order to increase the code rate to
1

2
we puncture the output of the

RSC encoders in an alternating fashion, which yields

𝒄 = 𝑐𝑜 𝑐1 …𝑐2𝑘−1 = [𝑚𝑜 𝑧0
1 | 𝑚1 𝑧1

2| … |𝑚𝑘−1 𝑧𝑘−1
2 ]

= 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 10| 1 1



B. Turbo decoding

• Decoding strategy:

o Two MAP algorithms are used to calculate for each bit 𝑚𝑗 , 𝑗 = 0,1, … , 𝑘 − 1 if 
the bit probability is either +1 or −1.

o MAP decision rule:

𝑃 𝑚𝑗 = +1 𝒓

𝑃 𝑚𝑗 = −1 𝒓

+1
≥
<
−1

1

Decoder 1 Decoder 2𝜋

𝜋−1

𝒓 𝑙1(𝒎) ሚ𝑙1(𝒎) 𝑙2(𝒎)

𝒖 𝝃2𝒖 𝝃1

ሚ𝑙2(𝒎) 𝑙2(𝒎)

−

−



• Iterative processing:

o The second decoder makes the decision as follows:

ෝ𝑚j = sgn log
𝑃 𝑚𝑗 = +1 𝒓

𝑃 𝑚𝑗 = −1 𝒓
= sgn 𝑙(𝑚𝑗)

o Key problem: to compute the a posteriori log-likelihood ratio (LLR):

𝑙(𝑚𝑗) = 𝑙(𝑚𝑗|𝒓) = log
𝑃 𝑚𝑗 = +1 𝒓

𝑃 𝑚𝑗 = −1 𝒓

Decoder 1 Decoder 2𝜋

𝜋−1

𝒓 𝑙1(𝒎) ሚ𝑙1(𝒎) 𝑙2(𝒎)

𝒖 𝝃2𝒖 𝝃1

ሚ𝑙2(𝒎) 𝑙2(𝒎)

−

− ෝ𝑚𝑗 = 0,1,… , 𝑘 − 1



Decoding process
• Consider the previous turbo decoding scheme and the trellis associated to

the recursive convolutional code.

• The LLR can be expressed as a transition between the previous state 𝑠𝑗−1 =
𝑠′ and the current state 𝑠𝑗 = 𝑠:

𝑙 𝑚𝑗 = 𝑙 𝑚𝑗 𝒓 = log
𝑃 𝑚𝑗 = +1 𝒓

𝑃 𝑚𝑗 = −1 𝒓

= log
σ

𝑠′,𝑠 →𝑚𝑗=+1
𝑝 𝑠𝑗−1=𝑠

′,𝑠𝑗=𝑠,𝒓

σ
𝑠′,𝑠 →𝑚𝑗=−1

𝑝 𝑠𝑗−1=𝑠
′,𝑠𝑗=𝑠,𝒓

𝑎

𝑏

𝑐

𝑑

𝑠′ = 𝑠𝑗−1 𝑠 = 𝑠𝑗



• The LLR expression 𝑙 𝑚𝑗 can be rewritten because the states 𝑠𝑗−1 = 𝑠′

and 𝑠𝑗 = 𝑠 are assumed known.

• Therefore, we can determine the bit  𝑚𝑗 that triggers the transition
between 𝑠𝑗−1 = 𝑠′ and 𝑠𝑗 = 𝑠.

𝑎

𝑏

𝑐

𝑑
𝑠′ = 𝑠𝑗−1 𝑠 = 𝑠𝑗

𝒓𝑘>𝑗𝒓𝑗𝒓𝑘<𝑗



• Consider the joint probability density function 𝑝 𝑠𝑗−1 = 𝑠′, 𝑠𝑗 = 𝑠, 𝒓 in 

𝑙 𝑚𝑗 then the received signal 𝒓 can be split into 3 parts:

o 𝒓𝑘<𝑗 - sequence associated to the previous sequence.

o 𝒓𝑗 - sequence associated to the current transition.

o 𝒓𝑘>𝑗 - sequence associated to the posterior sequence.

𝑎

𝑏

𝑐

𝑑
𝑠′ = 𝑠𝑗−1 𝑠 = 𝑠𝑗

𝒓𝑘>𝑗𝒓𝑗𝒓𝑘<𝑗



• We can rewrite the joint prob. density function 𝑝 𝑠𝑗−1 = 𝑠′, 𝑠𝑗 = 𝑠, 𝒓

using Bayes’ rule and the fact that the channel is memoryless as

𝑝 𝑠𝑗−1 = 𝑠′, 𝑠𝑗 = 𝑠, 𝒓 = 𝑝 𝑠𝑗−1 = 𝑠′, 𝑠𝑗 = 𝑠, 𝒓𝑘<𝑗 , 𝒓𝑗, 𝒓𝑘>𝑗

= 𝑝(𝑠′, 𝑠, 𝒓)

= 𝑝 𝒓𝑘>𝑗|𝑠 𝑝 𝑠′, 𝑠, 𝒓𝑗, 𝒓𝑘>𝑗

= 𝑝 𝒓𝑘>𝑗|𝑠

𝛽𝑗 𝑠

𝑝 𝒓𝑗, 𝑠|𝑠
′

𝛾𝑗 𝑠′,𝑠

𝑝 𝑠′, 𝒓𝑘<𝑗
𝛼𝑗−1 𝑠′

= 𝛼𝑗−1 𝑠′ 𝛾𝑗 𝑠
′, 𝑠 𝛽𝑗 𝑠 ,

where 𝛼𝑗−1 𝑠′ , 𝛾𝑗 𝑠
′, 𝑠 and 𝛽𝑗 𝑠 are the forward, branch and backward

metrics, respectively.

• With these metrics we can replace the joint prob. density function.



• The  forward, branch and backward metrics 𝛼𝑗−1 𝑠′ , 𝛾𝑗 𝑠
′, 𝑠 and 𝛽𝑗 𝑠

are depicted in the trellis below.

• These metrics contain information about the trellis that can be used to
compute the LLR.

𝑎

𝑏

𝑐

𝑑
𝑠′ = 𝑠𝑗−1 𝑠 = 𝑠𝑗

𝒓𝑘>𝑗𝒓𝑗𝒓𝑘<𝑗

𝛼𝑗−1(𝑠
′) 𝛾𝑗(𝑠

′, 𝑠) 𝛽𝑗(𝑠)



• The a posteriori LLR can then be rewritten as

𝑙 𝑚𝑗 𝒓 = log
σ

𝑠′,𝑠 →𝑚𝑗=+1
𝑝 𝑠𝑗−1=𝑠

′,𝑠𝑗=𝑠,𝒓

σ
𝑠′,𝑠 →𝑚𝑗=−1

𝑝 𝑠𝑗−1=𝑠
′,𝑠𝑗=𝑠,𝒓

= log
σ

𝑠′,𝑠 →𝑚𝑗=+1
𝛼𝑗−1 𝑠′ 𝛾𝑗 𝑠′,𝑠 𝛽𝑗 𝑠

σ
𝑠′,𝑠 →𝑚𝑗=−1

𝛼𝑗−1 𝑠′ 𝛾𝑗 𝑠′,𝑠 𝛽𝑗 𝑠

= log
𝑃(𝑚𝑗=+1)

𝑃(𝑚𝑗=−1)
+ 𝐿𝑐𝑟𝑗 + log

σ
𝑠′,𝑠 →𝑚𝑗=+1

𝛼𝑗−1 𝑠′ 𝜒𝑗 𝑠′,𝑠 𝛽𝑗 𝑠

σ
𝑠′,𝑠 →𝑚𝑗=−1

𝛼𝑗−1 𝑠′ 𝜒𝑗 𝑠′,𝑠 𝛽𝑗 𝑠

= 𝑙𝑎(𝑚𝑗)

a priori information

+ ณ𝐿𝑐
channel reliability

𝑟𝑗 + log
σ

𝑠′,𝑠 →𝑚𝑗=+1
𝛼𝑗−1 𝑠′ 𝜒𝑗 𝑠′,𝑠 𝛽𝑗 𝑠

σ
𝑠′,𝑠 →𝑚𝑗=−1

𝛼𝑗−1 𝑠′ 𝜒𝑗 𝑠′,𝑠 𝛽𝑗 𝑠

extrinsic information

,

where 𝐿𝑐 =
4

2𝜎2
and 𝜒𝑗 𝑠

′, 𝑠 = 𝑒(
𝐿𝑐
2
σ𝑙=𝑗+1
𝑛 𝑟𝑙𝑐𝑙) .



Turbo decoding algorithm

1st decoder:
o Computes 𝑙1(𝒎) based on 𝝃1 and 𝒖.

o Obtains extrinsic information ሚ𝑙1 𝒎 = 𝑙1 𝒎 − ሚ𝑙2(𝒎)

2nd decoder:
o Computes  𝑙2(𝒎) based on 𝝃2 and 𝒖.

o Obtains extrinsic information ሚ𝑙2 𝒎 = 𝑙2 𝒎 − ሚ𝑙1(𝒎)

Decision:

o ෝ𝑚j = sgn 𝑙(𝑚𝑗) , 𝑗 = 0,1, … , 𝑘 − 1

Decoder 1 Decoder 2𝜋

𝜋−1

𝒓
𝑙1(𝒎) ሚ𝑙1(𝒎) 𝑙2(𝒎)

𝒖 𝝃2𝒖 𝝃1

ሚ𝑙2(𝒎) 𝑙2(𝒎)

−

− ෝ𝑚𝑗 = 0,1,… , 𝑘 − 1



D. MAP algorithm

• The task of the MAP algorithm is to compute

𝑙 𝑚𝑗 𝒓 = log
σ

𝑠′,𝑠 →𝑚𝑗=+1
𝛼𝑗−1 𝑠′ 𝛾𝑗 𝑠′,𝑠 𝛽𝑗 𝑠

σ
𝑠′,𝑠 →𝑚𝑗=−1

𝛼𝑗−1 𝑠′ 𝛾𝑗 𝑠′,𝑠 𝛽𝑗 𝑠

• This requires the computation of

o Forward metric 𝛼𝑗−1 𝑠′

o Branch metric 𝛾𝑗 𝑠′, 𝑠

o Backward metric 𝛽𝑗 𝑠

o The approach described here has been devised by Bahl, Cocke, Jelinek 
and Raviv, which is known as the BCJR algorithm.

L.Bahl, J.Cocke, F.Jelinek, and J.Raviv, "Optimal Decoding of Linear Codes for minimizing symbol error

rate", IEEE Transactions on Information Theory, vol. IT-20(2), pp. 284-287, March 1974



i) Computation of forward metric 𝛼𝑗 𝑠 :

𝛼𝑗 𝑠 = 𝑝 𝑠𝑗 = 𝑠, 𝑠𝑗−1 = 𝑠′, 𝒓𝑘<𝑗+1 = 𝑝(𝑠, 𝑠′, 𝒓𝑗>𝑘 , 𝒓𝑗)

= σall 𝑠′𝑝(𝑠, 𝑠
′, 𝒓𝑗>𝑘 , 𝒓𝑗)

Using Bayes’ rule and the fact that the channel is memoryless, we obtain

𝛼𝑗 𝑠 = σall 𝑠′𝑝(𝑠, 𝑠
′, 𝒓𝑗>𝑘 , 𝒓𝑗)

= σall 𝑠′𝑝(𝑠
′, 𝒓𝑗>𝑘)𝑝({𝑠, 𝒓𝑗}|{𝑠

′, 𝒓𝑗>𝑘})

= σall 𝑠′𝑝(𝑠
′, 𝒓𝑗>𝑘)𝑝({𝑠, 𝒓𝑗}|𝑠′)

= σall 𝑠′𝛼𝑗−1 𝑠′ 𝛾𝑗(𝑠
′, 𝑠)

Initial conditions: 𝛼0 𝑠0 = 0 = 1 and 𝛼0 𝑠0 = 𝑠 = 0, for all 𝑠 ≠ 0



ii) Computation of backward metric 𝛽𝑗 𝑠

𝛽𝑗−1 𝑠′ = 𝑝(𝒓𝑗−1 < 𝒓𝑘|𝑠
′)

= 

all 𝑠′

𝛽𝑗 𝑠 𝛾𝑗(𝑠
′, 𝑠)

Initial conditions:

𝛽𝑗 𝑠 = ቊ
1, 𝑠 = 0
0, 𝑠 ≠ 0



iii) Computation of branch metric 𝛾𝑗(𝑠
′, 𝑠)

𝛾𝑗 𝑠
′, 𝑠 = 𝑝 𝒓𝑗 , 𝑠 𝑠′ = 𝑝(𝒓𝑗|{𝑠

′, 𝑠})𝑝 𝑠 𝑠′

= 𝑝(𝒓𝑗|{𝑠
′, 𝑠})𝑝 𝑚𝑗

= 𝑝(𝒓𝑗|𝑚𝑗) 𝑝 𝑚𝑗 , 

where 𝑚𝑗 is the necessary input for a transition from 𝑠′ = 𝑠𝑗−1 to 𝑠 = 𝑠𝑗
and 𝑝 𝑚𝑗 is the a priori probability of the bit.

Assuming that the channel is AWGN and the modulation is BPSK or PAM-2, 
𝑝(𝒓𝑗|𝑚𝑗) is given by

𝑝(𝒓𝑗 𝑚𝑗 = ς𝑙=1
𝑛 𝑝 𝑟𝑗𝑙 𝑚𝑗

=ෑ

𝑙=1

𝑛
1

2𝜋𝜎
𝑒
(
−𝐸𝑏𝑅
2𝜎2

𝑟𝑗𝑙−𝑐𝑗𝑙
2
)
,

where 𝐸𝑏 is the bit energy and 𝑅 is the code rate.



Example 2

Consider the following trellis and branch metrics

Compute 𝛼𝑗 0 and 𝛽𝑗 0 .

0

1

2

3

𝑠′ = 𝑠𝑗−1 𝑠 = 𝑠𝑗

𝒓𝑗+1𝒓𝑗

𝑠𝑗+1
𝛼𝑗−1 0

𝛼𝑗−1 1

𝛾𝑗(0,0)

𝛾𝑗(1,0)

𝛾𝑗+1(0,0)

𝛾𝑗(0,2)

𝛽𝑗+1 0

𝛽𝑗+1 2



Solution:

These metrics can be computed as follows:

𝛼𝑗 0 = 𝛼𝑗−1 0 𝛾𝑗 0,0 + 𝛼𝑗−1 1 𝛾𝑗 1,0

𝛽𝑗 0 = 𝛽𝑗+1 0 𝛾𝑗+1 0,0 + 𝛽𝑗+1 2 𝛾𝑗 0,2

0

1

2

3

𝑠′ = 𝑠𝑗−1 𝑠 = 𝑠𝑗

𝒓𝑗+1𝒓𝑗

𝑠𝑗+1
𝛼𝑗−1 0

𝛼𝑗−1 1

𝛾𝑗(0,0)

𝛾𝑗(1,0)

𝛾𝑗+1(0,0)

𝛾𝑗(0,2)

𝛽𝑗+1 0

𝛽𝑗+1 2



Example 3

Consider a turbo coding system with parallel concatenation and a
constituent code given by

𝐺 𝐷 = 1 + 𝐷 + 𝐷2

Simulate the BER and the FER of the system against the SNR for a block
size of 𝑛 = 256 using a MAP decoder, AWGN channel, a range of 0 to 4 dB
and 5 decoding iterations.



Solution:


