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A. Introduction

• Convolutional codes are an important alternative to linear block codes 
that were invented by Peter Elias, an MIT professor, in 1955.

• Convolutional codes can approach Shannon’s theoretical limit
by using maximum likelihood decoding.

• The basic idea consists of processing messages sequentially rather than
in blocks using shift registers and adders.

• Decoding convolutional codes is carried out by a maximum likelihood
decoding strategy known as Viterbi algorithm. 



• Let us consider a general convolutional coding scheme:

• Key parameters include:

o The code rate: 𝑅 =
𝑘

𝑛

o The constraint length (𝐾): the number of bit shifts required to modify the
output.

o The memory (𝑀): 𝐾 = 𝑀 + 1
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• Convolutional encoders can be categorized as:
o systematic or non systematic, 
o recursive or non recursive.

• Systematic encoders:
o cannot be catastrophic-> when a finite number of errors result in an infinite

number of errors in the decoding.
o the message is explicitly shown.

• Recursive encoders:
o employ a configuration with feedback.
o can be implemented as IIR filters.

• Non-recursive encoders:
o can be implemented as FIR filters



Example 1

Analyze the following convolutional encoders and describe the following:

a) Rate

b) Constraint length and memory

c) Are they systematic or non systematic?

d) Are they recursive or non recursive?

𝑚

𝑐(1)

𝑐(2)

𝑐(3)

𝑚

𝑐(1)

𝑐(2)

𝑐(3)𝑖𝑖) c
𝑖)



Solution:

For encoder 𝑖), we have

The code rate is 𝑅 =
1

3

The contraint length is 𝐾 = 3 and the memory is 𝑀 = 2

This is a systematic encoder because the message is explicitly shown.
The encoder is recursive because there is a feedback loop that affects
encoding. 

𝑚

𝑐(1)

𝑐(2)

𝑐(3)



For encoder 𝑖𝑖), we have

The code rate is 𝑅 =
1

3

The contraint length is 𝐾 = 3 and the memory is 𝑀 = 2

This is a non systematic encoder because the message is not explicitly
shown.
The encoder is non recursive because there is no feedback loop that
affects encoding. 

𝑚

𝑐(1)

𝑐(2)

𝑐(3)



B. Encoding

• Let us consider a convolutional coding system with the block diagram. 

• We will assume that the convolutional encoder has k = 1 inputs and 𝑛
outputs in our exposition.

• The 𝐷 −transform will be adopted for the description of the message
and code sequences as polynomials, where 𝐷 refers to a delay.

Encoder 𝑮 Channel
Maximum 
likelihood
decoder

𝒄𝒎 𝒓 = 𝒄 + 𝒏 ො𝒄, ෝ𝒎

message codeword received data decoded data

1 × 𝑘 1 × 𝑛 1 × 𝑛



Message sequence 𝒎:

• The message sequence 𝒎 = [𝑚0 𝑚1 …𝑚𝑘−1] at the input of the encoder
can be described as a polynomial:

𝑚 𝐷 = 𝑚0 +𝑚1𝐷 +⋯+𝑚𝑘−1𝐷
𝑘−1,

where 𝑚𝑑 ∈ {0,1}, 𝑑 = 0,1, … , 𝑘 − 1.



Encoder structure:

• The generator polynomial 𝑔 𝑗 𝐷 is given by

𝑔(𝑗) 𝐷 = 𝑔(𝑗)
0
+ 𝑔1

(𝑗)
𝐷 +⋯+ 𝑔𝑀

𝑗
𝐷𝑀, 𝑗 = 1,2, … , 𝑛

where 𝑔𝑚
𝑗
∈ {0,1}, 𝑚 = 0,1, … ,𝑀 and 𝑀 is the memory of the encoder

polynomial and 𝑛 is the number of outputs.

• The impulse response of the encoder is equivalent to the generator
polynomial and is given by

𝒈(𝑗) = 𝑔(𝑗)
0
𝑔1
(𝑗)

…𝑔𝑀
𝑗



Example 2

Consider a convolutional encoder given by

a) Compute the impulse response of each output of the encoder.

b) Compute the generator polynomial of each output of the encoder and
express it in octal form.

𝑚

𝑐(1)

𝑐(2)

𝑐(3)



Solution:

a) We obtain the impulse response

by inspection as follows:

𝒈(1) = 1 0 0

𝒈(2) = 1 0 1

𝒈(3) = 1 1 1

𝑚

𝑐(1)

𝑐(2)

𝑐(3)



b) We obtain the generator polynomials

by inspection as follows:

𝑔(1) 𝐷 = 1

𝑔(2) 𝐷 = 1 + 𝐷2

𝑔(3) 𝐷 = 1 + 𝐷 + 𝐷2

In octal, we have

𝑔(1) 𝐷 = 4

𝑔(2) 𝐷 = 5

𝑔(3) 𝐷 = 7

𝑚

𝑐(1)

𝑐(2)

𝑐(3)



Convolutional codes can be generated using different strategies, namely:

i) Convolutional sum

The convolutional code at time 𝑖 is given by

𝑐𝑖 =෍

𝑙=0

𝑀

𝑚𝑖−𝑙𝑔𝑙
(𝑗)
, 𝑖 = 0,1, … , 𝑘 + 𝑀 − 1,

where 𝒎 = [𝑚0 𝑚1 …𝑚𝑘−1] is the message, 𝑀 is the memory and 𝒈(𝑗) =

[ 𝑔0
𝑗
𝑔1

𝑗
… . 𝑔𝑀

𝑗
] is the impulse response of path 𝑗 of the encoder. 



ii) Discrete convolution in time

For a message 𝒎 = 𝑚0 𝑚1 …𝑚𝑘−1 and impulse responses of the encoder given
by 𝒈(𝑗) = [ 𝑔0

𝑗
𝑔1

𝑗
… . 𝑔𝑀

𝑗
], the code is described by

𝒄(𝑗) = 𝑐0 𝑐1 …𝑐𝑘+𝑀−1 = 𝒎 ∗ 𝒈 𝑗 ,

where ∗ refers to convolution.

The convolution can be represented by

𝒄(𝑗) = 𝒎𝑮(𝑗),

where 𝑮(𝑗) =
𝑔0

𝑗
𝑔1

𝑗
… . 𝑔𝑀

𝑗

⋱

𝑔0
𝑗
𝑔1

𝑗
… . 𝑔𝑀

𝑗
∈ Ϝ𝑘 ×(𝑘+𝑀)



iii) Polynomial multiplication:

The convolutional code can also be described in polynomial form:

𝑐 𝑗 𝐷 = 𝑔 𝑗 𝐷 𝑚 𝐷 , 𝑗 = 1,2,… , 𝑛,

where the degree of 𝑐 𝑗 𝐷 , i.e., deg 𝑐 𝑗 𝐷 , is the sum of the degrees of
𝑔 𝑗 𝐷 and 𝑚 𝐷 , that is,

deg 𝑐 𝑗 𝐷 = deg 𝑔 𝑗 𝐷 + deg 𝑚 𝐷 . 

The output of the code is given by

𝑐 𝐷 = 𝑐 1 𝐷 𝐷1 + 𝑐 2 𝐷 𝐷2 +⋯+ 𝑐 𝑛 𝐷 𝐷𝑛

= σ𝑗=1
𝑛 𝑐 𝑗 𝐷 𝐷𝑗

= σ𝑗=1
𝑛 𝑔 𝑗 𝐷 𝑚 𝐷 𝐷 𝐷𝑗



Example 3

Consider the following convolutional encoder

a) Write down the rate, impulse response and
the generator polynomials of the encoder.

b) Compute the code for the message 𝒎 = 1 0 0 1 1

𝑚

𝑐(2)

𝑐(1)



Solution:

a) The rate of this encoder is 𝑅 =
1

2
.

We obtain the impulse response
by inspection as follows:

𝒈(1) = 1 1 1 = 7

𝒈(2) = 1 0 1 = 5

The polynomials are 

𝑔(1) 𝐷 = 1 + 𝐷 + 𝐷2

𝑔(2) 𝐷 = 1 + 𝐷2

𝑚

𝑐(2)

𝑐(1)



b) The message 𝒎 = 1 0 0 1 1 can be written in the form of a polynomial

𝑚 𝐷 = 1 + 𝐷3 + 𝐷4

The code polynomials of each path are:

𝑐 1 𝐷 = 𝑔 1 𝐷 𝑚 𝐷 = 1 + 𝐷 + 𝐷2 + 𝐷3 + 𝐷6

𝑐 2 𝐷 = 𝑔 2 𝐷 𝑚 𝐷 = 1 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷5 + 𝐷6

The code is then

𝑐 𝐷 = 1 + 𝐷 + 𝐷2 + 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7 + 𝐷9 + 𝐷11 + 𝐷12 + 𝐷13

𝒄 = 1 1 1 0 1 1 1 1 0 1 0 1 1 1



iv) Recursive convolutional codes:

We define the generator matrix 𝑮(𝐷) as

𝑮 𝐷 =
𝑔1

1
(𝐷) … 𝑔1

𝑛
(𝐷)

⋮ ⋱ ⋮

𝑔𝑘
1
(𝐷) … 𝑔𝑘

𝑛
(𝐷)

∈ Ϝ𝑘 × 𝑛

In general, a systematic recursive convolutional code has a generator
matrix in the form

𝑮 𝐷 = 𝑰𝑘 | 𝑷(𝐷) ∈ Ϝ𝑘 × 𝑛,

where 𝑷 𝐷 =
𝑩 𝐷

𝑴 𝐷
describes the feedback part of the encoder.



Example 4

Write down the transfer function known as generator matrix of the
encoder

𝑚

𝑐(1)

𝑐(2)

𝑐(3)



Solution:

By inspection, we have

𝑮 𝐷 = 𝑰𝑘 | 𝑷(𝐷)

= 1
1+𝐷

1+𝐷+𝐷2

𝐷

1+𝐷+𝐷2

𝑚

𝑐(1)

𝑐(2)

𝑐(3)



C. Structural properties of
convolutional codes

• Let us consider the following convolutional encoder:

• This encoder has 𝑅 =
1

2
, 𝐾 = 3 and 𝑀 = 2, which results in 2𝑀 = 4 states.

• In what follows, we will examine the states and transitions of the
encoders using the code tree, the trellis and the state diagram.

𝑚

𝑐(1)

𝑐(2)



Code tree

• The code tree is a diagram that allows us to visualize the transitions
between the states and the code output.

Notation:
0 ↑
1 ↓

00

11

00

11

10

01

00

11



Trellis diagram

• The trellis diagram allows us to visualize the transitions between the
states and the code output without growing vertically.

Notation:
0 _____
1 − −

𝑎

𝑏

𝑐

𝑑

1 2 3time

00

11



State diagram

• The state diagram allows us to visualize the transitions between the
states and the code output without growing vertically and horizontally.

Notation:
0 _____
1 − −

𝑎

𝑏

𝑐

𝑑

𝑎

𝑏

𝑐

𝑑

𝑎

𝑏 𝑐

𝑑

00

10

01
00

10

10

11 11



D. Maximum likelihood decoding

• Consider the message 𝒎 = [𝑚0 𝑚1 …𝑚𝑘−1] and the code 𝒄 = [𝑐0 𝑐1 …𝑐𝑛−1]
obtained by the encoder as described by the scheme below. 

• The received vector is given by

• The ML decoder observes 𝒓 and computes

ො𝒄 = arg max
𝐜

log 𝑝 𝒓 𝒄 ,

where log 𝑝 𝒓 𝒄 is the log likelihood function or ratio (LLR).

Encoder Channel ML decoder
𝒎 𝒄 𝒓 ො𝒄

𝒓 = [𝑟0 𝑟1 …𝑟𝑛−1]



• For a BSC channel, we have

𝑝 𝒓 𝒄 =ෑ

𝑖=1

𝑛

𝑝 𝑟𝑖 𝑐𝑖 ,

where 𝑝 𝑟𝑖 𝑐𝑖 is the conditional transition probability for each bit.

• Computing the log of 𝑝 𝒓 𝒄 , we obtain

log 𝑝 𝒓 𝒄 =෍

𝑖=1

𝑛

log 𝑝 𝑟𝑖 𝑐𝑖



• Defining the transition probability as 

𝑝 𝑟𝑖 𝑐𝑖 = ቊ
𝑝, if 𝑟𝑖 ≠ 𝑐𝑖

1 − 𝑝, if 𝑟𝑖 = 𝑐𝑖

• Suppose that 𝒓 differs from 𝒄 in 𝑑 positions, then the LLR is given by

log 𝑝 𝒓 𝒄 = σ𝑖=1
𝑛 log 𝑝 𝑟𝑖 𝑐𝑖

= 𝑑 log 𝑝 + 𝑛 − 𝑑 log(1 − 𝑝)

= 𝑑 log
𝑝

1 − 𝑝
+ 𝑛 log(1 − 𝑝)

constant

• Since 𝑝 ≪
1

2
the ML decoder for a BSC minimizes the Hamming distance

between 𝒓 and 𝒄.



• ML decoding strategies:

o Hard decoding: use of the Hamming distance 𝑑(𝒓, 𝒄)

o Soft decoding; use of the Euclidean distance 𝑑𝐸 = 𝒓 − 𝒄

• Efficient decoding approaches for convolutional codes include:

o The Viterbi algorithm

o List decoding

o Sequential decoding



E. The Viterbi algorithm

• The Viterbi algorithm is a recursive and efficient strategy to perform ML 
decoding of convolutional codes invented by Andrew Viterbi.

• Consider a code sequence described by 𝒄 𝑗−1 = 𝒄0, 𝒄1, … , 𝒄𝑗−1 ,                           
which leaves state 𝑠𝑗 at time 𝑗.

• This sequence determines a sequence of states given by
𝝅𝑗 = 𝑠0, 𝑠1, … , 𝑠𝑗 through a trellis.

• Consider also the LLR given by

log 𝑝 𝒓(𝑗−1) 𝒄(𝑗−1) =෍

𝑖=0

𝑗−1

log 𝑝 𝒓𝑖 𝒄𝑖



• Let us define the path metric given for 𝑠𝑗 by

𝑀𝑗−1 𝑠𝑗 = − log𝑝 𝒓(𝑗−1) 𝒄(𝑗−1)

• Consider now the sequence 𝒄 𝑗 = 𝒄0, 𝒄1, … , 𝒄𝑗−1, 𝒄𝑗 and its path metric

𝑀𝑗 𝑠𝑗+1 = −σ𝑖=0
𝑗

log 𝑝 𝒓𝑖 𝒄𝑖

= −σ𝑖=0
𝑗−1

log 𝑝 𝒓𝑖 𝒄𝑖 − log𝑝 𝒓𝑗 𝒄𝑗

= 𝑀𝑗−1 𝑠𝑗 − log𝑝 𝒓𝑗 𝒄𝑗

𝜇 𝒓𝑗 𝒄𝑗 −branchmetric

= 𝑀𝑗−1 𝑠𝑗 + 𝜇 𝒓𝑗 𝒄𝑗



• Since 𝒄 𝑗 moves on the trellis from state 𝑠𝑗 to state 𝑠𝑗+1 we can write

𝑀𝑗 𝑠𝑗+1 = σ𝑖=0
𝑗−1

𝜇 𝒓𝑖 𝒄𝑖 + 𝜇𝑗 𝒓𝑗 𝒄𝑗

= 𝑀𝑗−1 𝑠𝑗 + 𝜇𝑗 𝒓𝑗 𝒄𝑗

• Assuming that 2 paths with metrics 𝑀𝑗−1 𝑠𝑗 , 1 and 𝑀𝑗−1 𝑠𝑗 , 2 arrive at
state 𝑠𝑗+1, we have

𝑀1: 𝑀𝑗−1 𝑠𝑗 , 1 + 𝜇𝑗 𝒓𝑗 𝒄𝑗
𝑀2: 𝑀𝑗−1 𝑠𝑗 , 2 + 𝜇𝑗 𝒓𝑗 𝒄𝑗

• The path with smallest metric is retained and called survivor:

𝑀𝑗 𝑠𝑗+1 = min 𝑀1, 𝑀2



• In summary, the Viterbi algorithm performs the following operations:

𝑀𝑗 𝑠𝑗+1 = min
𝑠𝑗

𝑀𝑗−1 𝑠𝑗 +𝜇𝑗 𝒓𝑗 𝒄𝑗
extension of paths

choice of smallest metric

• It only requires the observation of states over a window of time that is
appropriate for the computations.



Puncturing

• The use of puncturing consists of removing coded bits to increase the
code rate from 𝑅 to 𝑅’, where 𝑅′ > 𝑅.

• Decoding:

o The same trellis is used.

o The branch metric of the punctured bit does not need to be computed, 
resulting in computational savings.

Puncturing
𝒄 𝒄′

𝑅 𝑅’



Example 5

• Consider the following encoder and its state diagram.

• This encoder has 𝑅 =
1

2
, 𝐾 = 3 and 𝑀 = 2, which results in 2𝑀 = 4 states.

• Suppose that the encoder generates an all-zero sequence that is sent over 
the BSC channel.

• The received sequence is 0100010000 and contains 2 errors. Decode it.

𝑚

𝑐(1)

𝑐(2)

𝑎

𝑏 𝑐

𝑑

00

10

01
00

10

10

11 11



Solution:

𝒄 = [0000000000]

𝒓 = 0100010000

𝑎

𝑏 𝑐

𝑑

00

10

01
00

10

10

11 11

𝑎

𝑏

𝑐

𝑑

0 1time

00

𝑀𝑗 𝑠𝑗+1 = 𝑀𝑗−1 𝑠𝑗 + 𝜇𝑗 𝒓𝑗 𝒄𝑗

𝑀1 𝑎2 = 𝑀0 𝑎1 + 𝜇 𝒓1 𝒄1 = 1

𝑀1 𝑏2 = 𝑀0 𝑎1 + 𝜇 𝒓1 𝒄1 = 1

11



𝒄 = [0000000000]

𝒓 = 0100010000 𝑎

𝑏
𝑐

𝑑

00

10

01
00

10

10

11 11

𝑀𝑗 𝑠𝑗+1 = 𝑀𝑗−1 𝑠𝑗 + 𝜇𝑗 𝒓𝑗 𝒄𝑗

𝑀2 𝑎3 = 𝑀1 𝑎2 + 𝜇 𝒓𝟐 𝒄𝟐 = 1

𝑀2 𝑐3 = 𝑀1 𝑏2 + 𝜇 𝒓𝟐 𝒄𝟐 = 2

𝑎

𝑏

𝑐

𝑑

1 2 3time

00

11

001 1

31

2

2

𝑀2 𝑏3 = 𝑀1 𝑎2 + 𝜇 𝒓𝟐 𝒄𝟐 = 3

𝑀2 𝑑3 = 𝑀1 𝑏2 + 𝜇 𝒓𝟐 𝒄𝟐 = 2



𝑎

𝑏

𝑐

𝑑

1 2 3time

00

11

001 1

1

2

2

4 5 6

00 002 2

3

2

3

3

00 2

2



F. Error correction capability

Free distance (𝑑free) :

• It is the minimum Hamming distance of any pair of codewords.

• A convolutional code can correct up to 𝑡 errors if

𝑑free > 2𝑡

• The free distance 𝑑free can be obtained by the state diagram and the
transfer function of the encoder.



• Consider the following encoder and its state diagram.

• This encoder has 𝑅 =
1

2
, 𝐾 = 3 and 𝑀 = 2, which results in 2𝑀 = 4 states.

• In what follows, we will show how to obtain its transfer function.

𝑚

𝑐(1)

𝑐(2)

𝑎

𝑏 𝑐

𝑑

00

10

01
00

10

10

11 11



• Starting from its state diagram, the transfer function of a 
convolutional encoder can be obtained by the following rules:

o The exponent of 𝐷 corresponds to the Hamming distance to an all zero 
codeword.

o The exponent of 𝐿 corresponds to the length of the branch.

• We obtain the following graph representation:

𝑎

𝑏 𝑐

𝑑

00

10

01
00

10

10

11 11

𝑎0 𝑎1𝑏 𝑐

𝑑

𝐷2𝐿 𝐷𝐿

𝐿

𝐷2𝐿

𝐷𝐿 𝐷𝐿

𝐷𝐿



• Let 𝑇(𝐷, 𝐿) be the transfer function of the graph with 𝐷 and 𝐿 as 
unknowns.

• Using the rules of the graph and the connections, we obtain a system of
equations:

𝑏 = 𝐷2𝐿𝑎0 + 𝐿𝑐
𝑐 = 𝐷𝐿𝑑 + 𝐷𝐿𝑏
𝑑 = 𝐷𝐿𝑏 + 𝐷𝐿𝑑

𝑎1 = 𝐷2𝐿𝑐,

where 𝑎0, 𝑏, 𝑐, 𝑑 and 𝑎1 are the graph signals.

𝑎0 𝑎1𝑏 𝑐

𝑑

𝐷2𝐿 𝐷𝐿

𝐿

𝐷2𝐿

𝐷𝐿 𝐷𝐿

𝐷𝐿



• The solution of the previous system of equations yields the transfer
function given by

𝑇 𝐷, 𝐿 =
𝑎1
𝑎0

=
𝐷5𝐿3

1 − 𝐷𝐿(1 + 𝐿)

• Using the binomial expansion on the transfer function, we obtain

𝑇 𝐷, 𝐿 = 𝐷5𝐿3෍

𝑖=1

∞

𝐷𝐿(1 + 𝐿) 𝑖

• Setting 𝐿 = 1, we obtain the following power series

𝑇 𝐷, 𝐿 = 𝐷5 + 2𝐷6 + 4𝐷7 +⋯

• The free distance 𝑑𝑓𝑟𝑒𝑒 corresponds to the smallest degree of 𝑇 𝐷, 𝐿 , 
which yields

𝑑𝑓𝑟𝑒𝑒 = 5 → 2𝑡 < 5 → 𝑡 = 2 errors



• The transfer function 𝑇 𝐷, 𝐿 enumerates the number of codewords
with a given Hamming distance.

• It also provides insight into the mathematical structure of the encoder.

• The power series that arises from 𝑇 𝐷, 𝐿 can be of two types:

o Convergent

o Divergent -> leads to catastrophic codes



G. Performance

• In this section, we study the performance in terms of error rates of
convolutional codes.

• Assumptions:

o An all-zero codeword is transmitted.

o If soft decoding is adopted then the metric is the Euclidean distance.

o If hard decoding is adopted then the metric is the Hamming distance.



Probability of word error with soft 
decoding

• The probability of codeword error for soft decoding and for the case in 
which 2 paths differ by 𝑑 bits is given by

𝑃𝑤 𝑑 = 𝑄
2𝐸𝑐𝑑

𝑁0
= 𝑄

2𝐸𝑏𝑅𝑑

𝑁0
= 𝑄 2𝛾𝑏𝑅𝑑 ,

where 𝛾𝑏 =
𝐸𝑏

𝑁0
is the SNR per bit and 𝑅 is the code rate.

• To compute an upper bound, 𝑃𝑒, on 𝑃𝑤 𝑑 we take into account all possible
distances:

𝑃𝑒 ≤ ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝑎𝑑𝑃𝑤 𝑑 = ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝑎𝑑𝑄 2𝛾𝑏𝑅𝑑 ,

where 𝑎𝑑 is the number of paths with distance 𝑑 that reach an all-zero 
codeword.



Probability of bit error with soft 
decoding

• Consider the transfer function given by

𝑇 𝐷,𝑁 = ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝑎𝑑𝐷
𝑑𝑁𝑓(𝑑)

• Computing the derivative of 𝑇 𝐷,𝑁 with respect to 𝑁 and setting 𝑁 = 1, we
obtain the number of errors for each path:

d
𝑇 𝐷,𝑁

𝑑𝑁
= ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝑎𝑑𝑓(𝑑)𝐷
𝑑 = ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝛽𝑑𝐷
𝑑

• The probability of bit error is then given by

𝑃𝑏 ≤ ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝛽𝑑𝑃𝑤 𝑑 = ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝛽𝑑𝑄 2𝛾𝑏𝑅𝑑



Performance of bit error with hard 
decoding

• If 𝑑 is odd then the path associated with an all-zero codeword will be
selected if the number of errors is less than

1

2
(𝑑 + 1).

• The probability of selecting the incorrect path is given by

𝑃𝑐 𝑑 = ෍

𝑘=
𝑑+1
2

𝑑

𝑑
𝑘

𝑝𝑘 1 − 𝑝 𝑑−𝑘,

where 𝑝 is the probability of error of the BSC.

• If 𝑑 is even then we have

𝑃𝑐 𝑑 = ෍

𝑘=
𝑑
2
+1

𝑑

𝑑
𝑘

𝑝𝑘 1 − 𝑝 𝑑−𝑘 +
1

2

𝑑
𝑑

2

𝑝
𝑑
2 1 − 𝑝

𝑑
2



• By summing all the events associated with all distances, we obtain the
probability of codeword error given by

𝑃𝑒 ≤ ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝑎𝑑𝑃𝑐 𝑑



Performance of bit error with hard 
decoding

• To compute the probability of bit error we consider the transfer function
given by

𝑇 𝐷,𝑁 = ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝑎𝑑𝐷
𝑑𝑁𝑓(𝑑)

• We then compute the derivative of 𝑇 𝐷,𝑁 with respect to 𝑁 and set 𝑁 = 1, 
we obtain the number of errors for each path:

d
𝑇 𝐷,𝑁

𝑑𝑁
= ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝑎𝑑𝑓(𝑑)𝐷
𝑑 = ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝛽𝑑𝐷
𝑑

• The probability of bit error is then given by

𝑃𝑏 ≤ ෍

𝑑=𝑑𝑓𝑟𝑒𝑒

∞

𝛽𝑑𝑃𝑐 𝑑



Example 6

In this example, we consider the performance of convolutional codes with
different constraint lengths, rates and decoding strategies.








