
Information Theory and Channel Coding

Prof. Rodrigo C. de Lamare

CETUC, PUC-Rio, Brazil

delamare@cetuc.puc-rio.br

mailto:delamare@cetuc.puc-rio.br

VIII. Low-density parity-check
(LDPC) codes

A. Introduction

B. Encoding

C. Structure and design of LDPC codes

D. Decoding

A. Introduction

• LDPC codes are linear block codes that were invented by Robert
Gallager in his PhD thesis at MIT in 1960.

• LDPC codes can approach Shannon’s theoretical limit by
using sparse parity-check matrices and message passing
decoding.

• The basic idea consists of designing a parity-check matrix with few
ones and many zeros, which would facilitate decoding.

• Decoding for such sparse structures in LDPC codes is carried out by
message passing, which is easy to implement.

Robert G. Gallager (1963). Low Density Parity Check Codes (PDF). Monograph, M.I.T. Press

http://www.inference.phy.cam.ac.uk/mackay/gallager/papers/ldpc.pdf

• Let us consider an LDPC system with the following block diagram.

• LDPC codes are denoted by 𝐶 𝑛, 𝑘 or 𝐶 𝑛, 𝑡𝑐 , 𝑡𝑟 where 𝑘 is the length of
𝒎 in bits, 𝑛 is the length of 𝒄 in bits, 𝑡𝑐 and 𝑡𝑟 are the numbers of ones
per column and row of 𝑯, respectively.

• The structure of an LDPC code 𝒄 in systematic form is illustrated by

Mapping /
Generator matrix 𝑮

Channel
Iterative decoding

𝑯

𝒄𝒎 𝒓 = 𝒄 + 𝒏 ො𝒄, ෝ𝒎

message codeword received data decoded data

1 × 𝑘 1 × 𝑛 1 × 𝑛

𝒃 𝒎𝒄

𝑛 − 𝑘 bits 𝑘 bits

• LDPC codes are often specified by
o The parity-check matrix 𝑯

o The block length 𝑛

o The number of ones in each column of 𝑯, 𝑡𝑐 .

o The number of ones in each row of 𝑯, 𝑡𝑟.

• Unlike other channel codes that focus on the design of the generator
matrix 𝑮, LDPC codes first design the parity-check matrix 𝑯.

• The code rate of LDPC codes is given by

𝑅 = 1 −
𝑡𝑐
𝑡𝑟
=
𝑘

𝑛

• The relation of the code rate can be obtained as follows.

• Consider 𝜌 as the density of ones in 𝑯, then if we set

𝑡𝑐 = 𝜌 (𝑛 − 𝑘)
parity bits

and
𝑡𝑟 = 𝜌𝑛

• We then divide 𝑡𝑐 by 𝑡𝑟 to obtain

𝑡𝑐
𝑡𝑟
=
𝜌 𝑛 − 𝑘

𝜌𝑛
= 1 −

𝑘

𝑛
= 1 − 𝑅 → 𝑅 = 1 −

𝑡𝑐
𝑡𝑟

• Note that the parity-check matrix 𝑯 is often not systematic and
requires a procedure in its design to ensure a sytematic structure for it.

B. Encoding

• Let us now describe the encoding procedure of LDPC codes and focus on
the systematic form for the sake of simplicity.

• The parity bits can be described in matrix form by

𝒃 = 𝒎 𝑷,

where 𝑷 =

𝑝0,0 … 𝑝0,𝑛−𝑘−1
⋮ ⋱ ⋮

𝑝𝑘−1,0 … 𝑝𝑘−1,𝑛−𝑘−1
∈ Ϝ𝑘× 𝑛−𝑘 is the parity matrix.

• The codeword is described by

𝒄 = 𝒃 | 𝒎

= 𝒎𝑷 | 𝒎 = 𝒎 𝑷 | 𝑰𝑘
𝑮

= 𝒎𝑮,

where 𝑮 ∈ Ϝ𝑘×𝑛 is the generator matrix.

• The parity-check matrix 𝑯 ∈ Ϝ𝑛−𝑘 ×𝑛 of LDPC codes is key for both
design and decoding, and should be sparse and structured as follows:

𝑯 = 𝑰𝑛−𝑘| 𝑷
𝑇 ∈ Ϝ𝑛−𝑘 ×𝑛

= ด𝑯1
𝑇

n−k × n−k

| ด𝑯2
𝑇

n−k × k

• With the above partitioning and by imposing the constraint 𝒄𝑯𝑇 = 𝟎, we
have

𝒄𝑯𝑇 = 𝒃 | 𝒎
𝑯1__
𝑯2

= 𝟎

𝒃𝑯1 +𝒎𝑯2 = 𝟎
𝒎𝑷𝑯1 +𝒎𝑯2 = 𝟎
𝒎(𝑷𝑯1 +𝑯2) = 𝟎

• The non trivial solution is given by

𝐏 = 𝑯2𝑯1
−1

• Therefore, the generator matrix 𝑮 for LDPC codes is given by

𝑮 = 𝑷 | 𝑰𝑘

= 𝑯2𝑯1
−1| 𝑰𝑘 ∈ Ϝ𝑘×𝑛

• In the design of the generator matrix 𝑮 for LDPC codes we need to
take care with 𝑯1 so that it is non singular and its inverse exists.

• In the design of the parity-check matrix 𝑯 we often take care with the
existence of the inverse of 𝑯1 before we proceed to obtain 𝑮.

Example 1

Consider an LDPC code with 𝑛 = 10, 𝑡𝑐 = 3 and 𝑡𝑟 = 5 and the following
parity-check matrix:

𝑯 =

1
0

1
1

0
1

1 0 1
0 1 0

0 0 1 1
1 1 0 1

1 0 0 0 1 1 0 0 1 1
0 1 1
1 0 1
0 0 0

1 0 1
0 1 0
1 0 0

1 0 0 0
0 1 0 1
1 1 1 1

a) Compute the rate of the LDPC code

b) Compute the partitioned matrices 𝑯1 and 𝑯2

c) Determine the generator matrix 𝑮

d) Compute the codeword for 𝒎 = [1 0 01]

Solution:

a) The rate of the LDPC code is given by

𝑅 = 1 −
𝑡𝑐
𝑡𝑟
= 1 −

3

5
= 0.4

b) The partitioned matrices are

𝑯1
𝑇 =

1
0

1
1

0
1

1 0 1
0 1 0

1 0 0 0 1 1
0 1 1
1 0 1
0 0 0

1 0 1
0 1 0
1 0 0

and 𝑯𝟐
𝑇 =

0 0 1 1
1 1 0 1
0 0 1 1
1 0 0 0
0 1 0 1
1 1 1 1

c) The generator matrix can be obtained by

𝑮 = 𝑷 | 𝑰𝑘

= 𝑯2𝑯1
−1| 𝑰𝑘

Substituting the values of 𝑯1and 𝑯2, we obtain

𝑮 =

1
0

0
0

0
0

1 1 0
1 1 1

1 0 0 0
0 1 0 0

0 0 1 1 1 0 0 0 1 0
0 1 0 1 1 0 0 0 0 1

d) The codeword produced by 𝒎 = [1 0 01] is given by

𝒄 = 𝒎𝑮 = 1 1 0 0 0 0 1 0 01]

C. Structure and design of LDPC
codes

• LDPC codes can be described by bipartite graphs known as Tanner
graphs.

• The basic idea is to employ a bipartite graph to describe the parity-
check matrix of an LDPC code.

• According to the Tanner graph the variable nodes correspond to the
elements of the codeword.

• The check nodes correspond to the parity-check constraints of the
LDPC code.

R. M. Tanner, “A recursive approach to low-complexity codes,” IEEE Trans. Inform. Theory, vol.
27, pp. 53S547, Sept. 1981

• A Tanner graph can be illustrated by

• A check node 𝑗 is connected to variable node 𝑖 when the element of 𝑯 is
a one.

• The 𝑚 = 𝑛 − 𝑘 rows of 𝑯 specify the 𝑚 check node connections.

• The 𝑛 columns of 𝑯 specify the 𝑛 variable node connections.

Variable
nodes

Check
nodes

• Cycles: a path comprising 𝜈 edges which closes back to itself.

• Girth (𝛾): it is the minimum cycle length of the Tanner graph.

• Note: the shortest possible girth is 4 -> 𝑯 =
0 1 1 0
0 1 1 0

Variable
nodes

Check
nodes

Example 2

Consider a 𝑛, 𝑡𝑐 , 𝑡𝑟 LDPC code with the following parity-check matrix

𝑯 =

0
0

1
1

1
0

1
1

1 0 0
0 1 1

0 0 0
0 0 0

0 0 1 0 1 0 0 1 1 0
1
1

0 0 0
0 0 0

0 1 0
0 0 1

1 0 1
0 1 1

a) Determine the parameters of the code such as rate, 𝑡𝑐 and 𝑡𝑟.

b) Draw the bipartite graph, also known as as the Tanner graph.

c) Compute the girth of the code.

Solution:

a) The parameters of the code are

𝑡𝑐 = 2, 𝑡𝑟 = 4 and 𝑅 = 1 −
𝑡𝑐

𝑡𝑟
= 0.5

b) The Tanner graph corresponding to this parity-check matrix is

𝑯 =

0
0

1
1

1
0

1
1

1 0 0
0 1 1

0 0 0
0 0 0

0 0 1 0 1 0 0 1 1 0
1
1

0 0 0
0 0 0

0 1 0
0 0 1

1 0 1
0 1 1

c) The girth of the graph is 𝛾 = 4

Variable
nodes

Check
nodes

Design strategies

• The design of LDPC codes is based on the generation of a parity-check
matrix 𝑯 with a given specification.

• In particular, the parameters (𝑛, 𝑘, 𝑡𝑐 , 𝑡𝑟) used in the specification play a
major role in the performance of LDPC codes.

• LDPC codes can also be either regular or irregular depending on the
patterns of ones in 𝑯.

• Regular codes: the number of ones in each column or row is constant

• Irregular codes: the number of ones in each column or row is variable.

• Specifically, in irregular codes 𝑡𝑐 and 𝑡𝑟 are functions of the column
numbers -> use of degree distributions.

• The placement of ones is carried out via an optimization procedure
known as density evolution.

• The degree distribution polynomials are:

o The variable node polynomial 𝜆 𝑥

o The check node polynomial 𝜌 𝑥

• The variable node polynomial is

𝜆 𝑥 = ෍

𝑑=1

𝑑𝑣

𝜆𝑑𝑥
𝑑−1 ,

where 𝜆𝑑 is the fraction of all edges connected to degree 𝑑 variable nodes
and 𝑑𝑣 denotes the maximum node degree.

• The check node polynomial is

𝜌 𝑥 = ෍

𝑑=1

𝑑𝑐

𝜌𝑑𝑥
𝑑−1 ,

where 𝜌𝑑is the fraction of all edges connected to degree 𝑑 check nodes
and 𝑑𝑐 denotes the maximum node degree.

Example 3

Consider the design of LDPC codes based on degree polynomials.

a) Write down the polynomials 𝜆 𝑥 and 𝜌 𝑥 for a regular code with 𝑡𝑐 = 2
and 𝑡𝑟 = 4.

b) Write down and discuss the meaning of an irregular code with 𝜆1 =
0.00015, 𝜆2 = 0.30235, 𝜆3 = 0.27132 and 𝜆7 = 0,42618, and 𝜌6 = 0.35559 and
𝜌7 = 0.64445.

Solution:

a) By noticing that 𝑡𝑐 = 𝑑𝑣 = 2 and 𝑡𝑟 = 𝑑𝑐 = 4, we have

𝜆 𝑥 = ෍

𝑑=1

𝑑𝑣

𝜆𝑑𝑥
𝑑−1 = 𝑥

and

𝜌 𝑥 = ෍

𝑑=1

𝑑𝑐

𝜌𝑑𝑥
𝑑−1 = 𝑥3

b) By substituting 𝜆1 = 0.00015, 𝜆2 = 0.30235, 𝜆3 = 0.27132 and 𝜆7 =
0,42618, and 𝜌6 = 0.35559 and 𝜌7 = 0.64445 into the expressions of the
degree polynomials, we obtain

𝜆 𝑥 = ෍

𝑑=1

𝑑𝑣

𝜆𝑑𝑥
𝑑−1 = 0.00015 + 0.30235𝑥 + 0.27132𝑥2 + 0.42618𝑥6

and

𝜌 𝑥 = ෍

𝑑=1

𝑑𝑐

𝜌𝑑𝑥
𝑑−1 = 0.35559𝑥5 + 0.64445𝑥6

This means that about 42.6% of edges are connected to degree 6 variable
degrees, 27,1 % of edges are connected to degree 2 variable degrees and
so on.

Gallager codes

a) The original design approach to LDPC codes is known as Gallager codes,
which rely on

𝑯 =

𝑯1

𝑯2

⋮
𝑯𝑡𝑐

The submatrices 𝑯𝑑 are computed as follows.

For any 𝜇 and 𝑡𝑟 greater than 1, each 𝑯𝑑 has dimensions 𝜇 × 𝜇𝑡𝑟 with row
weight 𝑤𝑟 and column weight 1.

The submatrix 𝑯1 has the form
For 𝑖 = 1,2,… , 𝜇

The ith row contains all 𝑡𝑟 ones in columns (𝑖 − 1)𝑡𝑟+1 to 𝑖𝑡𝑟
end

The remaining submatrices are permutations of 𝑯1 as illustrated by

𝑯 =

𝑯1

𝑯2

⋮
𝑯𝑡𝑐

=

𝑯1

𝝓1(𝑯1)
⋮

𝝓𝑡𝑐−1(𝑯1)

where 𝝓 (.) is a permutation operation.

McKay codes

b) The design of McKay codes relies on the partitioning of the parity-
check matrix

𝑯 = 𝑯1
𝑇 |𝑯2

𝑇

The design algorithm for regular codes has the following steps:

1. 𝑯 is generated randomly using columns with column weights 𝑡𝑐 and
uniform row weights.

2. 𝑯 is constrained such that no columns have overlap greater than one.

3. 𝑯 is constrained to avoid short cycles.

4. 𝑯 is constructed such that 𝑯1 is invertible.

McKay codes lack structure for low-complexity encoding.

The encoding is performed as follows:

We obtain

𝑮 = 𝑷 | 𝑰𝑘

= 𝑯2𝑯1
−1| 𝑰𝑘 ∈ Ϝ𝑘×𝑛

using Gauss-Jordan elimination.

Other designs

c) Irregular LDPC designs

o Optimization of 𝜆 𝑥 and 𝜌 𝑥 using density evolution.
o Adjustment by other methods.

d) Progressive edge growth designs

o Optimization of connections or edges between variable and check nodes in a
progressive fashion.

e) Repeat accummulate (RA) and irregular RA (IRA) designs

o Low-complexity designs that are competitive for low code rates.

f) Quasi-cyclic and finite geometry designs

o Low-complexity encoding -> reduction from 𝑂(𝑛2) to 𝑂(nlog10 𝑛)

Xiao-Yu Hu, E. Eleftheriou and D. M. Arnold, "Regular and irregular progressive edge-growth tanner graphs," in IEEE
Transactions on Information Theory, vol. 51, no. 1, pp. 386-398, Jan. 2005

D. Decoding

• Given the received data vector 𝒓, the decoder must find the most probable
ො𝒄 that satisfies

ො𝒄𝑯𝑇 = 𝟎

• According to the MAP decoding rule, we have the log likelihood ratios (LLRs)

𝑙 𝑐𝑗 = 𝑙 𝑐𝑗|𝒓 = log
𝑃 𝑐𝑗 = +1 𝒓

𝑃(𝑐𝑗 = −1|𝒓)
≥
<
0

• A message passing strategy known as sum-product algorithm (SPA) is
employed to compute the LLRs.

𝑮 Channel
Iterative decoding

𝑯

𝒄𝒎 𝒓 = 𝒄 + 𝒏 ො𝒄, ෝ𝒎
1 × 𝑘 1 × 𝑛 SPA

• SPA has two alternating steps:
o The horizontal step runs along the rows of 𝑯.
o The vertical step runs along the columns of 𝑯.

• The variable or bit nodes are elements of 𝒓

• The check nodes are the rows of 𝑯.

• 𝒥(𝑖) is the set of bits that participate in check node 𝑖.

• 𝒥(𝑗) is the set of nodes in which variable node 𝑗 participates.

• 𝒥(𝑖)/𝑗 is the set 𝒥(𝑖) that excludes variable node 𝑗.

• 𝒥(𝑗)/𝑖 is the set 𝒥(𝑗) that excludes check node 𝑖.

The SPA decoding strategy is as follows:

o To exchange LLRs associated with the ones of 𝑯 in an alternating way.

o We compute the LLR of check node 𝑖 𝑙 𝑞𝑖𝑗 (horizontal step) and send it to

variable node 𝑗 𝑙 𝑟𝑖𝑗 → This checks the probability that bit 𝑗 is +1 or −1.

o We compute the LLR of variable node j 𝑙 𝑟𝑖𝑗 (vertical step) and send it to

check node 𝑖 𝑙 𝑞𝑖𝑗 → This checks the probability that check node 𝑖 is
satisfied.

Variable
nodes

Check
nodes

SPA

• The SPA first considers the LLR

𝑙 𝑐𝑗 = 𝑙 𝑐𝑗|𝒓 = log
𝑃 𝑐𝑗 = +1 𝒓

𝑃(𝑐𝑗 = −1|𝒓)
,

where 𝑐𝑗 is the jth element of the codeword 𝒄.

• We compute the LLR of check node 𝑖 and send it to variable node 𝑗 as
described by

𝑙 𝑟𝑖𝑗 = 2 tanh−1 ෑ

𝑖 ∈ 𝒥(𝑗)/𝑖

tanh
1

2
𝑙 𝑞𝑖𝑗 ,

where 𝑖 = 1,2, … , 𝑛 − 𝑘 and 𝑗 = 1,… , 𝑛.

• We then compute the LLR of the variable node 𝑗 updated and send it to
check node 𝑖 as follows:

𝑙 𝑞𝑖𝑗 = 𝑙 𝑐𝑗 + ෍

𝑗 ∈ 𝒥(𝑖)/𝑗

𝑙(𝑟𝑖𝑗)

• At the end of each iteration, variable node 𝑗 computes the total LLR given
by

𝑙 𝑄𝑗 = 𝑙 𝑐𝑗 + ෍

𝑗 ∈ 𝒥(𝑖)

𝑙(𝑟𝑖𝑗)

• The decisions about the bits are obtained by

Ƹ𝑐𝑗 = ൝
1, if 𝑙 𝑄𝑗 ≥ 0

−1, otherwise

Summary of SPA

Initialization: 𝑙 𝑟𝑖𝑗 = 𝑙(𝑐𝑗) (equal probabilities)

Goal: to compute 𝑙 𝑐𝑗 = 𝑙 𝑐𝑗|𝒓 = log
𝑃 𝑐𝑗 = +1 𝒓

𝑃(𝑐𝑗=−1|𝒓)

For each iteration, update

1. 𝑙 𝑟𝑖𝑗 = 2 tanh−1 ς𝑖 ∈ 𝒥(𝑗)/𝑖 tanh
1

2
𝑙 𝑞𝑖𝑗 ,

2. 𝑙 𝑞𝑖𝑗 = 𝑙 𝑐𝑗 + σ𝑗 ∈ 𝒥(𝑖)/𝑗 𝑙(𝑟𝑖𝑗)

3. 𝑙 𝑄𝑗 = 𝑙 𝑐𝑗 + σ𝑗 ∈ 𝒥(𝑖) 𝑙(𝑟𝑖𝑗)

Stop if ො𝒄𝑯𝑇 = 𝟎 or if the maximum number of iterations is reached

Make decision

Ƹ𝑐𝑗 = ൝
1, if 𝑙 𝑄𝑗 ≥ 0

−1, otherwise
, 𝑗 = 1,2,… , 𝑛

𝑙 𝑐𝑗 = 𝑙 𝑐𝑗|𝒓 = log
𝑃 𝑐𝑗 = +1 𝒓

𝑃(𝑐𝑗 = −1|𝒓)
,

Example 4

Illustrate the SPA decoding of the following parity-check matrix

Solution:
For 𝑖 = 5 and 𝑗 = 3, the index sets would be

At the end of each iteration, 𝑙 𝑄𝑗 provides an updated estimate of the a posteriori log-
likelihood ratio for the transmitted bit .

𝒥 𝑖 = {2,3}
𝒥(𝑖)/𝑗={2}

𝒥 𝑗 = {2,5,8,9}
𝒥(𝑗)/𝑖={2,8,9}

