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Textbooks and Assessment

• Textbooks:
o Thomas Cover and Joy Thomas, Elements of Information Theory, 2nd Edition, 

2006.

o Jorge Moreira and Patrick Farrell, Essentials of Error-Control Coding, 2006, 
Wiley.

• Assessment:
o 1 Exam papers (E) on Information Theory.

o 1 Project (P) on a topic on Channel Coding chosen by the student in 
agreement with the lecturer.

o 8 Lists of exercises (LE) on all topics.

o Final grade (FG) = (E + P + LE)/3



Syllabus

Part II: Channel coding

I. Introduction
o Fundamentals, system parameters, channels

o Shannon limits and decoding principles

II. Linear block codes
o Encoding

o Syndrome decoding

III. Low-density parity-check (LDPC) codes
o Encoding and design

o Decoding with message passing

IV. Convolutional codes
o Encoding

o Decoding with the Viterbi algorithm

V. Turbo codes
o Encoding

o Iterative decoding

VI. Polar codes



I. Introduction

• Channel coding deals with mathematical mappings of messages with the
purpose of transmitting data and protecting them from errors.

• The design of channel codes often involves mathematical mappings of
messages using various strategies to produce codewords.

• Codewords are then transmitted over communication channels.

• At the receiver, a decoder is often used to perform decoding of a
received signal and estimate the transmitted codeword.



A. Motivation

• The fundamental problem in communications is to reproduce a message 
that has been transmitted at the receiver.

• Reliable transmissions are an important goal in digital communications 
that is often measured in terms of probability of symbol error 𝑃𝑒.

• In order to obtain reliable transmissions, we need to employ channel 
coding techniques that are often designed for specific purposes.
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• Why use channel codes?

o Detection and correction of errors.
o To increase the reliability of data transmission.

• Rationale:

o To introduce redundancy.
o To design codes with enough structure so that they can be easily decoded.

• System parameters:

o Transmit power 𝑃𝑇
o Waveforms
o Bandwidth 𝐵
o Noise
o Fading

Under control

Out of control



• Channel coding increases the resistance against channel errors in digital 
transmissions.

• The basic idea of channel coding is to introduce redundancy.

• A message 𝒎 with 𝑘 bits is mapped into a codeword 𝒄 with 𝑛 code bits, 
which is then transmitted.

• This redundancy translates into the code rate

𝑅 =
𝑘

𝑛
, 0 < 𝑅 < 1

Channel 
encoder

𝒎 𝒄

1 × 𝑘 1 × 𝑛



B. Digital communication system

• Digital transmission over a channel with capacity 𝐶 involves several
operations such as source coding, channel coding, modulation and decoding.

• In what follows, we will detail all the quantities outlined in the block
diagram.

DMS
Source 

encoder
Channel 
encoder

Channel

Channel 
decoder

Source 
decoder

Modulator

Demodulator

𝒔 𝒎 𝒄

𝒚ෝ𝒎, ො𝒄ො𝒔



• The message vector 𝒎 = 𝑚0 𝑚1 …𝑚𝑘−1 contains 𝑘 0s and 1s .

• The data rate is given by
1

𝑇𝑏
bits / s

• The transmit power is 𝑃𝑇 in Watts

• The codeword 𝒄 = 𝑐0 𝑐1 …𝑐𝑛−1 contains 𝑛 0s and 1s .

• The code rate is 𝑅 =
𝑘

𝑛

• The noise power is 𝑃𝑁 = 𝜎2 =
𝑁0

2

• The received power is described by 𝑃𝑅 = 𝐿 𝑃𝑇, where 𝐿 is the propagation
loss.

• The signal-to-noise ratio (SNR) is 𝑆𝑁𝑅 =
𝑃𝑅

𝑃𝑁



C. Communication channels

• Physical medium between the transmitter (Tx) and the receiver (Rx)

• Discrete versus continuous models.

• Memoryless channels versus channels with memory.

Tx Rx

Channel



• Data transmission over communication channels is performed in blocks of 
(coded) bits, i.e., data packets. In this case, we have the input block

𝒙 = [𝑥1 𝑥2…𝑥𝑛]

and the output of the channel

𝒚 = [𝑦1 𝑦2…𝑦𝑛]

• A key property of discrete memoryless channels is given by

𝑝𝒚|𝒙 𝑌1, 𝑌2, … , 𝑌𝑛|𝑋1, 𝑋2, … , 𝑋𝑛 =ෑ

𝑖=1

𝑛

𝑝𝑦𝑖|𝑥𝑖(𝑌𝑗|𝑋𝑖)

• The above property extends to probabilities and allow simpler decoding 
of data blocks due to the decoupling of the conditional pdfs and prob.



Example 1

Consider a continuous memoryless channel with bandwidth 𝐵 and the
following received signal:

𝑦 𝑡 = 𝑥 𝑡 + 𝑛(𝑡),

where 𝑥 𝑡 is the information transmitted and 𝑛 𝑡 is AWGN with zero 

mean and variance 𝜎2 =
𝑁0

2
.

a) Draw a block diagram and a simple graph diagram of this channel.

b) Describe the capacity of the channel.

c) Write down the probability of symbol error for binary signalling.



Solution:

a) This model for the received signal refers to a continuous channel model 
whose block diagram is given by

whereas a graph diagram for this channel is illustrated by

ChannelModulator Demodulator

𝑥 𝑡 𝑦 𝑡

𝑥 𝑡 𝑦 𝑡

𝑛 𝑡



b) Since the channel model is continuous the information capacity is given 
by

𝐶 = 𝐵 log2 1 +
𝑃𝑅

𝑁0𝐵
bits/ s

c) Since binary signalling is employed, the probability of symbol error for 
BPSK and PAM 2 is

𝑃𝑒 = 𝑄
𝑑2

2𝑁0



Example 2

Consider a binary memoryless channel with the following received signal:

𝑦𝑘 = 𝑥𝑘 + 𝑛𝑘 , 𝑘 = 0,1,

where 𝑥𝑘 = 𝑋𝑘 with 𝑋0 = 0, 𝑋1 = 1 is the information transmitted and 𝑛𝑘 is 
the noise that might change the transmitted bit.

a) Draw a block diagram of this channel.

b) Compute the capacity of the channel.



Solution:

a) A communication system with a discrete memoryless channel can be 
represented by

ChannelModulator Demodulator

𝑥 𝑡 𝑦 𝑡

Decoder
Channel 
encoder

𝑥𝑘 𝑦𝑘

DMC

𝑋0 = 0

𝑋1 = 1

𝑌0 = 0

𝑌1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



The input probabilities are described by
𝑝 𝑋0 = 𝑃(𝑋0 = 0)

𝑝 𝑋1 = 𝑃(𝑋1 = 1)

The transition probabilities are given by

𝑝 𝑌0|𝑋0 = 1 − 𝑝

𝑝 𝑌1|𝑋1 = 1 − 𝑝

𝑝 𝑌1|𝑋0 = 𝑝

𝑝 𝑌0|𝑋1 = 𝑝

The output probabilities are described by

𝑝 𝑌0 = σ𝑗=0
𝐽−1

𝑝 𝑌0|𝑋𝑗 𝑝 𝑋𝑗 = 𝑝 𝑌0|𝑋0 𝑝 𝑋0 + 𝑝 𝑌0|𝑋1 𝑝 𝑋1 = 1 − 𝑝 𝑝 𝑋0 + 𝑝𝑝 𝑋1

𝑝 𝑌1 =෍

𝑗=0

𝐽−1

𝑝 𝑌1|𝑋𝑗 𝑝 𝑋𝑗 = 𝑝 𝑌1|𝑋0 𝑝 𝑋0 + 𝑝 𝑌1|𝑋1 𝑝 𝑋1 = 𝑝𝑝 𝑋0 + 1 − 𝑝 𝑝 𝑋1

𝑋0 = 0

𝑋1 = 1

𝑌0 = 0

𝑌1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



b) We compute the capacity of the BSC as follows.

We know that the entropy 𝐻 𝑥 is maximized when 𝑝 𝑋0 = 𝑝 𝑋1 =
1

2
, 

where 𝑥0 and 𝑥1 are 0 and 1, respectively.

The mutual information 𝐼 𝑥, 𝑦 is similarly maximized as described by

𝐶 = 𝐼 𝑥, 𝑦 when 𝑝 𝑋0 = 𝑝 𝑋1 =
1

2
,

where

𝑝 𝑌0|𝑋0 = 1 − 𝑝 = 𝑝 𝑌1|𝑋1
𝑝 𝑌1|𝑋0 = 𝑝 = 𝑝 𝑌0|𝑋1

𝑋0 = 0

𝑋1 = 1

𝑌0 = 0

𝑌1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



By substituting the transition probabilities in 𝐼 𝑥, 𝑦 , we obtain

𝐼 𝑥, 𝑦 = σ𝑗=0
𝐽−1σ𝑘=0

𝐾−1𝑝 𝑌𝑘 , 𝑋𝑗 log2
𝑝 𝑌𝑘|𝑋𝑗

𝑝 𝑌𝑘

With 𝐽 = 𝐾 = 2 and then setting 𝑝 𝑋0 = 𝑝 𝑋1 =
1

2
, we have

𝐶 = max
𝑝 𝑋𝑗

σ𝑗=0
1 σ𝑘=0

1 𝑝 𝑌𝑘 , 𝑋𝑗 log2
𝑝 𝑌𝑘|𝑋𝑗

𝑝 𝑌𝑘

= 𝑝 𝑌0, 𝑋0 log2
𝑝 𝑌0|𝑋0
𝑝 𝑌0

+ 𝑝 𝑌0, 𝑋1 log2
𝑝 𝑌0|𝑋1
𝑝 𝑌0

+𝑝 𝑌1, 𝑋0 log2
𝑝 𝑌1|𝑋0
𝑝 𝑌1

+ 𝑝 𝑌1, 𝑋1 log2
𝑝 𝑌1|𝑋1
𝑝 𝑌1

= 𝑝 𝑌0|𝑋0 𝑝 𝑋0 log2
𝑝 𝑌0|𝑋0

𝑝 𝑌0
+ 𝑝 𝑌0|𝑋1 𝑝 𝑋1 log2

𝑝 𝑌0|𝑋1

𝑝 𝑌0

+𝑝 𝑌1|𝑋0 𝑝 𝑋0 log2
𝑝 𝑌1|𝑋0

𝑝 𝑌1
+ 𝑝 𝑌1|𝑋1 𝑝 𝑋1 log2

𝑝 𝑌1|𝑋1

𝑝 𝑌1

=
1−𝑝

2
log2 2(1 − 𝑝) +

𝑝

2
log2 2𝑝 +

𝑝

2
log2 2𝑝 +

1−𝑝

2
log2 2(1 − 𝑝)

= 1 + plog2 𝑝 + (1 − 𝑝) log2(1 − 𝑝)



D. Shannon’s theorems

i) Source coding theorem:

Given a discrete memoryless source with entropy 𝐻(𝜉) , the average
codeword length for any lossless encoding scheme is bounded by

The entropy 𝐻(𝜉) is the fundamental limit of compression, i.e., the limit to
the average number of bits per source symbol required to represent a
discrete memoryless source.

In a source encoding scheme, when 𝑙𝑚𝑖𝑛 = 𝐻(𝜉), the efficiency is given by

)(Hl 

𝜂 =
𝐻 𝜉

ҧ𝑙

Shannon, Claude Elwood (July 1948). "A Mathematical Theory of 
Communication" (PDF). Bell System Technical Journal. 27 (3): 379–423.

https://en.wikipedia.org/wiki/Claude_Elwood_Shannon
https://web.archive.org/web/19980715013250/http:/cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
https://en.wikipedia.org/wiki/Bell_System_Technical_Journal


ii) Channel capacity theorem:

The information capacity of a continuous channel bandlimited to 𝐵 Hz

perturbed by additive white Gaussian noise with power spectral density
𝑁0

2

is given by

𝐶 = 𝐵 log2 1 +
𝑃

𝑁0𝐵
, bits/ s

where 𝑃 is average transmit power.

This theorem shows that given 𝑃 and 𝐵 we can transmit information at a
rate of 𝐶 bits per second.



iii) Channel coding theorem: 

For a discrete memoryless channel with capacity 𝐶 that transmits
information at a rate 𝑅 ≤ 𝐶 there exists a coding scheme in which the
probability of error can be made arbitrarily small, that is,

𝑃𝑒 ≤ 𝜖 + 2−𝑛𝑅 𝐼 𝑥,𝑦 −𝛿−𝑅

and
𝑃𝑒 → 𝜖

when the block length 𝑛 → ∞. This is known as achievability.



In an ideal system, we transmit at a rate equal to 𝑅𝑏 = 𝐶 bits /s.

If we take into account 𝑃 = 𝐸𝑏𝐶, where 𝐸𝑏 is the transmit energy per bit, we 
have 

𝐶

𝐵
= log2 1 +

𝑃

𝑁0𝐵
= log2 1 +

𝐸𝑏𝐶

𝑁0𝐵

The spectral efficiency is the ratio of energy per bit by power spectral density 
is given by

𝐸𝑏

𝑁0
=

2
𝐶
𝐵−1
𝐶

𝐵

When 𝐵 → ∞
𝐸𝑏

𝑁0
approaches

𝐸𝑏

𝑁0 ∞
= lim

𝐵→∞

𝐸𝑏

𝑁0

=
1

log2 𝑒
= 0.693 or −1.6 dB

𝐸𝑏

𝑁0
(dB)

𝑅𝑏
𝐵

𝑅𝑏 < 𝐶

𝑅𝑏 > 𝐶

Shannon limit



E. Decoding principles

• Let us consider a communication system illustrated by

• The task of the decoder is to observe 𝐲 = 𝒀 and produce an estimate ො𝒄
of 𝒄

• Because  of the unique mapping of the channel encoder, we have

ෝ𝒎 = 𝒎 if ො𝒄 = 𝒄

• A general decoding rule then becomes

Compute ො𝒄 for each 𝒚 received

ChannelModulator Demodulator Decoder
Channel 
encoder

𝒄 𝒚 ෝ𝒄𝒎



• The conditional error probability of the decoder is described by

𝑃𝑒|𝒚 = 𝑃(ො𝒄 ≠ 𝒄|𝒚)

• The error probability can then be obtained by averaging over all 
received vectors processed at the receiver and is given by

𝑃𝑒 =෍

𝒚

𝑃𝑒|𝒚𝑃𝒚

• Optimal decoding rules rely on the above quantities and their 
optimization to compute ො𝒄.



MAP decoding

• In the Maximum a Posteriori (MAP) decoding strategy the decoder 
computes ො𝒄 according to

ො𝒄 = min
𝐜
𝑃𝑒|𝒚 = 𝑃(ො𝒄 ≠ 𝒄|𝒚)

• Since the minimization of𝑃𝑒|𝒀 = 𝑃(ො𝒄 ≠ 𝒄|𝒚) is equivalent to the 
maximization of 𝑃(ො𝒄 = 𝒄|𝒚), we can alternatively compute

ො𝒄 = max
𝐂

𝑃(ො𝒄 = 𝒄|𝒚)

• Using Bayes’s rule, we can then write the MAP decoding rule as

ො𝒄 = max
𝒄

𝑃(ො𝒄 = 𝒄|𝒚)

= max
𝒄

𝑝𝒚|𝒄 𝒀 𝑪 𝑃 𝒄

𝑝𝒚(𝒀)



ML decoding

• In the Maximum Likelihood (ML) decoding strategy the decoder assumes
that all codewords are equiprobable and compute ො𝒄 according to

ො𝒄 = max
𝒄

𝑝𝒚|𝒄 𝒀 𝑪 𝑃 𝒄

𝑝𝒚(𝒀)

= max
𝒄

𝑝𝒚|𝒄 𝒀 𝑪

• The ML decoder is often simpler than the MAP decoder in the
computation and results in similar performance for many codes.

• For iterative strategies, extensive use of prior information changes the
probabilities of the codewords, resulting in advantages for MAP decoding.



Example 3 

Suppose that you would like to employ the ML decoder to decode a 
codeword with length 𝑛 transmitted over a discrete memoryless channel 
(DMC).

a) Simplify the ML decoder by taking into account the DMS property.

b) Assume that the messages 00, 01, 10 and 11 have been encoded into the 
codewords 00100, 01110, 10001 and 11000, respectively, and that the 
received vector is 𝒚 = [01111] . Use the Hamming distance and the BSC 
with probabilities 𝑝 and 1 − 𝑝 to perform ML decoding.



Solution:

A DMC has the following property adapted to this problem:

𝑝𝒚|𝒄 𝑌1, 𝑌2, … , 𝑌𝑛|𝐶1, 𝐶2, … , 𝐶𝑛 = 𝑝𝒚|𝒄 𝒀|𝑪

= ς𝑖=1
𝑛 𝑝𝑦𝑗|𝑐𝑖(𝑌𝑗|𝐶𝑖)

The ML decoder is then computed by

ො𝒄 = max
𝒄

𝑝𝒚|𝒄 𝒀 𝑪

= max
𝒄

ς𝑖=1
𝑛 𝑝𝑦𝑗|𝑐𝑖(𝑌𝑗|𝐶𝑖)



Since log 𝑥 is a monotonically increasing function of 𝑥, we have

ො𝒄 = max
𝒄

𝑝𝒚|𝒄 𝑪 𝑪

= max
𝒄

ς𝑖=1
𝑛 𝑝𝑦𝑗|𝑐𝑖

(𝑌𝑗|𝐶𝑖)

= max
𝒄

logෑ

𝑖=1

𝑛

𝑝𝑦𝑗|𝑐𝑖(𝑌𝑗|𝐶𝑖)

= max
𝒄

෍

𝑖=1

𝑛

log 𝑝𝑦𝑗|𝑐𝑖(𝑌𝑗|𝐶𝑖)

The above form can greatly simplify computations in digital hardware.



b) The ML decoder computes 

ො𝒄 = max
𝐜

෍

𝑖=1

𝑛

log 𝑝𝑦𝑗|𝑐𝑖(𝑌𝑗|𝐶𝑖) = max
𝐂

(𝑑 log 𝑝 + 𝑛 − 𝑑 log(1 − 𝑝))

where 𝑑 is the Hamming distance, i.e., the number of positions that one 
vector differs from the other.

The Hamming distances of the codewords are 

𝑑 01111 , 00100 = 3
𝑑 01111 , 01110 = 1
𝑑 01111 , 10001 = 4
𝑑 01111 , 11000 = 4

This means that the ML decoder will choose the codeword 01110 that 
corresponds to the message 01 and that the error occurred in the last bit.


