
André Robert Flores Manrique

Data-Selective Linear and Kernel-Based
Adaptive Algorithms

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Engenharia Elétrica of the Departamento de Engenharia Elétrica,
PUC-Rio in partial fulfillment of the requirements for the degree
of Mestre em Engenharia Elétrica.

Advisor: Prof. Rodrigo Caiado de Lamare

Rio de Janeiro
March 2017

André Robert Flores Manrique

Data-Selective Linear and Kernel-Based
Adaptive Algorithms

Dissertation presented to the Programa de Pós–graduação em
Engenharia Elétrica of the Departamento de Engenharia Elétrica,
PUC-Rio in partial fulfillment of the requirements for the degree
of Mestre em Engenharia Elétrica. Approved by the undersigned
Examination Committee.

Prof. Rodrigo Caiado de Lamare
Orientador

Centro de Estudos em Telecomunicações – PUC-Rio

Prof. Wouter Caarls
Departamento de Engenheria Elétrica – PUC-Rio

Dr. Lukas Landau
Centro de Estudos em Telecomunicações – PUC-Rio

Prof. Jose Antonio Apolinário Jr.
Instituto Militar de Engenharia – IME

Prof. Josef Anton Nossek
Universidade Federal do Ceara – UFC

Prof. Márcio da Silveira Carvalho
Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, March 24th, 2017

All rights reserved.

André Robert Flores Manrique

The author graduated in Telecommunication Engineering
from the San Pablo University, in Arequipa, Peru, 2014

Ficha Catalográfica
Flores Manrique, André Robert

Data-Selective Linear and Kernel-Based Adaptive Algo-
rithms / André Robert Flores Manrique; advisor: Rodrigo Ca-
iado de Lamare. – 2017.

v., 101 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Algoritmos com seleção
de dados;. 3. Métodos kernel;. 4. Esparsidade;. 5. Algoritmos
que exploram a esparsidade;. 6. Processamento adaptativo de
sinais;. I. de Lamare, Rodrigo C.. II. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Engenharia
Elétrica. III. Título.

CDD: 621.3

Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisor Prof.
Rodrigo C. de Lamare not only for the continuous support, but also for his
motivation, enthusiasm and knowledge, without which much of this work would
not have been possible.

Further thanks to all the professors that have contributed to my academic and
professional career, especially to the professors of PUC-Rio.

My sincere thanks to the CNPq, FAPERJ, and PUC-Rio, for the financial
support.

I also want to say thanks to my colleagues and friends of CETUC for their
support and help.

Last but not least, I want to express my profound gratitude to my family,
especially my parents and my brother, for their encouragement and for always
being there for me.

Abstract

Flores Manrique, André Robert; de Lamare, Rodrigo C. (Advisor).
Data-Selective Linear and Kernel-Based Adaptive Algo-
rithms. Rio de Janeiro, 2017. 101p. MSc. Dissertation – Departa-
mento de Engenharia Elétrica, Pontifícia Universidade Católica do
Rio de Janeiro.
In this dissertation, several data-selective adaptive signal processing

algorithms are derived and investigated for solving two different problems.
The first one involves scenarios handling sparse systems, where we introduce
a framework in which a general penalty function is incorporated into the
cost function for exploiting the sparsity of the model. Under this scope,
we propose three algorithms with an adjustable penalty function, the first
one based on the l1−norm, which we term zero-attracting SM-NLMS with
adjustable penalty function (ZA-SM-NLMS-ADP). The second algorithm
is based on the log-sum penalty function and the third one on the l0 −
norm, named reweighted ZA-SM-NLMS (RZA-SM-NLMS-ADP) and the
exponential ZA-SM-NLMS (EZA-SM-NLMS-ADP), respectively. We also
carry out a statistical analysis of the sparsity-aware SM-NLMS algorithms
with a general penalty function, arriving at mathematical expressions for
the mean-square error at steady state. The second problem addressed
considers nonlinear adaptive algorithms based on kernel functions. In this
context, we develop two data selective algorithms, the Set-Membership
Normalized Kernel Least Mean Squares (SM-NKLMS) algorithm and the
Set-Membership Kernel Affine Projection (SM-KAP) algorithm, which have
the capability of naturally limiting the growing structure created by the
kernels, dealing with one of the major problems presented when working
with kernel algorithms. The kernel algorithms developed have been tested
for a time series prediction task. A statistical analysis of the proposed
SM-NKLMS algorithm is also developed. Simulation results show that the
proposed algorithms, outperform standard linear and nonlinear adaptive
algorithms in both convergence rate and steady state performance.

Keywords
Set-membership algorithms; Kernel methods; sparsification;

Sparsity-aware algorithms; Adaptive signal processing;

Resumo

Flores Manrique, André Robert; de Lamare, Rodrigo C.. Data-
Selective Linear and Kernel-Based Adaptive Algorithms.
Rio de Janeiro, 2017. 101p. Dissertação de Mestrado – Departa-
mento de Engenharia Elétrica, Pontifícia Universidade Católica do
Rio de Janeiro.
Nesta dissertação, diversos algoritmos adaptativos para processamento

de sinais com seleção de dados são desenvolvidos e estudados, com o objetivo
de resolver dois problemas diferentes. O primeiro problema envolve ambi-
entes com sistemas esparsos, onde uma função penalidade é incorporada na
função de custo para aproveitar a esparsidade do modelo. Nesta perspectiva,
são propostos três algoritmos com função penalidade ajustável, o primeiro
baseado na função penalidade l1 é denominado SM-NLMS com atração para
zero e função penalidade ajustável (ZA-SM-NLMS-ADP). O segundo algo-
ritmo está baseado na função penalidade log-sum e o terceiro na função
penalidade l0 , denominados SM-NLMS com atração ponderada para zero
e função de penalidade ajustável (RZA-SM-NLMS-ADP) e SM-NLMS com
atração para zero exponencial e função de penalidade ajustável (EZA-SM-
NLMS-ADP), respectivamente. Além disso, foi desenvolvida uma análise
estatística do algoritmo SM-NLMS com uma função penalidade genérica,
obtendo expressões matemáticas para o erro médio quadrático em estado
estacionário. O segundo problema abordado, considera algoritmos adapta-
tivos não lineares baseados em funções de kernels. Neste contexto, são de-
senvolvidos dois algoritmos com seleção de dados, o algoritmo SM-NKLMS
e o algoritmo SM-KAP, os quais possuem a capacidade de limitar o cresci-
mento da estrutura criada pelas funções de kernels, tratando um dos maiores
problemas que surge quando se utilizam algoritmos baseados em kernels.
Os algoritmos baseados em kernels foram testados para predição de séries
temporais. Também é realizada uma análise estatística do algoritmo SM-
NKLMS. As simulações mostram que os algoritmos desenvolvidos superam
os algoritmos lineares e não lineares convencionais tanto na velocidade de
convergência quanto no erro médio quadrático atingido.

Palavras-chave
Algoritmos com seleção de dados; Métodos kernel; Esparsidade;

Algoritmos que exploram a esparsidade; Processamento adaptativo de sinais;

Summary

1 Introduction 11
1.1 Motivation 11
1.2 Contributions 12
1.3 Dissertation Outline 13
1.4 List of Publications 14
1.5 Notation 14

2 Adaptive Signal Processing Review 15
2.1 Machine Learning 15
2.2 Adaptive Signal Processing Fundamentals 16
2.2.1 The Least-Mean-Square (LMS) Algorithm 17
2.2.2 The Normalized Least-Mean-Square (NLMS) Algorithm 17
2.2.3 The Affine Projection Algorithm 18
2.3 Sparsity-Aware Adaptive Algorithms 20
2.3.1 Sparsity-Aware NLMS 21
2.3.2 Sparsity-Aware SM-NLMS 23
2.4 Kernel Adaptive Filtering (KAF) 24
2.4.1 Kernel Least-Mean-Squares (KLMS) 27
2.4.2 Kernel Affine Projection (KAP) Algorithm 28

3 Sparsity-Aware Data-Selective Adaptive Algorithms 33
3.1 Derivation Framework 33
3.1.1 Proposed ZA-SM-NLMS-ADP Algorithm 36
3.1.2 Proposed RZA-SM-NLMS-ADP Algorithm 36
3.1.3 Proposed EZA-SM-NLMS-ADP Algorithm 37
3.2 Statistical analysis 37
3.2.1 Mean Weight Behavior 38
3.2.2 Steady-State MSE Analysis 40
3.2.3 The steady-state MSE of the ZA-SM-NLMS algorithm 48
3.3 Simulations 50
3.3.1 Learning Performance of Proposed and Existing Algorithms 50
3.3.2 Steady State MSE of the ZA-SM-NLMS algorithm 56

4 Data-Selective Kernel Adaptive Algorithms 59
4.1 Set-Membership Normalized Kernel Least-Mean-Squares 59
4.2 Nonlinear Regression approach 64
4.3 Set Membership-Kernel Affine Projection Algorithm 67
4.4 Statistical Analysis 71
4.4.1 Gaussian kernel SM-NKLMS algorithm transient behavior analysis 73
4.5 Simulations 80
4.5.1 Time Series Prediction 80
4.5.2 Transient behavior of the SM-NKLMS algorithm 90

5 Conclusions and future work 93

Figure list

2.1 Adaptive Filtering Scheme. 16
2.2 Two-dimensional data mapped into a three-dimensional space rep-

resentation 25

3.1 Adaptive Filtering Algorithms. 51
3.2 Performance of LMS Algorithms. 51
3.3 Performance of NLMS Algorithms. 52
3.4 Performance of SM-NLMS Algorithms. 53
3.5 Performance of ZA-SM-NLMS Algorithms. 53
3.6 Performance of RZA-SM-NLMS Algorithms. 54
3.7 Performance of EZA-SM-NLMS Algorithms. 54
3.8 Performance of Adaptive Algorithms. 55
3.9 Performance of the EZA-SM-NLMS-ADP and the SM-NLMS algo-

rithm with correlated inputs 56
3.10 Probability of Update for different bounds. 57
3.11 Probability of Update at Steady State. 57
3.12 Steady-state MSE for the ZA-SM-NLMS algorithm. 58
3.13 ZA-SM-NLMS MSE for different error bounds. 58

4.1 Mackey-Glass Time Series 81
4.2 Laser Generated Time Series 82
4.3 Linear adaptive filters learning curves: Mackey-Glass time series 83
4.4 Linear adaptive filters learning curves: Laser generated time series. 83
4.5 Kernel Algorithms Learning Curves: Mackey-Glass time series. 84
4.6 Kernel Algorithms Learning Curves: Laser generated time series. 84
4.7 SM-NKLMS Algorithm Output: Mackey-Glass time series. 86
4.8 SM-KAP Algorithm Output: Laser generated time series. 86
4.9 Dictionary size vs Iteration. 87
4.10 Performance comparision SM-NKLMS vs KLMS. 87
4.11 Performance of adaptive algorithms at different noise levels. 89
4.12 Performance of SM-NKLMS at different γ. 89
4.13 SM-NKLMS MSE behavior γ =

√
5σn, bandwidth= 0.2. 90

4.14 SM-NKLMS MSE behavior γ =
√

5σn, bandwidth= 0.4. 91
4.15 SM-NKLMS MSE behavior γ =

√
9σn, bandwidth= 0.2. 91

4.16 SM-NKLMS MSE behavior γ =
√

9σn, bandwidth= 0.4. 92

Table list

3.1 Penalty Functions 36
3.2 Update Rate 55

4.1 Performance comparision on Mackey-Glass time series prediction 85
4.2 Performance comparision on laser generated time series prediction 85
4.3 MSE obtained with different criteria 88
4.4 Network Size 88

List of Abreviations

ADP – Adjustable Penalty Function
ALD – Approximate Linear Dependency
APA – Affine Projection Algorithm
CC – Coherence Criterion
EMSE – Excess of Mean Square Error
EZA–Exponential Zero-Attracting
IMPNLMS – Improved Mu-Law Proportionate Normalized Least-Mean-Squares
KAF – Kernel Adaptive Filtering
KAPA – Kernel Affine Projection Algorithm
KLMS – Kernel Least-Mean-Squares
LMS – Least-Mean-Square
MPNLMS – Mu-Law Proportionate Normalized Least-Mean-Square
MMSE–Minimum Mean Square Error
MSD – Mean Square Deviation
MSE – Mean Square Error
NC – Novelty Criterion
NLMS – Normalized Least-Mean-Square
PAP – Proportionate Affine Projection
PNLMS – Proportionate Normalized Least-Mean-Square
RZA–Reweighted Zero-Attracting
SC – Surprise Criterion
SM-APA – Set-Membership Affine Projection Algorithm
SM-KAP –Set-Membership Kernel Affine Projection
SM-NKLMS – Set-Membership Normalized Kernel Least-Mean-Squares
SM-NLMS – Set-Membership Normalized Least-Mean-Square
SM-PAP – Set-Membership Proportionate Affine Projection
SM-PNLMS – Set-Membership Proportionate Normalized Least-Mean-Square
ZA–Zero-Attracting

1
Introduction

Over the last forty years, the field of digital signal processing has
developed in a very fast way. Due to the incremental growth of knowledge
in this area, some specialized topics have turned into fields themselves. One
example of this is adaptive signal processing. The designer can usually choose
the most appropriate algorithm to process a signal whose statistical properties
are fixed and known (e.g. the Wiener filter which minimizes the mean square
error between the output of the filter and some desired signal). However, if
these properties change over time or if it is not possible to obtain a sufficiently
accurate estimate of these values, then the fixed algorithms used can not
process the signals efficiently. The solution to overcome this kind of problems
is to use adaptive algorithms which are capable of changing or updating their
characteristics automatically. In this sense, adaptive algorithms are required
whether the fixed specifications are unknown or in time-variant scenarios.

In general, adaptive algorithms perform two basic steps. The first one
involves the computation of the output signal, generated from the input
signal. The second step is an adaptation process that adjust the parameters of
the system to minimize a desired cost function. The ability of an adaptive
algorithm to operate satisfactorily in an unknown environment and track
time variations of statistics makes the adaptive algorithms a powerful tool
for signal processing and control applications. As a consequence, adaptive
algorithms were successfully implemented in a wide variety of devices for
different applications fields such as communications, radar and biomedical
engineering.

1.1
Motivation

Conventional adaptive algorithms perform an update whenever new data
arrive. Each executed update demands computational resources. However, the
computational load is a critical factor, when developing a system. Because
of this fact, we need to implement a strategy to manage the computational
resources. A useful strategy to obtain some control on the computational
resources is to develop algorithms that implement sparse updates. This results

Chapter 1. Introduction 12

in a more efficient management of the computational resources. A processor
could perform multiple tasks, taking into account that the updates are sparse.
The idea of sparse updates based on a bounded noise was first reported in [1].
Later the set-membership NLMS algorithm was formally described in [2] and
was used since then in many applications [3–7] due its good performance as
compared to conventional algorithms. The sparse update scheme promoted
by this kind of algorithms reduces the computational load, resulting in faster
algorithms.

Set-membership adaptive algorithms were also used for sparse system
identification, where only a few large coefficients are interspersed among many
negligible ones. However, the parameter that controls the strength of the
penalty function is fixed and setting this parameter is a critical step to obtain
a good performance of the algorithm. In this sense, an automatic adjustment
of the parameters of the penalty function will enhance the overall performance
of the algorithm. Also, to the best of our knowledge, no statistical analysis was
carried out for sparsity-aware set-membership adaptive algorithms. The main
difficulty of this analysis lies in the nonlinearity of the update rule and in the
sparse update scheme implemented.

Although linear adaptive systems are a good alternative to solve many
kinds of problems, there exist several applications where nonlinear techniques
show advantages. For example, in communications if the signal to noise ratio
is not high enough, the use of linear adaptive equalizers results in a poor
performance in terms of bit error rate [8]. Also, for a time series prediction
task, a nonlinear structure can show better performance. Motivated by this
fact, in the last ten years, kernel adaptive filtering has been the focus of
many researchers and many algorithms were proposed [9–12]. However, the
computational complexity of kernel adaptive algorithms is significantly higher
than their linear counterparts. In this context, a sparse update scheme will
reduce the computational load of these algorithms. In this dissertation we
propose kernel adaptive algorithms with sparse updates for reducing the
computational complexity.

1.2
Contributions

The contributions of this dissertation can be summarized as follows:

– A general framework for data-selective algorithms, that exploits the
sparsity of the model has been derived following a gradient descent
approach. The development led us to a modified expression for the step-
size and also to an adjustable penalty function. Then we employed three

Chapter 1. Introduction 13

different penalty functions over the established framework to propose
the ZA-SM-NLMS-ADP, the RZA-SM-NLMS-ADP and the EZA-SM-
NLMS-ADP algorithms. The proposed algorithms have been used in a
system identification application and presented a faster convergence rate
than conventional algorithms.

– A statistical analysis for data-selective algorithms with a general penalty
function is carried out. A mathematical model for the mean square error
(MSE) at steady state for an algorithm with a general penalty function
was presented. The ZA-SM-NLMS algorithm has been chosen to test
the proposed model. Simulations show agreement with the mathematical
formulation.

– Two data-selective algorithms based on kernel functions are proposed,
namely the SM-NKLMS and the SM-KAP. The main advantage of the
developed algorithms is that the sparse update scheme limit the growing
structure generated by the kernel expansion. A statistical analysis for
the SM-NKLMS algorithm is also carried out. Simulation results show
that the proposed algorithms outperform the standard kernel adaptive
algorithms in both convergence rate and steady state performance.

1.3
Dissertation Outline

This dissertation is organized as follows:

– In Chapter 2, a review of adaptive signal processing is given. The
conventional sparsity-aware algorithms are introduced, as well as the
conventional kernel adaptive algorithms.

– In Chapter 3, the proposed data-selective sparsity-aware algorithms
are described. The developed framework considers the adjustment of
the parameters of the penalty function and the step-size to achieve a
better performance. A statistical analysis is carried out, resulting in a
mathematical model for the MSE performance at steady state.

– In Chapter 4, two data-selective kernel adaptive algorithms are pre-
sented. Simulations involving a time series prediction task are carried
out to compare the performance of the proposed algorithms against the
existing kernel algorithms. A statistical analysis is also carried out.

– In Chapter 5, conclusions of this work are presented and future directions
for this research topic are discussed.

Chapter 1. Introduction 14

1.4
List of Publications

Some of the results in this dissertation have been published, or will be
submitted to publications.

Conference Papers:

– A. Flores and R.C. de Lamare, “Set-Membership Kernel Adaptive algo-
rithms,” IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), New Orleans, USA, 2017

– A. Flores and R.C. de Lamare, “Sparsity-Aware Set-Membership Adap-
tive Algorithms with Adjustable Penalties”, submitted to the Interna-
tional Conference on Digital Signal Processing, 2017.

Journal Papers:

– A. Flores and R.C. de Lamare, “Sparsity-aware set-membership adap-
tive algorithms with adjustable penalties: design and analysis” (Under
Preparation).

– A. Flores and R.C. de Lamare, “Data-selective kernel adaptive algo-
rithms: design and analysis” (Under Preparation).

1.5
Notation

a a vector (boldface lower case letters).

A a matrix (boldface uppercase letters).

IN N ×N identity matrix.

(·)T Matrix transpose.

E [·] Expectation operator.

‖ · ‖ l2 − norm

2
Adaptive Signal Processing Review

In this chapter, a review of adaptive signal processing techniques is given.
First we revisit fundamental concepts involving machine learning. Then we
examine linear adaptive algorithms, where we also discuss the two principal
techniques used to exploit the sparsity of a system. Finally, we extend our
discussion to the nonlinear case of adaptive signal processing, focusing on
Kernel-based algorithms.

2.1
Machine Learning

Learning is the activity of acquiring new or modifying the existing
knowledge. With the improvements of technology, the ability to learn is not
only limited to human beings and animals, but also include some artificial
machines. Thanks to the learning process, a system is able to adapt the
parameters of a model according to the environment. The best way to deal
with scenarios that are constantly changing is to adapt the system parameters
through learning [8, 13]. There are three ways to perform learning:

– Supervised learning: requires a set of desired responses, which are going
to lead the learning process.

– Unsupervised learning: a self-organized process that does not require a
desired response.

– Reinforcement learning: when there is some feedback that classifies the
responses as good ones or bad ones, but there is no explicit input-output
scheme. It is a scheme based on rewards.

All the algorithms presented in this work use supervised learning where
the knowledge is represented by a set of training samples. Another character-
istic of the methods used is that they perform sequential learning. This means
that the training samples arrive consecutively over time. After receiving one
sample of data the learning algorithm gives an estimate of the output. Then
the estimated value is compared to the true value, resulting in an update of
the current parameters. The set of samples described before is formed by the
data pairs

Chapter 2. Adaptive Signal Processing Review 16

{x (1) , d (1)} , {x (2) , d (2)} , · · · , {x (i) , d (i)} ,

where x (i) represents the input vector and d(i) is the desired response for that
input. A tapped-delay-line is used to form the input vector. This sequence is
going to produce different sets of parameters

w(1),w(2), · · · ,w(i),

where w(i) not only depends on the pair {x (i) , d (i)}, but also on the previous
parameters w(i− 1). It is possible to extend the approach introduced so that
w(i) will depend on a set of training samples pairs instead of just one sample
pair.

2.2
Adaptive Signal Processing Fundamentals

The general structure of an adaptive filter is shown in Figure 2.1. The
structure embodies a set of adjustable parameters, also known as weights,
denoted by vector w(i). The iteration or time instant is defined by the variable
i. The input signal and the adaptive filtering output are represented by x(i)
and y(i), respectively. The desired signal is denoted by d(i).

Adaptive

 Filter

 Adaptive

 Algorithm

(i)

d(i)

e(i)

(i)x y

Figure 2.1: Adaptive Filtering Scheme.

A linear combiner computes the output of the system as follows:

y (i) = wT (i) x (i) . (2-1)

Given the output of the system, the error signal can be calculated by the
following equation:

e(i) = d(i)− y(i), (2-2)

Chapter 2. Adaptive Signal Processing Review 17

used to establish an objective function that defines the updating of the filter
coefficients. In general, the adaptive algorithm updates the filter coefficients
in such a way that the objective function is minimized. Minimizing the
objective function requires a search for the best matching between the adaptive
algorithm output and the desired signal [8]. For the algorithms in this work,
we are going to use the mean square error as the objective function:

J(i) = E
[
e2 (i)

]
. (2-3)

The ensemble average of the square error, given by equation (2-3), plotted
versus the time i, traces the learning curve of the adaptive process.

2.2.1
The Least-Mean-Square (LMS) Algorithm

The LMS algorithm is the simplest form of an adaptive algorithm [14].
This algorithm minimize the instantaneous objective function

J (i) = 1
2e

2 (i) . (2-4)

Taking the gradient of the objective function with respect to the weights,
we obtain

∂

∂w(i)J (i) = −e(i)x(i). (2-5)

The gradient updates the weights through the following recursion:

w(i+ 1) = w(i) + µe(i)x(i), (2-6)

where µ is the step-size that controls the convergence of the LMS algorithm.

2.2.2
The Normalized Least-Mean-Square (NLMS) Algorithm

The NLMS algorithm, proposed in [15], can be derived by solving the
following constrained optimization:

min
w(i+1)

‖ w (i+ 1)−w (i) ‖2

subject to

d (i)− xT (i) w (i+ 1) = 0. (2-7)

The constrained optimization above can be transformed into an unconstrained
optimization using the method of Lagrange multipliers which considers the
Lagrangian given by

Chapter 2. Adaptive Signal Processing Review 18

L (w (i+ 1) , λ) =‖ w (i+ 1)−w (i) ‖2 +λ
(
d (i)− xT (i) w (i+ 1)

)
. (2-8)

Taking the gradient from the last equation with respect to w (i+ 1) and
λ, we get

∂L (w (i+ 1) , λ)
∂w (i+ 1) = 2 (w (i+ 1)−w (i))− λx (i) , (2-9)

∂L (w (i) , λ)
∂λ

= d (i)− xT (i) w (i+ 1) . (2-10)

Equating the resulting terms to zero leads to:

w (i+ 1) = w (i) + λ

2x (i) , (2-11)

d (i) = xT (i) w (i+ 1) . (2-12)

By premultiplying equation (2-11) by xT (i) we obtain

d (i) = xT (i) w (i) + λ

2xT (i) x (i) , (2-13)

λ

2 = e (i)
‖ x (i) ‖2 . (2-14)

Substituting the last equation in (2-11) leads to the NLMS update
equation given by

w (i+ 1) = w (i) + µ
e (i)

‖ x (i) ‖2 x (i) , (2-15)

where µ is the step-size incorporated for controlling the convergence of the
algorithm.

2.2.3
The Affine Projection Algorithm

The affine projection (AP) algorithm [16] is based on data reuse to
accelerate the learning process. The main difference between the AP algorithm
and the LMS algorithm is that the AP algorithm reuses multiple samples to
achieve a faster convergence speed rather than simply use the input data of
the current time instant. Let us consider a matrix X (i) containing the last K
input vectors as described by,

X (i) =

x (i) x (i− 1) · · · x (i−K + 1)

x (i− 1) x (i− 2) · · · x (i−K)
...

x (i−N + 1) x (i−N) · · · x (i−K −N + 1)

 , (2-16)

Chapter 2. Adaptive Signal Processing Review 19

where N represents the length of a single input vector. A compact expression
of matrix X can be formulated as follows:

X (i) =
[

x (i) x (i− 1) · · · x (i−K + 1)
]
. (2-17)

Let us now define the output of the system as described by

y (i) = XT (i) w (i) =

y0 (i)
y1 (i)
...

yK−1 (i)

 (2-18)

and the desired and the error signal, respectively,

d (i) =

d (i)

d (i− 1)
...

d (i−K + 1)

 , (2-19)

e (i) = d (i)−y (i) =

e0 (i)
e1 (i)
...

eK−1 (i)

 . (2-20)

As stated in [8], the goal of the algorithm is to solve the optimization
problem

min
w(i+1)

1
2 ‖ w (i+ 1)−w (i) ‖2

subject to

d (i)−XT (i) w (i+ 1) = 0. (2-21)

Using the method of Lagrange multipliers to solve equation (2-21), we
obtain the Lagrangian function given by

L (w (i+ 1)) = 1
2 ‖ w (i+ 1)−w (i) ‖2 +λT (i)

(
d (i)−XT (i) w (i+ 1)

)
.

(2-22)
Computing the gradient of L (w (i+ 1)) with respect to w (i+ 1) and

equating it to zero we arrive at:

∂L (w (i+ 1))
∂w (i+ 1) = 1

2 (2w (i+ 1)− 2w (i))−X (i)λ (i) = 0, (2-23)

w (i+ 1) = w (i) + X (i)λ (i) . (2-24)

Chapter 2. Adaptive Signal Processing Review 20

Substituting equation (2-24) in (2-21), we get

d (i)−XT (i) (w (i) + X (i)λ (i)) = 0, (2-25)

d (i)−XT (i) w (i) = XT (i) X (i)λ (i) , (2-26)

e (i) = XT (i) X (i)λ (i) . (2-27)
Solving for λ (i), we obtain

λ (i) =
(
XT (i) X (i)

)−1
e (i) (2-28)

Introducing the step-size µ and adding a small constant ε to avoid
numerical problems in the matrix inversion, we obtain a more general update
equation for the AP algorithm described by

w (i+ 1) = w (i) + µX (i)
(
XT (i) X (i) + εIK

)−1
e (i) . (2-29)

2.3
Sparsity-Aware Adaptive Algorithms

A system is considered to be sparse if only a few of its elements have
non-zero values. A sparse signal can be represented as a vector of a finite-
dimensional space which can be expressed as a linear combination of a small
number of basis vectors of the related space. There are many applications,
such as echo cancellation, channel equalization and system identification, where
sparse signals and systems are found. However, traditional adaptive algorithms
do not exploit the sparsity of the model. When dealing with learning problems,
we attempt to extract as much useful information as we can from the system to
obtain better results.Sparsity-aware methods encourage sparse coefficients so
that the sparsity of the model can be exploited. Under this scope, the sparsity
of systems has been the focus of many research works aiming to improve the
performance of adaptive algorithms [17–24].

One of the first approaches used to exploit sparsity was the proportionate
family of algorithms. This group of algorithms assigns proportional step-sizes
to different weights depending on their magnitudes. These algorithms include
the proportionate normalized LMS (PNLMS) [25] and the improved PNLMS
(IPNLMS) [26]. Since then, several versions of proportionate algorithms were
proposed such as the µ-law PNLMS (MPNLMS) [27] and the improved
MPNLMS (IMPNLMS) [28] algorithms. In [29] an individual activation factor
PNLMS (IAF-PNLMS) algorithm was presented to better distribute the
adaptation energy over the coefficients. Additionally, the set-membership

Chapter 2. Adaptive Signal Processing Review 21

PNLMS (SM-PNLMS) [30], which is a data-selective version of the PNLMS
algorithm, was developed. Proportionate algorithms were also extended to the
AP algorithm, giving rise to the proportionate AP (PAP) [31] and the improved
PAP (IPAP) [32] algorithms. The main advantage of these algorithms is that
they accelerate the speed of convergence by reusing multiple past inputs as
a single input. Moreover, a data-selective version, the set-membership PAP
(SM-PAP) algorithm was introduced in [33].

In recent years, another approach to deal with sparsity based on penalty
functions has been adopted. In this context, a penalty function is added to
the cost function to take into account the sparsity of the model and then a
gradient-based algorithm is derived. Basically, the penalty function attracts
the coefficients to zero to improve the convergence speed. In [34], the zero-
attracting LMS (ZA-LMS) and the reweighted zero-attracting LSM (RZA-
LMS) are presented and used for sparse system identification. This idea was
extended to the AP algorithm in [35], where the zero-attracting AP (ZA-AP)
and the reweighted zero-attracting AP (RZA-AP) algorithms are introduced.
Another example of this kind of algorithm is the zero-attracting recursive
least squares (ZA-RLS) algorithm [36]. Other versions of the regularized
RLS algorithm are found in [37]. There are also data-selective versions of
adaptive algorithms that incorporate a penalty function [38, 39]. A review
of common penalty functions used in the literature and another scheme to
treat sparsity is addressed in [40]. In general, adaptive algorithms that use a
penalty function are computationally less expensive and they also achieve a
better trade-off between performance and complexity [41] than proportionate
algorithms. However, setting an appropriate value of the regularization term is
a critical step in this kind of algorithms, because it directly affects the overall
performance of the algorithms.

2.3.1
Sparsity-Aware NLMS

By incorporating a penalty function in the cost function to exploit the
sparsity of the system, the optimization problem can be expressed by

min
w(i+1)

1
2 ‖ w (i+ 1)−w (i) ‖2 +αfl (w (i+ 1))

subject to

d (i)− xT (i) w (i+ 1) = 0, (2-30)

where fl is a general penalty function and α is the regularization term that
controls the desired penalty. A typical choice for the penalty function is an

Chapter 2. Adaptive Signal Processing Review 22

lp norm because of their inherent property to attract the coefficients to zero.
Using the Lagrange multipliers to solve the problem, we get

L (w (i+ 1) , λ) =1
2 ‖ w (i+ 1)−w (i) ‖2 +αfl (w (i+ 1))

+ λ
(
d (i)− xT (i) w (i+ 1)

)
. (2-31)

Taking the gradient with respect to w (i+ 1) and λ of equation (2-31),
we have

∂L (w (i+ 1) , λ)
∂w (i+ 1) = (w (i+ 1)−w (i))− λx (i) + α

∂fl (w (i+ 1))
∂w (i+ 1) , (2-32)

∂L (w (i) , λ)
∂λ

= d (i)− xT (i) w (i+ 1) . (2-33)

Equating the resulting terms to zero leads to:

w (i+ 1) = w (i) + λx (i)− α∂fl (w (i+ 1))
∂w (i+ 1) (2-34)

d (i) = xT (i) w (i+ 1) . (2-35)

By premultiplying equation (2-34) by xT (i), we obtain

d (i) = xT (i) w (i) + λxT (i) x (i)− αxT (i) ∂fl (w (i+ 1))
∂w (i+ 1) . (2-36)

Solving the last equation for λ, we get

λ ‖ x (i) ‖2 = d (i)− xT (i) w (i) + αxT (i) ∂fl (w (i+ 1))
∂w (i+ 1) (2-37)

= e (i) + αxT (i) ∂fl (w (i+ 1))
∂w (i+ 1) (2-38)

λ = e (i)
‖ x (i) ‖2 + α

‖ x (i) ‖2 xT (i) ∂fl (w (i+ 1))
∂w (i+ 1) . (2-39)

Let us assume that fl (w (i+ 1)) ≈ fl (w (i)). By including the step-size
and substituting λ in equation (2-34), we can finally get the update recursion
for the sparsity-aware NLMS algorithm with an arbitrary penalty function [35]:

w (i+ 1) = w (i) + µe (i)
‖ x (i) ‖2 x (i) + ρ

[
x (i) xT (i)
‖ x (i) ‖2 − IN

]
∂fl (w (i))
∂w (i) , (2-40)

where ρ = µα.

Chapter 2. Adaptive Signal Processing Review 23

2.3.2
Sparsity-Aware SM-NLMS

This family of algorithms is a data-selective version of the NLMS family.
Let us consider equation (2-30) with a modified constraint:

min
w(i+1)

‖ w (i+ 1)−w (i) ‖2 +αfl (w (i+ 1))

subject to

|d (i)− xT (i) w (i+ 1) | = γ (2-41)

where γ is the error bound. Solving the equation with the method of Lagrange
multipliers and considering the absolute value as two isolate cases, we get

L (w (i) , λ) = ‖ w (i+ 1)−w (i) ‖2 +αfl (w (i+ 1))

+ λ
(
d (i)− xT (i) w (i+ 1)− γ

)
(2-42)

L (w (i) , λ) = ‖ w (i+ 1)−w (i) ‖2 +αfl (w (i+ 1))

+ λ
(
d (i)− xT (i) w (i+ 1) + γ

)
(2-43)

Taking the gradient with respect to w (i+ 1) from equation (2-42) we
arrive at the same result as in equation (2-34). Premultiplying this equation
by xT (i), we obtain

d (i)− γ = xT (i) w (i) + λ

2xT (i) x (i)− α

2 xT (i) ∂fl (w (i+ 1))
∂w (i+ 1) . (2-44)

Solving for λ leads to :

λ

2 = (e (i)− γ)
‖ x (i) ‖2 + α

2 ‖ x (i) ‖2 xT (i) ∂fl (w (i+ 1))
∂w (i+ 1) . (2-45)

Replacing λ in equation (2-34), we have

w (i+ 1) =w (i) + x (i)
(
xT (i) x (i)

)−1
(e (i)− γ)

+ α

2

[
x (i) xT (i)
‖ x (i) ‖2 − IN

]
∂fl (w (i+ 1))
∂w (i+ 1) . (2-46)

Taking into account that the constraint originated two equations, which
depend on the value of the error, which means that the adaptation only occurs
when the bound constraint is satisfied, we can rewrite (2-46) as one single

Chapter 2. Adaptive Signal Processing Review 24

equation as follows:

w (i+ 1) =w (i) + x (i) (e (i)− γsgn (e (i)))
‖ x (i) ‖2

+ α

2

[
x (i) xT (i)
‖ x (i) ‖2 − IN

]
∂fl (w (i))
∂w (i) , (2-47)

From the above equation we can finally get the update recursion for the
sparsity-aware SM-NLMS algorithm, which is a particular case from [38], and
can be expressed by

w (i+ 1) =w (i) + µ (i) e (i)
‖ x (i) ‖2 x (i)

+ ρ

[
x (i) xT (i)
‖ x (i) ‖2 − IN

]
∂fl (w (i))
∂w (i) (2-48)

where µ (i) is the adaptive step-size of the algorithm defined by

µ (i) =

(
1− γ

|e(i)|

)
|e (i) | > γ

0 otherwise
(2-49)

2.4
Kernel Adaptive Filtering (KAF)

As mentioned in previous sections, conventional adaptive algorithms
work with linear structures, limiting the performance that they can achieve
and constraining the number of problems that can be solved. Under this scope,
a new family of nonlinear adaptive filtering algorithms based on kernels has
been developed [13]. The main objective of these algorithms is to learn an
arbitrary input-output mapping f : F→ R based on a sequence of samples
and a kernel. Basically, a kernel κ (·, ·) is a function that generally returns a
real number. This number measures the similarity between two inputs.

One of the main advantages of KAF algorithms is that they are universal
approximators [13], which gives them the capability to address complex
and nonlinear problems. In other words, they can in principle model any
input-output mapping. Most of these algorithms have been designed to solve
convex optimization problems, avoiding local minima problems, which is also a
desirable characteristic. However, the computational complexity is significantly
higher than their linear counterparts.

To compute the mapping we use the following rule:

fi = fi−1 + gain (i) e (i) , (2-50)

Chapter 2. Adaptive Signal Processing Review 25

where the actual mapping estimate depends on the previous mapping estimate
and also on a correcting term that is proportional to the prediction error.
The gain function and the error of equation (2-50) fully describe the different
algorithms.

The KAF algorithms map the data to a high-dimensional space through
kernels. Then, linear methods can be applied on the transformed data. Let us
consider a simple case of two dimensional vectors belonging to two different
classes, that are not linearly separable in the two-dimensional space. Mapping
the data to a convenient high dimensional space transforms the problem
into a linearly separable problem. Figure 2.2 describes this idea, where two-
dimensional vectors are being mapped to a three dimensional space.

Figure 2.2: Two-dimensional data mapped into a three-dimensional space

Basically a nonlinear problem is transformed into a linear one. The
relevant point about implementing kernel functions is that the scalar product
can be implicitly computed in the feature space by a kernel evaluation, without
explicitly using or even knowing the mapping applied to the data [42]. This

Chapter 2. Adaptive Signal Processing Review 26

means that there is no need to perform any operation on the high dimensional
space, as long as the terms of the algorithm are expressed as an inner product.
This methodology is known as the “kernel trick” and allows us to compute
scalar products in spaces, where the computations are hard to perform. As a
result, we avoid a significant increase of the computational complexity, which
is one of the major problems that arises when working with high dimensional
spaces. In particular we have

κ (x,x′) = 〈κ (·,x) , κ (·,x′)〉 . (2-51)
Every algorithm that only uses scalar products can be implicitly imple-

mented in the feature space by using kernels [42]. To summarize, we need to
reformulate the classical adaptive algorithms in terms of the inner product of
the mapped inputs to elegantly create nonlinear structures.

Several kernel functions are described in the literature [13]. Choosing a
kernel function is equivalent to implicitly defining a feature space where the
algorithms are performed. Let us now introduce two commonly used kernel
functions. The first one is the Gaussian kernel, defined by

κ (x,x′) = exp
(
−‖ x− x′ ‖2

2ν2

)
, (2-52)

where ν is the kernel bandwidth that specifies the shape of the kernel function.
Another important kernel function is the polynomial kernel, given by

κ (x,x′) =
(
xTx′ + 1

)p
, (2-53)

with p ∈ N known as the polynomial degree.
All KAF algorithms have to deal with kernel expansions. In other words,

they create a growing structure, also called dictionary, where they keep every
new data input that arrives to compute the estimate of the desired output.
The natural problem that arises is that the time and computational cost
required to compute a certain output could exceed the tolerable limits for a
specific application. Several criteria were proposed to solve this problem such as
algorithms with fixed dictionary size [43, 44]. One of the most simple criteria
is the novelty criterion (NC), presented in [45]. Basically it establishes two
thresholds to limit the size of the dictionary. Another method, the approximate
linear dependency (ALD) was proposed in [46] and verifies if a new input can
be expressed as a linear combination of the elements stored, before adding this
input to the dictionary. The coherence criterion (CC) was introduced in [47,48]
also to limit the size of the dictionary based on the similarity of the inputs. A
measure called surprise (SC) was presented in [49] to remove redundant data
from the dictionary.

Chapter 2. Adaptive Signal Processing Review 27

2.4.1
Kernel Least-Mean-Squares (KLMS)

This algorithm was proposed in [50] and is widely used because of its
simplicity. Let us consider an adaptive filtering problem with a sequence of
training samples given by {x (i) , d (i)}, where x (i) is the N-dimensional input
vector of the system and d (i) represents the desired signal at time instant i.
The output of the adaptive filter is given by equation (2-1). Let us define a
non-linear transformation denoted by ϕ : Rn → F that maps the input to a
high-dimensional feature space. Applying the transformation stated before, we
map the input and the weights to a high-dimensional space obtaining:

ϕ (i) = ϕ (x (i)) (2-54)

ω (i) = ϕ (w (i)) (2-55)
The error generated by the system is given by e (i) = d (i)−ωT (i)ϕ (i).

The main objective of the kernel-based adaptive algorithms is to implement
an input-output mapping, such that the mean square error generated by the
system is minimized.

Using the equations of the LMS algorithm over the sequence {ϕ(i), d(i)},
we have

ω(i+ 1) = ω(i) + µe(i)ϕ(i) (2-56)
Let us now express the last equation in a recursive manner as follows:

ω(i+ 1) = ω(i) + µe(i)ϕ(i)

= ω(i− 1) + µe(i− 1)ϕ(i− 1) + µe(i)ϕ(i)

= ω(i− 1) + µ [e(i− 1)ϕ(i− 1) + e(i)ϕ(i)]
...

= ω(0) + µ
i∑

j=1
e(j)ϕ(j) (2-57)

Let us assume that the initial value of the weights is ω(0) = 0. The
weight estimate is now given by

ω(i+ 1) = µ
i∑

j=1
e(j)ϕ(j) (2-58)

This equation expresses the weights estimate as a linear combination of
all the past inputs. The system output to a new input vector x′ is given by

Chapter 2. Adaptive Signal Processing Review 28

ω(i+ 1)Tϕ(x′) =
µ i∑

j=1
e(j)ϕ(j)T

ϕ(x′)

= µ
i∑

j=1
e(j)

[
ϕ(j)Tϕ(x′)

]

= µ
i∑

j=1
e(j)κ(x (j) T,x′) (2-59)

In this kernelized version of the LMS algorithm, the filtering process is
performed just by evaluating the kernel of the input vectors. The algorithm
uses the sum of the past errors multiplied by the kernel evaluation of the past
inputs to obtain the estimated output y (i). The inputs are stored in matrix
C (i), also known as the dictionary, for future calculations. The past errors
multiplied by the step-size create the coefficients vector expressed by

a (i) = µe (i) . (2-60)

The KLMS algorithm is summarized in Algorithm 1.

Algorithm 1 Kernel Least Mean Squares
Initialization
1.Choose µ, and κ.
2.C (1) = {x (1)}
3.a1 (1) = µ (1) d (1)
Computation
4.while {x (i) , d (i)} available do:

%Compute the output
5. fi−1(x (i)) = ∑i−1

k=1 ak (i)κ (x (i) ,ck)
%Compute the error

6. e (i) = d (i)− fi−1(x (i))
%Update the coefficients

7. a (i+ 1) =
 a (i)

0

+
 0
µ (i) e (i)

%Store the new center

8. C (i+ 1) = {C (i) ,x (i)}
9.end while

2.4.2
Kernel Affine Projection (KAP) Algorithm

The AP algorithms can be extended to an appropriate kernelized version
creating the KAP algorithms. The KAP algorithms were first proposed in [51]

Chapter 2. Adaptive Signal Processing Review 29

giving rise to four different algorithms. In this project we focus on the KAP-2
algorithm. An analysis of the other three algorithms can be found in [13,51].

Applying the transformation ϕ : Rn → F, to equation (2-17), we obtain

Φ (i) = ϕ (X (i)) =
[
ϕ (i) ϕ (i− 1) · · · ϕ (i−K + 1)

]
. (2-61)

This leads to a modification in equation (2-18) which is given by

y (i) = ΦT (i)ω (i) =

y0 (i)
y1 (i)
...

yK−1 (i)

 , (2-62)

remaining equations (2-19) and (2-20) without changes. Now we need to solve
the following constrained optimization:

min
ω(i+1)

1
2 ‖ ω (i+ 1)− ω (i) ‖2

subject to

d (i)−ΦT (i)ω (i+ 1) = 0 (2-63)

Using the method of Lagrange multipliers to solve equation (2-63), we
obtain:

L (ω (i+ 1)) = 1
2 ‖ ω (i+ 1)− ω (i) ‖2 +λT (i)

(
d (i)−ΦT (i)ω (i+ 1)

)
.

(2-64)
Applying the same procedure as in the AP algorithm we arrive at the

KAP algorithm update equation:

ω (i+ 1) = ω (i) + µΦ (i)
(
ΦT (i) Φ (i) + εI

)−1
e (i) , (2-65)

which is consistent with the results obtained in [51]. We usually do not have
access to the vector ω (i+ 1). Therefore we need to reformulate equation (2-65)
in terms of input vector inner products. For this purpose, we follow a similar
development as in [13] and [52] , where the KAP-1 and the complex KAP
algorithms were presented, respectively. Consider the case where the initial
value of ω is zero. We can now calculate the values of ω recursively using
(2-65) as follows:

Chapter 2. Adaptive Signal Processing Review 30

ω (1) = ω (0) + µΦ (1)
(
ΦT (1) Φ (1) + εI

)−1
e (1)

= µΦ (1)
(
ΦT (1) Φ (1) + εI

)−1 (
d (1)−ΦT (1)ω (0)

)
= µϕ (1)

(
ϕT (1)ϕ (1) + εI

)−1
d (1)

=
(
µd (1) < ϕT (1) ,ϕ (1) >−1

)
ϕ (1)

= a1 (1)ϕ (1) . (2-66)

For the second iteration, we have

ω (2) = ω (1) + µΦ (2)
(
ΦT (2) Φ (2) + εI

)−1
e (2)

= a1 (1)ϕ (1) + µΦ (2) ã (2) , (2-67)

where the vector ã (i) is defined by

ã (i) =
(
ΦT (i) Φ (i) + εI

)−1
e (i) . (2-68)

Expanding the terms of vector ã (i), we get

ω (2) = a1 (1)ϕ (1) + µ
[
ϕ (1) ϕ (2)

] [
ã1 (2) ã2 (2)

]T
= a1 (1)ϕ (1) + µã1 (2)ϕ (1) + µã2 (2)ϕ (2)

= (a1 (1) + µã1 (2))ϕ (1) + µã2 (2)ϕ (2)

= a1 (2)ϕ (1) + a2 (2)ϕ (2) . (2-69)

By the analysis of equations (2-66) and (2-69) and also based on the
Representer Theorem [53] we can state that

ω (i) =
i∑

j=1
aj (i)ϕ (j) (2-70)

Substituting equations (2-68) and (2-70) in the update equation (2-65),
we obtain the following expression:

ω (i+ 1) =
i∑

j=1
aj (i)ϕ (j) + µΦ (i) ã (i) . (2-71)

Expanding the terms of vector ã (i) as before results in

ω (i+ 1) =
i∑

j=1
aj (i)ϕ (j) + µ

i+1∑
k=i−K+2

ãk+K−i−2 (i)ϕ (k) . (2-72)

From the last equation we find that at every iteration one element
is added to the coefficient vector a (i). We can also see that only the last
K coefficients are modified at every iteration, whereas the other coefficients

Chapter 2. Adaptive Signal Processing Review 31

remain the same. Consequently, we can summarize the coefficients updates as
follows:

ak (i+ 1) =

µãk (i) , k = i+ 1

ak (i) + µãK+k−i−2 (i) , i−K + 2 ≤ k ≤ i

ak (i) 1 ≤ k < i−K + 1

(2-73)

The output of the filter is given by

ΦT (i)ω (i) =
i∑

j=1
aj (i) ΦT (i)ϕ (j)

=
i∑

j=1
aj (i)

[
ϕ (i) · · · ϕ (i−K + 1)

]T
ϕ (j) (2-74)

Expanding the terms of the last equation, we get

y (i) =

∑i
j=1 aj (i)ϕT (i)ϕ (j)∑i

j=1 aj (i)ϕT (i− 1)ϕ (j)
...∑i

j=1 aj (i)ϕT (i−K + 1)ϕ (j)

=

∑i
j=1 aj (i)κ (x (i) ,x (j))∑i

j=1 aj (i)κ (x (i− 1) ,x (j))
...∑i

j=1 aj (i)κ (x (i−K + 1) ,x (j))

 . (2-75)

Finally, we can compute the error using equation (2-20). Equations
(2-68), (2-73), (2-75) and (2-20) fully describe the KAP algorithm, which
is summarized in Algorithm 2. In general, kernel-based algorithms deal with
models whose order equals the size of the training set. Therefore, implementing
a methodology to control the increase in the model order is still the focus of
many research works.

Chapter 2. Adaptive Signal Processing Review 32

Algorithm 2 Kernel Affine Projection (KAP-2) Algorithm
Initialization
1.Fix the step-size µ, the regularization factor ε and the parameter K
2.a1 (1) = µd (1)
Computation
3.while {x (i) , d (i)} available do:

%Insert a new element into the coefficients vector a (i− 1)
4. ai (i− 1) = 0
5. for n = 1 to min (i,K) do
6. for m = 1 to min (i,K) do

%Compute the K ×K matrix Ã
7. Ãn,m = κ (x (i− n+ 1) ,x (i−m+ 1))
8. end for
9. end for

%Compute the inverse of matrix Ã
10. Ã = (Ã + εI)−1

11. for k = 1 to min (i,K) do
%Evaluate the outputs

12. yk (i) = ∑i
j=1 aj (i)κ (x (i− k + 1) ,x (j))

%Evaluate the errors
13. ek (i) = d (i− k + 1)− yk (i)
14. end for

%Compute the update for the coefficients
15. ã = Ãe (i)
16. for k = 1 to min (i,K) do

%Update the min (i,K) most recent units
17. ai−k+1 (i) = ai−k+1 (i− 1) + µãi−k+1

18. end for
13.end while

3
Sparsity-Aware Data-Selective Adaptive Algorithms

In this chapter we introduce a new framework for deriving sparsity-
aware set-membership adaptive algorithms with adjustable penalties using
arbitrary penalty functions. Then, we derive the proposed sparsity-aware set-
membership algorithms with adjustable penalties based on a gradient descent
approach. We also develop a statistical analysis of adaptive algorithms with
arbitrary penalty functions to describe the steady-state performance of these
algorithms, thereby addressing two problems of sparsity-aware algorithms,
namely, the exploitation of sparsity in the updates and in the parameter vector.

3.1
Derivation Framework

Let us consider a gradient descent approach, where our model is updated
by the recursive equation defined by

w (i+ 1) = w (i)− µ (i) ∂J (w (i))
∂w (i) . (3-1)

Now that the update recursion has been established, let us define a mean-
square error cost function with a general penalty function as described by

J (w (i)) = 1
2E

[
e (i)2

]
+ α (i) fl (w (i)) , (3-2)

where the function fl (w (i)) is a general penalty function used to improve the
performance of adaptive algorithms in the presence of sparsity and α(i) is a
regularization term that imposes and controls the desired penalty. The cost
function can be rewritten as follows:

J (w (i)) = 1
2E

[
|d (i)−wT (i) x (i) |2

]
+ α (i) fl (w (i)) . (3-3)

Taking the instantaneous gradient of the cost function with respect to
w (i), we obtain

∂J (w (i))
∂w (i) = −e (i) x (i) + α (i) ∂fl (w (i))

∂w (i) . (3-4)

Replacing the last result in the update equation (3-1), we get

w (i+ 1) = w (i)− µ (i)
[
−e (i) x (i) + α (i) ∂fl (w (i))

∂w (i)

]
. (3-5)

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 34

Note that we employ a time index in µ to designate a variable step-size.
Following the SM-NLMS approach, the updates are performed only if |e (i) |>γ,
which leads to the general equation to update the weights:

w (i+ 1) = w (i) + µ (i) e (i) x (i)− ρ (i) ∂fl (w (i))
∂w (i) , (3-6)

where ρ (i) = µ (i)α (i) . Using the equality constraint, i.e., the a posteriori
error |ep (i) | = γ, we have

|d (i)−wT (i+ 1) x (i) | = γ. (3-7)

Substituting (3-6) in (3-7) and solving for γ yields

γ =
∣∣∣∣∣d (i)−wT (i) x (i)−

(
µ (i) e (i) x (i)− ρ (i) ∂fl (w (i))

∂w (i)

)T

x (i)
∣∣∣∣∣. (3-8)

Multiplying both sides of the last equation by ep(i)
|ep(i)| , we obtain

γ
ep (i)
|ep (i) | =d (i)−wT (i) x (i)

−
(
µ (i) e (i) x (i)− ρ (i) ∂fl (w (i))

∂w (i)

)T

x (i) . (3-9)

Simplifying terms, we get

γsgn (ep (i)) = e (i)− µ (i) e (i) xT (i) x (i) + ρ (i)
[
∂fl (w (i))
∂w (i)

]T

x (i) . (3-10)

Since the constraint forces that |eap (i) | = γ, then the function
sgn (eap (i)) generates two possible equations given by

γ = e (i)− µ (i) e (i) ‖ x (i) ‖2 +ρ (i)
[
∂fl (w (i))
∂w (i)

]T

x (i) , (3-11)

−γ = e (i)− µ (i) e (i) ‖ x (i) ‖2 +ρ (i)
[
∂fl (w (i))
∂w (i)

]T

x (i) . (3-12)

We can express equations (3-11) and (3-12) as a single equation as follows:

e (i)
(

1− γ

|e (i) |

)
= µ (i) e (i) ‖ x (i) ‖2

− α (i)µ (i)
[
∂fl (w (i))
∂w (i)

]T

x (i) , (3-13)

where we take into account that the term
(
1 + γ

|e(i)|

)
would produce a growing

step-size, leading to a divergent algorithm. Isolating the step-size from the last
equation we obtain

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 35

µ (i) =
e (i)

(
1− γ

|e(i)|

)
(
e (i) ‖ x (i) ‖2 −α (i)

[
∂fl(w(i))
∂w(i)

]T
x (i)

) (3-14)

We then use equation (3-13) to find α (i+ 1), recursively, as follows:

µ (i)α (i+ 1)
[
∂fl (w (i))
∂w (i)

]T

x (i) = µ (i) e (i) ‖ x (i) ‖2 −e (i)
(

1− γ

|e (i) |

)
,

(3-15)

α (i+ 1) =
e (i)

(
γ
|e(i)| + µ (i) ‖ x (i) ‖2 −1

)
µ (i)

[
∂fl(w(i))
∂w(i)

]T
x (i)

. (3-16)

Equations (3-6), (3-14) and (3-16) fully describe the proposed sparsity-
aware SM-NLMS algorithm with adjustable penalties. The pseudo-code for the
algorithm is presented in Algorithm 3.

Algorithm 3 Sparsity-Aware SM-NLMS Algorithm with Adjustable Penalty
Function
Initialization
1. Define the penalty function fl (w (i))
2. Set initial values for γ, α (0) and w (0)
Computation
4. while {x (i) , d (i)} available do:

%Compute the errors
5. e(i) = d(i)−wT (i) x (i)
6. Compute the gradient

[
∂fl(w(i))
∂w(i)

]
%Compute the step-size

7. µ (i) = e(i)(1− γ
|e(i)|)(

e(i)‖x(i)‖2−α(i)
[
∂fl(w(i))
∂w(i)

]T
x(i)
)

%Update the weights
8. w (i+ 1) = w (i) + µ (i) e (i) x (i)− µ (i)α (i) ∂fl(w(i))

∂w(i)

%Update the regularization term
9. α (i+ 1) = e(i)(γ

|e(i)|+µ(i)‖x(i)‖2−1)
µ(i)
[
∂fl(w(i))
∂w(i)

]T
x(i)

10. end while

We can easily show that if we set α (i) to zero, which means that there
is no penalty function being applied, we get the conventional SM-NLMS
algorithm. Table 3.1 summarizes the most commonly used penalty functions.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 36

Table 3.1: Penalty Functions
Algorithm Penalty Function Gradient

ZA fl (w) =‖ w ‖1 sgn (w)
RZA fl (w) = ∑N

n=1 ln
(
1 + |wn|

ε′

)
sgn(w)
ε′+|w|

EZA fl (w) ≈‖ w ‖0≈
∑N
n=1

(
1− e−β|wn|

)
βe−β|w|sgn (w)

3.1.1
Proposed ZA-SM-NLMS-ADP Algorithm

Substituting the l1 regularization function into the expression of update
recursion of Algorithm 3, we get the new update equations expressed by

w (i) =w (i− 1) + µ (i) e (i) x (i)− ρ (i) sgn [w (i− 1)] , (3-17)

µ (i) =
e (i)

(
1− γ

|e(i)|

)
(e (i) ‖ x (i) ‖2 −α (i) sgnT [w (i− 1)] x (i)) . (3-18)

The regularization term is given by

α (i+ 1) =
e (i)

(
γ
|e(i)| + µ (i) ‖ x (i) ‖2 −1

)
µ (i) sgnT [w (i− 1)] x (i) . (3-19)

3.1.2
Proposed RZA-SM-NLMS-ADP Algorithm

If we use the log-sum penalty function, the recursion of the proposed
RZA-SM-NLMS-ADP algorithm becomes:

w (i) = w (i− 1) + µ (i) e (i) x (i)− ρ (i)
(

sgn [w (i− 1)]
ε′ + |w (i− 1) |

)
. (3-20)

The step-size follows the next updating rule:

µ (i) =
e (i)

(
1− γ

|e(i)|

)
(
e (i) ‖ x (i) ‖2 −α (i)

(sgn[w(i−1)]
ε′+|wT(i−1)|

)
x (i)

) , (3-21)

and the regularization term can be calculated by

α (i+ 1) =
e (i)

(
γ
|e(i)| + µ (i) ‖ x (i) ‖2 −1

)
µ (i)

(sgn[w(i−1)]
ε′+|wT(i−1)|

)
x (i)

. (3-22)

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 37

3.1.3
Proposed EZA-SM-NLMS-ADP Algorithm

The l0 regularization requires a computationally expensive search. To
avoid this problem we use the approximation presented in Table 3.1, so that
the weight-update equation reduces to:

w (i) = w (i− 1) + µ (i) e (i) x (i)− βρ (i) e−β|w(i)| (sgn (w (i))) , (3-23)

where the step-size and the regularization term are given by

µ (i) =
e (i)

(
1− γ

|e(i)|

)
(
e (i) ‖ x (i) ‖2 −βα (i) e−β|wT(i−1)| (sgn (wT (i− 1))) x (i)

) ,
(3-24)

α (i+ 1) =
e (i)

(
γ
|e(i)| + µ (i) ‖ x (i) ‖2 −1

)
βµ (i) e−β|wT(i−1)| (sgn (wT (i− 1))) x (i) . (3-25)

3.2
Statistical analysis

The main parameters used to compare adaptive algorithms, as explained
in [54–56], are the mean square error (MSE), the excess mean square error
(EMSE), the mean-square deviation (MSD) and the misadjustment (M). The
mean square error and the minimum mean square error (MMSE) are defined
as

MSE ,E
[
(e (i))2

]
, (3-26)

MMSE , lim
i→∞

E
[
(e (i))2

]
. (3-27)

The EMSE and M are, respectively, defined by

EMSE ,MSE −MMSE, (3-28)

M ,
EMSE

MMSE
. (3-29)

Let us denote by N the length of the weights and inputs. For the rest of
this section, we consider that the following assumptions hold [57]:

– The input vector x (i) ∈ RN is random vector whose elements are
identically distributed and have zero mean and variance equal to σ2

x.

– The random variable n (i) represents white Gaussian noise with zero
mean and variance equal to σ2

n .

– The variables xj (i) and n (i) are statistically independent for all i, j.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 38

– There exists an optimum model of the weights represented as wo, so that
the desired output is expressed by

d (i) = wT
o x (i) + n(i). (3-30)

Under these conditions, the error defined in equation (2-2) becomes:

e (i) = wT
o x (i) + n(i)−wT (i) x (i)

= (wo −w (i))T x (i) + n(i). (3-31)

Let us now define the a priori error ea (i) and the a posteriori error ep (i),
in the absence of observation error, by the following expressions:

ea (i) = wo
Tx (i)−wT (i) x (i) (3-32)

ep (i) = wo
Tx (i)−wT (i+ 1) x (i) . (3-33)

Replacing equation (3-32) in (3-31), we obtain the following relation:

e (i) = ea (i) + n (i) . (3-34)

3.2.1
Mean Weight Behavior

Let us now analyse the statistical behavior of the sparsity-aware SM-
NLMS algorithms. Our update equation is given by

w(i+ 1) = w(i) + µ (i) e (i) x (i)
‖ x (i) ‖2 + ρ (i)

(
x (i) xT (i)
‖ x (i) ‖2 − IN

)
∂fl (w (i))
∂w (i) .

(3-35)
Let us define the weight error vector as follows:

c (i) = wo −w (i) . (3-36)
The error from equation (3-31) is now given by the following expression:

e (i) = xT (i) c (i) + n(i). (3-37)
Subtracting w (i+ 1) from wo and using equations (3-35), (3-36) and

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 39

(3-37), we get

c (i+ 1) =c (i)− µ (i) e (i)
‖ x (i) ‖2 x (i)

− ρ (i)
(

x (i) xT (i)
‖ x (i) ‖2 − IN

)
∂fl (w (i))
∂w (i)

=c (i)− µ (i)
‖ x (i) ‖2 x (i)

(
xT (i) c (i) + n(i)

)
− ρ (i)

(
x (i) xT (i)
‖ x (i) ‖2 − IN

)
∂fl (w (i))
∂w (i)

=
(

IN −
µ (i)
‖ x (i) ‖2 x (i) xT (i)

)
c (i)− µ (i)

‖ x (i) ‖2 x (i)n(i)

− ρ (i)
(

x (i) xT (i)
‖ x (i) ‖2 − IN

)
∂fl (w (i))
∂w (i) . (3-38)

Since the input and the noise are statistically independent, then
E [x (i)n(i)] = 0. Taking the expected value from equation (3-38) and assum-
ing that the product x (i) xT (i) is independent from the weights, as described
by [54,58–60], results in

E [c (i+ 1)] =
[
IN−E [µ (i)]E

[
x (i) xT (i)
‖ x (i) ‖2

]]
E [c (i)]

− αE [µ (i)]
(
E
[
x (i) xT (i)
‖ x (i) ‖2

]
− IN

)
E
[
∂fl (w (i))
∂w (i)

]

=
[
IN−E [µ (i)] Rxx

Nσ2
x

]
E [c (i)]

− αE [µ (i)]
(

Rxx

Nσ2
x

− IN
)
E
[
∂fl (w (i))
∂w (i)

]
. (3-39)

As i→∞ , then we have E [c (i+ 1)] ≈ E [c (i)] and we obtain

lim
i→∞

(
E [µ (i)] Rxx

Nσ2
x

E [c (i)]
)

= −α lim
i→∞

(
E [µ (i)]

(
Rxx

Nσ2
x

− IN
)
E
[
∂fl (w (i))
∂w (i)

])
(3-40)

Simplifying terms we have

lim
i→∞

(w (i))−wo = αNσ2
xR−1

xx

(
Rxx

Nσ2
x

− IN
)
E
[

lim
i→∞

∂fl (w (i))
∂w (i)

]
(3-41)

lim
i→∞

(w (i)) = wo + α
(
IN −Nσ2

xR−1
xx

)(∂fl (wo)
∂w (wo)

)
. (3-42)

The last equation indicates that, when applying a penalty function the
estimator becomes biased.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 40

3.2.2
Steady-State MSE Analysis

We may represent equation (3-35) as follows:

w(i+ 1) = w(i) + Pup (i) [e (i)− γsgn (e (i))] x (i)
‖ x (i) ‖2

+Pup (i)α (i)
[
1− γ

|e (i) |

]
T (i) ∂fl (w (i))

∂w (i) , (3-43)

where
T (i) =

(
x (i) xT (i)
‖ x (i) ‖2 − IN

)
. (3-44)

The variable Pup (i) ∈ [0, 1] is a function that represents the probability
of updating the filter coefficients at a given iteration i:

Pup (i) = P [|e (i) | > γ] (3-45)

Let us define the following random variables and matrix to better
manipulate the terms:

a =γsgn (e (i)) , (3-46)

b = γ

|e (i) | . (3-47)

Let u (i) ∈ RN+1 be a random vector that represents the update applied
to the weights coefficients when |e (i) | > γ:

u (i) = [e (i)− a] x (i)
‖ x (i) ‖2

+α (i) [1− b] T (i) ∂fl (w (i))
∂w (i) . (3-48)

The update equation is now given by

w(i+ 1) =

w(i) + u (i) |e (i) | > γ,

w(i) otherwise.
(3-49)

Consider the vector u′ (i) defined by

u′(i) =

u (i) |e (i) | > γ

0 otherwise
(3-50)

Let us now rewrite the update equation and take the expected value as

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 41

follows:

w(i+ 1) = w(i) + u′(i), (3-51)

E [w(i+ 1)] = E [w(i)] + E [u′(i)] . (3-52)

Using the total probability theorem to evaluate E [u′(i)] we arrive at:

E [u′(i)] = E [u′(i)| {|e (i) | ≤ γ}] (1− Pup (i))

+ E [u′(i)| {|e (i) | > γ}]Pup (i) ,

= 0 + Pup (i)E [u(i)] . (3-53)

Taking the expected value from equation (3-43), we obtain

E [w(i+ 1)] = E [w(i)] + Pup (i)E [u(i)] ,

= E [w(i)] + E [u′(i)] , (3-54)

which proves that equation (3-35) and (3-43) are equal at least in the mean.
Transposing and post-multiplying equation (3-43) by x (i) results in

wT(i+ 1)x (i) = wT(i)x (i) + Pup (i) [e (i)− a] xT (i)
‖ x (i) ‖2 x (i)

+ Pup (i)α (i) [1− b]
∂fl

(
wT (i)

)
∂w (i) T (i) x (i) ,

= wT(i)x (i) + Pup (i) [e (i)− a]

+ Pup (i)α (i) [1− b]
∂fl

(
wT (i)

)
∂w (i) (x (i)− x (i)) ,

= wT(i)x (i) + Pup (i) [e (i)− a] . (3-55)

Substituting the last equation in (3-33), we get

ep (i) = wo
Tx (i)−wT(i)x (i)− Pup (i) [e (i)− a]

= ea (i)− Pup (i) [e (i)− a] . (3-56)

The a posteriori error can be expressed in terms of the error signal as
follows:

ep (i) = e (i)− n (i)− Pup (i) [e (i)− a]

= (1− Pup (i)) e (i) + Pup (i) a− n (i) . (3-57)

Solving equation (3-56) for e (i), we obtain

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 42

e (i) = 1
Pup (i) (ea (i)− ep (i) + Pup (i) a) . (3-58)

Substituting (3-58) in (3-43), yields

w(i+ 1) = w(i) + Pup (i)
Pup (i) [ea (i)− ep (i) + Pup (i) a− Pup (i) a] x (i)

‖ x (i) ‖2

+Pup (i)α (i) [1− b] T (i) ∂fl (w (i))
∂w (i) ,

= w(i) + [ea (i)− ep (i)] x (i)
‖ x (i) ‖2

+Pup (i)α (i) [1− b] T (i) ∂fl (w (i))
∂w (i) . (3-59)

Subtracting wo −w (i+ 1),we have

c (i+ 1) + ea (i) x (i)
‖ x (i) ‖2 =c(i) + ep (i) x (i)

‖ x (i) ‖2

− Pup (i)α (i) [1− b] T (i) ∂fl (w (i))
∂w (i) . (3-60)

Pre-multiplying equation (3-60) by its transpose as described in [61], we
arrive at

LHS = ‖c (i+ 1)‖2 + cT (i+ 1) x (i) ea (i)
‖x (i)‖2

+ ea (i)
‖x (i)‖2 xT (i) c (i+ 1) + e2

a (i)
‖x (i)‖2 , (3-61)

RHS = ‖c (i)‖2 + cT (i) x (i) ep (i)
‖x (i)‖2 + ep (i)

‖x (i)‖2 xT (i) c (i)

− Pup (i)α (i) [1− b] cT (i) T (i) ∂fl (w (i))
∂w (i) +

e2
p (i)

‖x (i)‖2

− Pup (i)α (i) [1− b] ep (i)
‖x (i)‖2 xT (i) T (i) ∂fl (w (i))

∂w (i)

− Pup (i)α (i) [1− b]
∂fl

(
wT (i)

)
∂w (i) T (i) c (i)

− Pup (i)α (i) [1− b]
∂fl

(
wT (i)

)
∂w (i) T (i) x (i) ep (i)

‖x (i)‖2

+ (Pup (i)α (i) [1− b])2 ∂fl
(
wT (i)

)
∂w (i) TT (i) T (i) ∂fl (w (i))

∂w (i) . (3-62)

The product

xT (i) T (i) = xT (i)− xT (i) = 0, (3-63)

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 43

which means that the sixth and the eighth terms go to zero. We also have that
TT (i) T (i) = −T (i). Replacing equation (3-32) in (3-62) and equation (3-33)
in (3-61), we get

LHS = ‖c (i+ 1)‖2 + ep (i) ea (i)
‖x (i)‖2

+ ea (i)
‖x (i)‖2 ep (i) + e2

a (i)
‖x (i)‖2 , (3-64)

RHS = ‖c (i)‖2 + ea (i) ep (i)
‖x (i)‖2 + ep (i)

‖x (i)‖2 ea (i)

− Pup (i)α (i) [1− b] cT (i) T (i) ∂fl (w (i))
∂w (i) +

e2
p (i)

‖x (i)‖2

− Pup (i)α (i) [1− b]
∂fl

(
wT (i)

)
∂w (i) T (i) c (i)

− (Pup (i)α (i) [1− b])2 ∂fl
(
wT (i)

)
∂w (i) (T (i)) ∂fl (w (i))

∂w (i) . (3-65)

Eliminating the terms that are equal on both sides, we obtain

e2
a (i)

‖x (i)‖2 = ‖c (i)‖2 − ‖c (i+ 1)‖2 +
e2
p (i)

‖x (i)‖2 − Pup (i) s (i) , (3-66)

where the variable s (i) is defined as follows:

s (i) = α (i) [1− b] cT (i) T (i) ∂fl (w (i))
∂w (i)

+α (i) [1− b]
∂fl

(
wT (i)

)
∂w (i) T (i) c (i)

+Pup (i) (α (i) [1− b])2 ∂fl
(
wT (i)

)
∂w (i) T (i) ∂fl (w (i))

∂w (i) (3-67)

Taking the expected value from (3-66) leads to:

E
[
e2
a (i)

‖x (i)‖2

]
= E

[
‖c (i)‖2

]
− E

[
‖c (i+ 1)‖2

]
+ E

[
e2
p (i)

‖x (i)‖2

]
− Pup (i)E [s (i)]

(3-68)
As i → ∞ the probability of update becomes a constant and, as

mentioned in [57,62,63], it is given by

Pup = 2Q
(
γ

σe

)
. (3-69)

Another important consequence is that as i → ∞, then E
[
‖c (i)‖2

]
≈

E
[
‖c (i+ 1)‖2

]
. Simplifying the terms of equation (3-68) results in

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 44

lim
i→∞

(
E
[
e2
a (i)

‖x (i)‖2

])
= lim

i→∞

(
E
[
e2
p (i)

‖x (i)‖2

])
− Pup lim

i→∞
(E [s (i)]) ,(3-70)

Pup lim
i→∞

(E [s (i)]) = lim
i→∞

(
E
[
e2
p (i)

‖x (i)‖2

]
− E

[
e2
a (i)

‖x (i)‖2

])
, (3-71)

Let us now use the following results [54]:

E
[
e2
a (i)

‖x (i)‖2

]
≈E [e2

a (i)]
Nσ2

x

, (3-72)

E
[
e2
p (i)

‖x (i)‖2

]
≈
E
[
e2
p (i)

]
Nσ2

x

, (3-73)

and substitute them into equation (3-71), leading us to

Pup lim
i→∞

(E [s (i)]) = lim
i→∞

E
[
e2
p (i)

]
− E [e2

a (i)]
Nσ2

x

 , (3-74)

PupNσ
2
x lim
i→∞

(E [s (i)]) = lim
i→∞

(
E
[
e2
p (i)

]
− E

[
e2
a (i)

])
. (3-75)

Using equation (3-34) to evaluate the term E [e2
a (i)] we arrive at the

following expression:

E
[
e2
a (i)

]
= E

[
(e (i)− n (i))2

]
= E

[
e2 (i)

]
− 2E [e (i)n (i)] + E

[
n2 (i)

]
= E

[
e2 (i)

]
− 2E

[(
cT (i) x (i) + n (i)

)
n (i)

]
+ σ2

n

= E
[
e2 (i)

]
− 2σ2

n + σ2
n

= E
[
e2 (i)

]
− σ2

n (3-76)

Let us now evaluate the term involving the a posteriori error using
equation (3-57):

E
[
e2
p (i)

]
= E

[
((1− Pup) e (i) + Pupa− n (i))2

]
= (1− Pup)2 E

[
e2 (i)

]
− 2 (1− Pup)E [e (i)n (i)]− 2PupE [an (i)]

+2 (1− Pup)PupE [e (i) a] + P 2
upE

[
a2
]

+ E
[
n2 (i)

]
= (1− Pup)2 E

[
e2 (i)

]
− 2 (1− Pup)σ2

n − 2PupγE [sgn (e (i))n (i)]

+2 (1− Pup)PupγE [sgn (e (i)) e (i)] + P 2
upγ

2 + σ2
n (3-77)

Using Price’s theorem [63,64], we obtain

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 45

E [sgn (q) p] ≈
√

2
πσq

E [qp] , (3-78)

where q and p are a random variable and a random vector respectively.
Applying this relation on equation (3-77), we get

E
[
e2
p (i)

]
= (1− Pup)2 E

[
e2 (i)

]
+ 2 (1− Pup)Pupγ

√
2
πσe

E
[
e2 (i)

]
−2Pupγ

√
2
πσe

E [e (i)n (i)] + P 2
upγ

2 − (1− 2Pup)σ2
n

= (1− Pup)2 E
[
e2 (i)

]
+ 2 (1− Pup)Pupγ

√
2
πσe

E
[
e2 (i)

]
−2Pupγ

√
2
πσe

σ2
n + P 2

upγ
2 − (1− 2Pup)σ2

n. (3-79)

Subtracting (3-76) and (3-79) yields

E
[
e2
p (i)

]
− E

[
e2
a (i)

]
= (1− Pup)2 E

[
e2 (i)

]
+2 (1− Pup)Pupγ

√
2
πσe

E
[
e2 (i)

]
−2Pupγ

√
2
πσe

σ2
n + P 2

upγ
2 − (1− 2Pup)σ2

n

−E
[
e2 (i)

]
+ σ2

n

=
(
P 2
up − 2Pup

)
E
[
e2 (i)

]
+2 (1− Pup)Pupγ

√
2
πσe

E
[
e2 (i)

]
−2Pupγ

√
2
πσe

σ2
n + P 2

upγ
2 + 2Pupσ2

n

= Pup (Pup − 2 + 2 (1− Pup) γρe)E
[
e2 (i)

]
+2Pup (1− γρe)σ2

n + P 2
upγ

2, (3-80)

where
ρe =

√
2
πσe

. (3-81)

Using equation (3-80) in (3-75), we have

PupNσ
2
x lim
i→∞

(E [s (i)]) = Pup (Pup − 2 + 2 (1− Pup) γρe) lim
i→∞

E
[
e2 (i)

]
+2Pup (1− γρe)σ2

n + P 2
upγ

2, (3-82)

Nσ2
x lim
i→∞

(E [s (i)]) = (Pup − 2 + 2 (1− Pup) γρe) lim
i→∞

E
[
e2 (i)

]
+2 (1− γρe)σ2

n + Pupγ
2, (3-83)

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 46

By isolating the term limi→∞ E [e2 (i)] = MSE, we obtain

(2− Pup − 2 (1− Pup) γρe)MSE = 2 (1− γρe)σ2
n+Pupγ2−Nσ2

x lim
i→∞

(E [s (i)]) .
(3-84)

Let us denote the MSE for the sparsity-aware SM-NLMS algorithms
with an arbitrary penalty function by MSESA−SM . Solving equation (3-84)
for MSESA−SM , we get

MSESA−SM = 2 (1− γρe)σ2
n + Pupγ

2

(2− Pup − 2 (1− Pup) γρe)

− Nσ2
x

(2− Pup − 2 (1− Pup) γρe)
lim
i→∞

(E [s (i)]) . (3-85)

In [62], [57] and [63] the EMSE of the SM-NLMS algorithm is presented.
From this result the MSE can be calculated and is given by

MSESM−NLMS = 2 (1− γρe)σ2
n + Pupγ

2

(2− Pup − 2 (1− Pup) γρe)
(3-86)

This means that equation (3-85) becomes

MSESA−SM = MSESM−NLMS −
Nσ2

x

λ
lim
i→∞

(E [s (i)]) , (3-87)

where
λ = (2− Pup − 2 (1− Pup) γρe) . (3-88)

Let us now focus on the value of E [s (i)] and assuming that the parameter
α is a fixed scalar, we obtain

E [s (i)] = αE
[
[1− b] cT (i) T (i) ∂fl (w (i))

∂w (i)

]

+αE
[1− b]

∂fl
(
wT (i)

)
∂w (i) T (i) c (i)

+Pupα2E

[1− b]2
∂fl

(
wT (i)

)
∂w (i) T (i) ∂fl (w (i))

∂w (i)

 . (3-89)

Usually α is set up in the range of [10−4, 10−3] because the best per-
formance of the algorithms is achieved by this range. A higher value of α will
deteriorate the performance of the algorithms. The range of Pup determined ex-
perimentally for several γ at steady-state is [10−2, 10−1]. This means that Pupα2

is in the range from 10−10 to 10−7 and we can neglect the last term. Since T (i)
is a symmetric matrix, then cT (i) T (i) ∂fl(w(i))

∂w(i) ,
∂fl(wT(i))
∂w(i) T (i) c (i) . With

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 47

these results, the value of E [s (i)] is reduced to:

E [s (i)] =2αE
[
[1− b] cT (i) T (i) ∂fl (w (i))

∂w (i)

]

=2αE
[
cT (i) T (i) ∂fl (w (i))

∂w (i)

]

− 2αγE
[
a

e (i)cT (i) T (i) ∂fl (w (i))
∂w (i)

]

=2αE
[
cT (i) T (i) ∂fl (w (i))

∂w (i)

]

− 2αγE
[
sgn (e (i))
e (i) cT (i) T (i) ∂fl (w (i))

∂w (i)

]
. (3-90)

Applying once again Price’s theorem over the last equation leads to:

E [s (i)] =2α (1− γρe)E
[
cT (i) T (i) ∂fl (w (i))

∂w (i)

]

=2α (1− γρe) wo
TE

[
T (i) ∂fl (w (i))

∂w (i)

]

− 2α (1− γρe)E
[
wT (i) T (i) ∂fl (w (i))

∂w (i)

]
. (3-91)

Replacing (3-44) on the last equation, we have

E [s (i)] = 2α (1− γρe) wo
TE

[
x (i) xT (i)
‖ x (i) ‖2

∂fl (w (i))
∂w (i)

]

−2α (1− γρe) wo
TE

[
∂fl (w (i))
∂w (i)

]

−2α (1− γρe)E
[
tr
{
∂fl (w (i))
∂w (i) wT (i) x (i) xT (i)

‖ x (i) ‖2

}]

+2α (1− γρe)E
[
wT (i) ∂fl (w (i))

∂w (i)

]

= 2α (1− γρe)
{

wo
T
(

Rxx

Nσ2
x

− IN
)
E
[
∂fl (w (i))
∂w (i)

]}

−2α (1− γρe) tr
{
E
[
∂fl (w (i))
∂w (i) wT (i)

]
Rxx

Nσ2
x

}

+2α (1− γρe)E
[
wT (i) ∂fl (w (i))

∂w (i)

]
. (3-92)

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 48

The final expression for the MSESA−SM is given by

MSESA−SM = MSESM−NLMS − β
{

wo
T
(

Rxx

Nσ2
x

− IN
)
E
[
∂fl (w (i))
∂w (i)

]}

+ βtr
{
E
[
∂fl (w (i))
∂w (i) wT (i)

]
Rxx

Nσ2
x

}

−βE
[
wT (i) ∂fl (w (i))

∂w (i)

]
, (3-93)

where
β = Nσ2

x2α (1− γρe)
λ

. (3-94)

3.2.3
The steady-state MSE of the ZA-SM-NLMS algorithm

Let us consider the zero attracting approach, that employs the l1−norm
as the penalty function:

∂fl (w (i))
∂w (i) = sgn(w (i)) (3-95)

Assuming that wj (i) has a Gaussian distribution N (mw, σ
2
w), we may

evaluate every entry of vector E [sgn(w (i))] as sugested in [65].

E [sgn(w (i))] =
∫ ∞
−∞

sgn(W (i))fw {W (i)} dW (i)

=
∫ 0

−∞
− 1
σw
√

2π
e
− (w−mw)2

2σ2
w dW (i)

+
∫ ∞

0

1
σw
√

2π
e
− (w−mw)2

2σ2
w dW (i)

= −1 + 2
∫ ∞

0

1
σw
√

2π
e
− (w−mw)2

2σ2
w dW (i) . (3-96)

By substituting the variable z = (w−mw)
σw

, we obtain that each entry of
vector E [sgn(w (i))] is given by

E [sgn(w (i))] = −1 + 2
∫ ∞
−mw
σw

1√
2π
e−

z2
2 dz

= −1 + 2Q
(
−mw

σw

)
(3-97)

Let us now consider a white input. The elements of the main diagonal of
the third term of equation (3-93) requires the following computation:

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 49

E [w (i) sgn(w (i))] =
∫ ∞
−∞

w (i) sgn(W (i))fw {W (i)} dW (i)

=
∫ 0

−∞
−w 1

σw
√

2π
e
− (w−mw)2

2σ2
w dW (i)

+
∫ ∞

0
w 1
σw
√

2π
e
− (w−mw)2

2σ2
w dW (i)

= −1 + 2
∫ ∞

0
w 1
σw
√

2π
e
− (w−mw)2

2σ2
w dW (i) . (3-98)

Replacing by w = zσw +mw leads to:

E [w (i) sgn(w (i))] = −1 + 2
∫ ∞
−mw
σw

(zσw +mw) 1√
2π
e−

z2
2 dz

= 1 + 2σw
∫ ∞
−mw
σw

z
1√
2π
e−

z2
2 dz

+2mw

∫ ∞
−mw
σw

1√
2π
e−

z2
2 dz. (3-99)

Let us now define u = −z2/2 and du = −zdz to solve the integral. The
main diagonal of matrix E

[
sgn(w (i))wT (i)

]
can be calculated by

E [w (i) sgn(w (i))] =− 1 + 2σw
∫ ∞
−mw
σw

1√
2π
eudu+ 2mwQ

(
−mw

σw

)

=− 1 + 2σw√
2π
e
−m2

w
2σ2
w + 2mwQ

(
−mw

σw

)
. (3-100)

Substituting (3-97) and (3-100) in (3-93) leads to the mathematical
expression of the MSE for the ZA-SM-NLMS algorithm, which is given by

MSEZA−SM = MSESM−NLMS −
Nσ2

x2α (1− γρe)
λ

g, (3-101)

where

g =wo
T
(

Rxx

Nσ2
x

− IN
)

h− tr
{

GRxx

Nσ2
x

}

+
N∑
i=1

2σwi√
2π
e
−
m2
wi

2σ2
wi + 2mwiQ

(
−mwi

σwi

)
− 1

 , (3-102)

[G]ii = 2σwi√
2π
e
−
m2
wi

2σ2
wi + 2mwiQ

(
−mwi

σwi

)
− 1, (3-103)

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 50

h =

2Q
(
−mw1

σw1

)
− 1

2Q
(
−mw2

σw2

)
− 1

...
2Q

(
−mwN

σwN

)
− 1

. (3-104)

3.3
Simulations

In this section several experiments were carried out to test the proposed
algorithms and compare them with conventional sparsity-aware adaptive algo-
rithms. For this purpose, a system identification task was chosen. The mathe-
matical formulation of the steady-state MSE obtained in the previous section
is also analysed.

3.3.1
Learning Performance of Proposed and Existing Algorithms

To evaluate the algorithms developed, many experiments were set up. For
this purpose we consider a system modelled as a finite impulse response (FIR)
filter with 64 taps in three different scenarios. The first scenario represents a
sparse system where only four taps have non-zero values. In the second case
a semi-sparse model was considered, so that half of the taps were different
from zero. Finally, we explore the case where there is no sparsity in the system
at all, so that all taps contribute equally to the computation of the output.
The input signal follows a Gaussian distribution with a signal to noise ratio
of 20 dB. A total of 1200 independent simulations were averaged to obtain
the learning curves for each experiment. Each simulation had 4500 iterations,
where the first 1500 corresponds to the first scenario described before, the
next 1500 iterations corresponds to the second scenario and the last group of
iterations comprised the third scenario. For the first experiment, we compare
the performance of the conventional adaptive algorithms for the task of system
identification. The results are shown in Figure 3.1.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 51

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration

M
S

E

LMS
NLMS
SM−NLMS

Figure 3.1: Adaptive Filtering Algorithms.

Next, we consider the performance of the LMS based algorithms. In this
simulation we analyse three LMS algorithms each with a different penalty
function. The results agree with the ones obtained in [34] and are shown in
Figure 3.2.The fastest convergence and the lower MSE level was obtained by
the EZA-LMS algorithm.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration

M
S

E

LMS
ZA−LMS
RZA−LMS
EZA−LMS

Figure 3.2: Performance of LMS Algorithms.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 52

For the next experiment, we compare the performance of the NLMS
based algorithms including the PNLMS algorithm, which was also developed
to take into account the sparsity of a system. The results are shown in Figure
3.3. We see that the PNLMS algorithms has initially a very fast convergence
speed but this speed decreases over time, and also the final MSE achieved by
this algorithm is the worst as compared to the other algorithms developed for
sparse systems.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration

M
S

E

NLMS
ZA−NLMS
RZA−NLMS
EZA−NLMS
PNLMS

Figure 3.3: Performance of NLMS Algorithms.

The following experiment considers the performance of the SM-NLMS
based algorithms. The results are shown in Figure 3.4.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 53

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration

M
S

E

SM−NLMS
ZA−SM−NLMS
RZA−SM−NLMS
EZA−SM−NLMS

Figure 3.4: Performance of SM-NLMS Algorithms.

For the following experiment, we consider the performance of the pro-
posed algorithms. Figure 3.5 shows the performance for the ZA-SM-NLMS
algorithms, Figure 3.6 shows the results for the RZA-SM-NLMS algorithms
and Figure 3.7 shows the performance of the EZA-SM-NLMS algorithms. The
proposed algorithms achieve a faster convergence speed in sparse environments.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration

M
S

E

ZA−SM−NLMS
ZA−SM−NLMS−ADP

Figure 3.5: Performance of ZA-SM-NLMS Algorithms.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 54

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration

M
S

E

RZA−SM−NLMS
RZA−SM−NLMS−ADP

Figure 3.6: Performance of RZA-SM-NLMS Algorithms.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration

M
S

E

EZA−SM−NLMS
EZA−SM−NLMS−ADP

Figure 3.7: Performance of EZA-SM-NLMS Algorithms.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 55

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration

M
S

E

NLMS
SM−NLMS
RZA−SM−NLMS
EZA−SM−NLMS
EZA−SM−NLMS−ADP

Figure 3.8: Performance of Adaptive Algorithms.

Table 3.2 summarizes the update rate achieved by the proposed algo-
rithms in a sparse scenario, which is approximately 1% less than the results
obtained by conventional adaptive algorithms.

Table 3.2: Update Rate
Algorithm %

ZA-SM-NLMS-ADP 25.84%

RZA-SM-NLMS-ADP 23.67%

EZA-SM-NLMS-ADP 23.28%

Finally, we consider two different correlated inputs to evaluate the
performance of the proposed EZA-SM-NLMS-ADP algorithm. The input is
generated by a white Gaussian sequence v (i), uncorrelated with the noise.
Then this signal is passed through two different IIR filters described by

x1 (i) =0.7x (i− 1) + v (i) (3-105)

x4 (i) =0.8x (i− 1) + 0.19x (i− 2) + 0.09x (i− 3)

− 0.5x (i− 4) + v (i) , (3-106)

which corresponds to first- and fourth-order autoregressive (AR) processes,
respectively [55]. For the learning curves, we consider a total of 5000 iterations,

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 56

where the first 5000 iterations correspond to the sparse scenario and the last set
of iterations represent the semi-sparse scenario. The results in Fig. 3.9 show
that a correlated input slows the converge speed and increases the steady-
state MSE. In such cases, applying a penalty function improves both results,
the convergence speed and the steady-state MSE.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−3

10
−2

10
−1

10
0

10
1

Iteration

M
S

E

SM−NLMS,White Process
EZA−SM−NLMS−ADP,White Process
SM−NLMS, 1st order AR
EZA−SM−NLMS−ADP, 1st order AR
SM−NLMS, 4th order AR
EZA−SM−NLMS−ADP, 4th order AR

Figure 3.9: Performance of the EZA-SM-NLMS-ADP and the SM-NLMS
algorithm with correlated inputs

3.3.2
Steady State MSE of the ZA-SM-NLMS algorithm

To test the equations obtained in Section 3.2.3 for the ZA-SM-NLMS
algorithm, several experiments were performed. A system with 32 weights and
with a degree of sparsity of 1/8 was used for the tests. The desired signal
was corrupted by white Gaussian noise with σn = 0.04. The SNR was set to
20 dB for each experiment. The averaged MSE was computed over a total
of 1000 simulations each one with 12000 iterations. For the first experiment
we compute the probability of update for different error bounds. The results
from Fig. 3.10 show that the probability of update converges to a constant at
steady-state, which means that the assumption made in our development is
reasonable.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 57

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
ro

b
ab

ili
ty

 o
f

U
p

d
at

e

γ = √ 1 σ
n

γ = √ 3 σ
n

γ = √ 5 σ
n

γ = √ 7 σ
n

Figure 3.10: Probability of Update for different bounds.

Next, we measure the probability of update at steady state for different
values of γ =

√
τσn and compared it to equation (3-69). Figure 3.11 summa-

rizes the results obtained.

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

τ

P
ro

b
ab

ili
ty

 o
f

U
p

d
at

e
at

 S
te

ad
y

S
ta

te

P
up

 (Simulation)

P
up

 (Theory)

Figure 3.11: Probability of Update at Steady State.

Finally, we compare the theoretical MSE of the ZA-SM-NLMS algorithm
with the MSE obtained by simulations. The results are shown in Figure 3.12
and Figure 3.13.

Chapter 3. Sparsity-Aware Data-Selective Adaptive Algorithms 58

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

10
−2

Iteration

M
S

E

MSE γ = √ 1 σ
n
 (Theoretical)

MSE γ = √ 5 σ
n
 (Theoretical)

MSE γ = √ 7 σ
n
 (Theoretical)

Figure 3.12: Steady-state MSE for the ZA-SM-NLMS algorithm.

1 2 3 4 5 6 7

10
−3

τ

M
S

E

MSE ZA−SM−NLMS (Simulation)
MSE ZA−SM−NLMS (Theory)

Figure 3.13: ZA-SM-NLMS MSE for different error bounds.

We can conclude that the mathematical model and expressions developed
to describe the MSE of the ZA-SM-NLMS algorithm produce curves that match
those obtained by simulation as evidenced by examples.

4
Data-Selective Kernel Adaptive Algorithms

In this chapter we develop data-selective kernel adaptive algorithms. The
algorithms described herein use an adaptive step-size to achieve a better trade-
off between convergence speed and steady state. The data-selective update
scheme used also limits the size of the dictionary created by the kernel
expansion, which is one of the major problems when using a kernel adaptive
algorithm. A statistical analysis of the algorithm is also carried out. Finally,
several experiments are performed to test the proposed algorithms.

4.1
Set-Membership Normalized Kernel Least-Mean-Squares

Let us consider an adaptive filtering problem with a sequence of training
samples given by {x (i) , d (i)}, where x (i) is the N-dimensional input vector of
the system and d (i) represents the desired signal at time instant i. The output
of the adaptive filter is given by

y (i) = wT (i) x (i) , (4-1)
where w (i) is the weight vector with length N.

Let us define a non-linear transformation denoted by ϕ : Rn → F, that
maps the input to a high-dimensional feature space. Applying the transforma-
tion stated before, we map the input and the weights to a high-dimensional
space obtaining:

ϕ (i) = ϕ (x (i)) , (4-2)

ω (i) = ϕ(w (i)). (4-3)
We should emphasize that ω (i) is now a vector where each component

is a function of the elements of w (i), so that the dimension of ω (i) is greater
than w (i). The following equation describes the error generated by the system:

e (i) = d (i)− ωT (i)ϕ (i) . (4-4)
The main objective of the proposed algorithm is to model a function, such

that the magnitude of the estimated error defined by (4-4) is upper bounded
by a quantity γ. Assuming that the value of γ is appropriately chosen, there

Chapter 4. Data-Selective Kernel Adaptive Algorithms 60

exist several functions that satisfy the error requirement. To summarize, any
function leading to an estimation error smaller than the defined threshold is
an adequate solution, resulting in a set of filters. Otherwise if the value of γ
is not properly chosen (if it is too small for example), then there might be no
solution.

Consider a set S̄ containing all the possible input-desired pairs
{ϕ (i) , d (i)} of interest. Now we can define a set θ with all the possible func-
tions leading to an estimation error bounded in magnitude by γ. This set is
known as the feasibility set and is expressed by

θ =
⋂

{ϕ,d}∈S̄

{
ω ∈ F / |d− ωTϕ| ≤ γ

}
. (4-5)

Suppose that we are only interested in the case in which only measured
data are available. Let us define a new setH (i) with all the functions such that
the estimation error is upper bounded by γ . The set is called the constraint
set and is mathematically defined by

H (i) =
{
ω ∈ F / |d (i)− ωTϕ (i) | ≤ γ

}
. (4-6)

It follows from (4-6) that, for each data pair, there exists an associated
constraint set. The set containing the intersection of the constraint sets over
all available time instants is called exact membership set and is given by the
following equation:

ψ (i) =
i⋂

k=0
H (i) . (4-7)

The exact membership set, ψ (i), should become small as the data
containing new information arrives. This means that at some point the
adaptive filter will reach a state where ψ (i) = ψ (i− 1), so that there is no need
to update ω. This happens because ψ (i− 1) is already a subset of H (i). As a
result, the update of any set-membership based algorithm is data dependent,
saving resources, a fact that is crucial in kernel based adaptive filters because
of the growing structure that they create.

To develop the algorithm, we check first if the previous estimate is outside
the constraint set, i.e., |d (i) − ωT (i)ϕ (i) | > γ. If the error exceeds the
bound established, the algorithm performs an update so that the a posteriori
estimated error lies in H (i). In other words, an update should occur either if

e (i) = d (i)− ωT (i)ϕ (i) > γ (4-8)
or

e (i) = d (i)− ωT (i)ϕ (i) < −γ (4-9)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 61

If any of the previous cases occurs we minimize ||ω (i+ 1) − ω (i) ||2

subject to ω (i+ 1) ∈ H (i), which means that the a posteriori error ξp (i) is
given by

ξp (i) = d (i)− ωT (i+ 1)ϕ (i) = ±γ. (4-10)
As mentioned in [13], the NKLMS update equation is given by

ω (i+ 1) = ω (i) + µ (i)
ε+ ||ϕ (i) ||2 e (i)ϕ (i) , (4-11)

where µ (i) is the step-size that should be chosen to satisfy the constraints
of the algorithm and ε is a small constant used to avoid numerical problems.
Substituting (4-11) in (4-10) we arrive at:

ξp (i) = d (i)− ωT (i)ϕ (i)− µ (i)
ε+ ||ϕ (i) ||2 e (i)ϕT (i)ϕ (i) = ±γ. (4-12)

Using (4-4) and replacing the dot products by kernel evaluations, the
previous equation turns into:

ξp (i) = e (i)− µ (i)
ε+ κ (x (i) ,x (i))e (i)κ (x (i) ,x (i)) = ±γ. (4-13)

Assuming that the constant ε is sufficiently small to ensure that

κ (x (i) ,x (i))
ε+ κ (x (i) ,x (i)) ≈ 1, (4-14)

then, from equation (4-13), we have

±γ = e (i)− µ (i) e (i) (4-15)

= e (i) (1− µ (i)) (4-16)

γ = |e (i) (1− µ (i)) |. (4-17)

If µ (i) takes values between 0 and 1, it follows that:

|e (i) | (1− µ (i)) = γ, (4-18)

µ (i) = 1− γ

|e (i) | . (4-19)

Taking into account that the update only occurs if the error is greater
than the specified bound then µ (i) is fully described by

µ (i) =

 1− γ
|e(i)|

0

|e (i) | > γ,

otherwise.
(4-20)

We can compute ω in (4-11) recursively as follows:

Chapter 4. Data-Selective Kernel Adaptive Algorithms 62

ω (i+ 1) = ω (i− 1) + µ (i− 1) e (i− 1)
ε+ ||ϕ (i− 1) ||2ϕ (i− 1) + µ (i) e (i)

ε+ ||ϕ (i) ||2ϕ (i)

...

ω (i+ 1) = ω (0) +
i∑

k=1

µ (k)
ε+ ||ϕ (k) ||2 e (k)ϕ (k) (4-21)

Setting ω (0) to zero leads to:

ω (i+ 1) =
i∑

k=1

µ (k)
ε+ ||ϕ (k) ||2 e (k)ϕ (k) . (4-22)

The output of the filter to a new input ϕ (i+ 1) can be computed as the
following inner product:

ωT (i+ 1)ϕ (i+ 1) =
[

i∑
k=1

µ (k)
ε+ ||ϕ (k) ||2 e (k)ϕT (k)

]
ϕ (i+ 1) ,

=
i∑

k=1

µ (k)
ε+ ||ϕ (k) ||2 e (k)ϕT (k)ϕ (i+ 1) . (4-23)

Using the kernel trick we obtain:

ωT (i+ 1)ϕ (i+ 1) =
i∑

k=1

µ (k) e (k)
ε+ κ (x (k) ,x (k))κ (x (k) ,x (i+ 1)) , (4-24)

where µ (k) is given by (4-20). Let us define a coefficient vector a (i) that stores
the following product:

ai (i) = µ (i) e (i) , (4-25)
so that (4-24) becomes:

ωT (i+ 1)ϕ (i+ 1) =
i∑

k=1

ak (i)
ε+ κ (x (k) ,x (k))κ (x (k) ,x (i+ 1)) . (4-26)

Equations (4-4), (4-20),(4-25), and (4-26) summarize the proposed Set-
Membership Normalized Kernel Least Mean-Square (SM-NKLMS) algorithm.
We set the initial value of ω to zero as well as the first coefficient. As new
inputs arrive we can calculate the output of the system with (4-26). Then the
error may be computed with (4-4) and if it exceeds the bound established
we compute the step-size with (4-20). Finally, we update the coefficients a (i)
with (4-25). Note that some coefficients may be zero due the data selectivity
characteristic of the algorithm. We do not need to store the zero coefficients as
they do not contribute to the output calculus, resulting in a saving of resources.
This means that the dictionary at time instant i, denoted by C (i), has only m

Chapter 4. Data-Selective Kernel Adaptive Algorithms 63

elements, with m < i. Each column of the dictionary, denoted by cj, contains
the input that performed the kth update. We can now rewrite equation (4-26)
as follows:

ωT (i+ 1)ϕ (i+ 1) =
m∑
k=1

ak (i)
ε+ κ (ck, ck)

κ (x (i) ,ck) (4-27)

This is an important result because it controls the growing network
created by the algorithm. In stationary environments the algorithm will limit
the growing structure. Algorithm 4 summarizes the SM-NKLMS algorithm.

Algorithm 4 Set-Membership Normalized Kernel Least Mean Squares
Initialization
1.Choose γ , ε and κ.
2.C (1) = {x (1)}
3.µ (1) = 1− γ

|d(1)|

4.a1 (1) = µ (1) d (1)
5.m = 1
Computation
6.while {x (i) , d (i)} available do:

%Compute the output
7. fi−1(x (i)) = ∑m

k=1
ak(i)

ε+κ(ck,ck)κ (x (i) ,ck)
%Compute the error

8. e (i) = d (i)− fi−1(x (i))
9. if |e (i) | > γ

%Compute the step-size
10. µ (i) = 1− γ

|e(i)|

%Update the coefficients

11. a (i+ 1) =
 a (i)

0

+
 0
µ (i) e (i)

%Store the new center

12. C (i+ 1) = {C (i) ,x (i)}
13. m = m+ 1
14. else
15. µ (i) = 0
16. a (i+ 1) = a (i)
17. C (i+ 1) = C (i)
18. end if
19.end while

4.2

Chapter 4. Data-Selective Kernel Adaptive Algorithms 64

Nonlinear Regression approach

In this section, we follow a nonlinear regression approach as described
in [48,66], to develop a data-selective algorithm based on a kernel function. Let
us define a function ψ (·) on a feature space which, given an input vector x (i)
generates the model output ψ (x (i)). Our problem is now reduced to finding
the function ψ (·) that minimizes the sum of the square error between the
desired response and the model output as described by

min
ψ∈H

i∑
k=1
|d (k)− ψ (x (k)) |2 (4-28)

The representer theorem [53] states that the function ψ (·) can be
expressed as a kernel expansion which depends on the available data, so that:

ψ (·) =
i∑

k=1
akκ (· ,x (k)) . (4-29)

Now we need to solve the following problem:

min
a
‖ d−Ka ‖2, (4-30)

where K is the Gram matrix containing at each row i and each column j the
kernel evaluations of the input data denoted by κij, where:

[K]ij = κij = κ (x (i) ,x (j)) . (4-31)
Let us now consider the case where we have a dictionary of size m.

The vector x (δj) = cj represents the jth element of the dictionary, where
x (δj) 6= x (i) for j = 1, · · · ,m. Consider also a vector κδ (i), containing the
kernel evaluations between the input data at time i and every input stored in
the dictionary at time i > m, given by

κδ (i) =

κ (x (i) ,x (δ1))
κ (x (i) ,x (δ2))

...
κ (x (i) ,x (δm))

 . (4-32)

Using the instantaneous gradient to obtain the NKLMS algorithm, our problem
becomes:

min
a
‖ a (i+ 1)− a (i) ‖2

subject to

| d (i)− κδT (i)a (i+ 1) |= 0. (4-33)

Using the method of Lagrange multipliers, we have

L(a,λ) =‖ a (i+ 1)− a (i) ‖2 +λ
(
d (i)− κδT (i)a (i+ 1)

)
. (4-34)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 65

Calculating the gradient with respect to to a (i+ 1)) and λ, we obtain

∂L(a,λ)
∂a (i+ 1) = (a (i+ 1)− a (i))− λκδ (i) = 0, (4-35)

∂L(a,λ)
∂λ

= d (i)− κδT (i)a (i+ 1) = 0. (4-36)

From equation (4-35) we obtain:

λκδ (i) = (a (i+ 1)− a (i)) , (4-37)

λκδ
T (i)κδ (i) = κδ

T (i) (a (i+ 1)− a (i)) . (4-38)
Substituting (4-36) in the equation above we get:

λ ‖ κδ (i) ‖2=
(
d (i)− κδT (i)a (i)

)
, (4-39)

λ = 1
‖ κδ (i) ‖2

(
d (i)− κδT (i)a (i)

)
. (4-40)

Finally, replacing λ in equation (4-35) we obtain the NKLMS update
recursion for the coefficients, which is expressed as follows:

a (i+ 1) = a (i) + 1
‖ κδ (i) ‖2

(
d (i)− κδT (i)a (i)

)
κδ (i) . (4-41)

When using the SM-NKLMS algorithm, the update only occurs when
the error represented by d (n) − κδ (i)T (n)a (n) exceeds the threshold γ. In
this case, the dictionary size should be increased by one as well as the length
of the vector a. The update recursion is given by

a (i+ 1) =
 a (i)

0

+ µ (i)
ε+ ‖ κδ (i) ‖2

d (i)− κδT (i)
 a (i)

0

κδ (i) .

(4-42)
Let us now define the a posteriori error as follows:

ξp (i) = d (i)− κδT (i)a (i+ 1) = ±γ. (4-43)

Substituting equation (4-42) in the last equation and assuming that
κ(x(i),x(i))
ε+κ(x(i),x(i)) ≈ 1, we have

d (i)− κδT (i)
 a (i)

0

− µ (i)
d (i)− κδT (i)

 a (i)
0

 = ±γ. (4-44)

Simplifying terms, we obtain

γ =e (i)− µ (i) e (i) ,

=e (i) (1− µ (i)) . (4-45)

From the last equation we obtain an expression for the step-size, wich is

Chapter 4. Data-Selective Kernel Adaptive Algorithms 66

given by

µ (i) =

 1− γ
|e(i)|

0

| e (i) |> γ,

otherwise.
(4-46)

If the error does not exceed the threshold γ, the size of the dictionary
remains the same and no coefficients update is performed, only the output of
the model is calculated for the new input. The pseudo-code for this method is
shown in Algorithm 5.

Algorithm 5 Nonlinear Regression SM-NKLMS Algorithm
Initialization
1.Choose γ , ε and κ.
2.µ (1) = 1− γ

|d(1)|

3.a (1) = 0
4.m = 1
5.κδ (1) = κ (x (1) ,x (1))
Computation
6.while {x (i) , d (i)} available do:

%Compute vector κδ (i)
7. κδ (i) = {κ (x (i) ,x (δ1)) , . . . , κ (x (i) ,x (δm))}

%Compute the output
8. y (i) = κδ

T (i)a (i)
%Compute the error

9. e (i) = d (i)− y (i)
10. if |e (i) | > γ

%Store the new center
11. κδ (i) = {κ (x (i) ,x (δ1)) , . . . , κ (x (i) ,x (δm+1))}

%Store the step-size
12. µ (i) = 1− γ

|e(i)|

%Update the coefficients

13. a (i+ 1) =
 a (i)

0

+ µ(i)
ε+‖κδ(i)‖2

d (i)− κδT (i)
 a (i)

0

κδ (i)

14. m = m+ 1
15. else
16. µ (i) = 0
17. a (i+ 1) = a (i)
18. end if
19.end while

4.3

Chapter 4. Data-Selective Kernel Adaptive Algorithms 67

Set Membership-Kernel Affine Projection Algorithm

As described in Subsection 2.4.2, the KAP algorithm uses the last K
inputs to update the coefficients. Based on this fact, let us consider the past K
constraint sets to perform the update. Under this scope, it is also convenient
to redefine the exact membership as follows:

ψ (i) =
i−K⋂
j=0
H (j)

 i⋂
l=i−K+1

H (l)
 = ψi−K (i)

⋂
ψK (i) , (4-47)

where ψK (i) emphasizes the use of K constraint sets for updating. This
means that vector ω (i) should belong to ψK (i). In order to develop the Set-
Membership Kernel Affine Projection (SM-KAP) algorithm, we need to set
several bounds γ̄k (i), for k = 1, . . . , K, so that the error magnitudes should
satisfy this constraints after updating. It follows that there exists a space
S (i− k + 1) containing all vectors ω satisfying the following expression:

d (i− k + 1)− ωTϕ (i− k + 1) = γ̄k (i) , for k = 1, . . . , K. (4-48)

The SM-KAP algorithm should perform an update whenever ω (i) /∈
ψK (i), so that the following constrained optimization problem is solved:

min
ω(i+1)

‖ ω (i+ 1)− ω (i) ‖2

subject to

d (i)−ΦT (i)ω (i+ 1) = γ̄ (i) , (4-49)

where γ̄ (i) is a vector containing all theK bounds. Modifying the optimization
problem in (4-49) with the method of the Lagrange multipliers we get

L (ω (i)) =‖ ω (i+ 1)− ω (i) ‖2 +λT (i)
(
d (i)−ΦT (i)ω (i+ 1)− γ̄ (i)

)
,

(4-50)
where λT (i) is the vector of Lagrange multipliers. Now we can compute the
gradient of L (ω (i)) and equate it to zero, which yields

∂L (ω (i))
∂ω (i) = 2ω (i+ 1)− 2ω (i)− λT (i) ΦT (i) = 0. (4-51)

Solving for ω (i+ 1), we obtain

ω (i+ 1) = ω (i) +
K∑
k=1

λk (i)
2 ϕ (i− k + 1) , (4-52)

= ω (i) + 1
2Φ (i)λ (i) . (4-53)

From equation (4-49), we know that

Chapter 4. Data-Selective Kernel Adaptive Algorithms 68

d (i)− γ̄ (i) = ΦT (i)ω (i+ 1) . (4-54)

Substituting equation (4-53) in (4-54) we have

d (i)− γ̄ (i) = ΦT (i)
(
ω (i) + 1

2Φ (i)λ (i)
)
,

= ΦT (i)ω (i) + ΦT (i) Φ (i) λ (i)
2 , (4-55)

ΦT (i) Φ (i) λ (i)
2 = d (i)−ΦT (i)ω (i)− γ̄ (i) ,

= e (i)− γ̄ (i) , (4-56)
λ (i)

2 =
(
ΦT (i) Φ (i)

)−1
(e (i)− γ̄ (i)) . (4-57)

We can now obtain the update equation, which is used as long as the
error is greater than the established bound, i.e., |e (i) | > γ̄

ω (i+ 1) = ω (i) + Φ (i)
(
ΦT (i) Φ (i)

)−1
(e (i)− γ̄ (i)) (4-58)

We have to consider that the error vector e (i) is composed by the actual
error and K−1 a posterior errors, corresponding to the K−1 last inputs used

e (i) =
[
e (i) ep (i− 1) · · · ep (i−K + 1)

]
, (4-59)

where ep (i− k) denotes the a posteriori error computed using the coefficients
at iteration i as described by

ep (i− k) = d (i− k)−ϕT (i− k)ω (i) . (4-60)
We will now discuss how to choose the vector γ̄ (i). A simple choice would

be to force all the lastK a posteriori errors to zero, which we term Zero Forcing
(ZF) technique, i.e., γ̄ (i) = 0. By replacing this condition on equation (4-58),
we obtain

ω (i+ 1) =

ω (i) + Φ (i)
(
ΦT (i) Φ (i)

)−1
e (i) |e (i) | > γ̄,

ω (i) other case.
(4-61)

We can verify that the equation above is the same as equation (2-65) used
for the KAP algorithm but it uses a unit step-size. The main difference of this
algorithm is that the update only takes place if ω (i) /∈ H (k), which means
that |e (i) | > γ̄. This leads to a reduction in the computational complexity
due the data selectivity. Using equation (2-70) to redefine the update equation
we have

ω (i+ 1) = ∑i−1
j=1 aj (i)ϕ (j) + Φ (i) ã (i) |e (i) | > γ̄ . (4-62)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 69

From the equation above, it follows that the coefficients are only updated
if |e (i) | > γ̄, leading to

ak (i) =

ãk (i) , k = i,

ak (i− 1) + ãK+k−i (i) , i−K + 1 ≤ k ≤ i− 1,

ak (i− 1) 1 ≤ k < i−K + 1,

(4-63)

ak (i) = ak (i− 1) |e (i) | < γ̄ . (4-64)
The SM-KAP-ZF algorithm is summarized in algorithm 6

Algorithm 6 SM-KAP-ZF
Initialization
1.Choose γ̄ , ε, K and κ.
2.C (1) = {x (1)} , a1 (1) = d (1) ,m = 1
Computation
3.while {x (i) , d (i)} available do:
4. for n = 1 to min (i,K) do

%Compute the outputs
5. yn (i) = ∑m

k=1 ak (i)κ (x (i− n+ 1) , ck)
6. end for

%Compute the last K errors
7. e (i) = d (i)− y (i)
8. if |e (i) | > γ̄ then
9. for n = 1 to min (i,K) do
10. for m = 1 to min (i,K) do

%Compute the K ×K matrix Ã
11. Ãn,m = κ (x (i− n+ 1) ,x (i−m+ 1))
12. end for
13. end for
14. Ã = (Ã + εI)−1

%Update the K most recent coefficients
15. {a (i)}Kk=i−K+1 = {a (i− 1)}Kk=i−K+1 + Ãe (i)

%Store the new center
16. C (m+ 1) = {C (m) ,x (i)}
17. m = m+ 1
18. else
19. a (i) = a (i− 1)
20. end if
21.end while

Let us now consider another simple choice for vector γ̄ (i). We can exploit

Chapter 4. Data-Selective Kernel Adaptive Algorithms 70

the fact that the a posteriori error was updated to satisfy the constraint in
equation (4-49). That means that we can set the values of γ̄k (i) equal to
ep (i− k + 1) for i 6= 1. Substituting this condition in (4-58) we obtain

ω (i+ 1) = ω (i) + Φ (i)
(
ΦT (i) Φ (i)

)−1
(e (i)− γ̄1 (i))u, (4-65)

where u =
[

1 0 · · · 0
]T
. We can now select γ̄1 (i) as in the SM-NKLMS

so that

γ̄1 (i) = γ̄
e (i)
|e (i) | . (4-66)

Replacing equation (4-66) in (4-65), we get

ω (i+ 1) = ω (i) + Φ (i)
(
ΦT (i) Φ (i)

)−1
(µ (i) e (i))u, (4-67)

where

µ (i) =

1− γ̄
|e(i)| |e (i) | > γ̄,

0 otherwise.
(4-68)

Using equation (2-70) in (4-67) results in

ω (i+ 1) =
i−1∑
j=1

aj (i− 1)ϕ (j) + (µ (i) e (i)) Φ (i) ã (i) , (4-69)

where the vector ã (i) was redefined as

ã (i) =
(
ΦT (i) Φ (i) + εI

)−1
u. (4-70)

Finally, the coefficients are given by

ak (i) =

µ (i) e (i) ãk (i) , k = i,

ak (i− 1) + µ (i) e (i) ãK+k−i (i) , i−K + 1 ≤ k ≤ i− 1,

ak (i− 1) 1 ≤ k < i−K + 1.

(4-71)

The proposed SM-KAP is summarized in Algorithm 7.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 71

Algorithm 7 SM-KAP
Initialization
1.Choose γ̄ , ε,K and κ.
2.C (1) = {x (1)}
3.a1 (1) = µ (1) d (1)
Computation
4.while {x (i) , d (i)} available do:
5. for n = 1 to min (i,K) do

%Compute the outputs
6. yn (i) = ∑m

k=1 ak (i)κ (x (i− n+ 1) , ck)
7. end for

%Compute the last K errors
8. e (i) = d (i)− y (i)
9. if |e (i) | > γ̄ then

%Compute the step-size
10. µ (i) = 1− γ̄

|e(i)|

11. for n = 1 to min (i,K) do
12. for m = 1 to min (i,K) do

%Compute the K ×K matrix Ã
13. Ãn,m = κ (x (i− n+ 1) ,x (i−m+ 1))
14. end for
15. end for
16. Ã = (Ã + εI)−1

%Update the K most recent coefficients
17. {a (i)}Kk=i−K+1 = {a (i− 1)}Kk=i−K+1 + (µ (i) e (i)) Ãu

%Store the new center
18. C (m+ 1) = {C (m) ,x (i)}
19. m = m+ 1
20. else
21. a (i) = a (i− 1)
22. end if
23.end while

4.4
Statistical Analysis

Let us consider the nonlinear regression SM-NKLMS algorithm with a
Gaussian kernel in a stationary environment, which means that ϕ (x (i)) is
stationary for x (i) stationary [67]. Several nonlinear systems used to model
practical situations, such as Wiener and Hammerstein systems, satisfy this

Chapter 4. Data-Selective Kernel Adaptive Algorithms 72

assumption. The system inputs are N-dimensional, independent and identically
distributed Gaussian vectors x (i) with zero-mean and variance equal to σ2

x.
Let us denote the autocorrelation matrix of the input vectors by Rxx =
E
[
x (i) xT (i)

]
, so that E

[
x (i− k) xT (i− l)

]
= 0 for k 6= l. However the

components of the input vector can be correlated. Let us also consider a
dictionary of fixed size M and the vector κδ (i) previously defined in equation
(4-32). We consider that the vectors constituting the dictionary may change at
each iteration following some dictionary updating scheme. The only limitation
imposed is that x (δj) 6= x (δk) for j 6= k, so that the dictionary vectors are
statistically independent. The estimated output of the system is

y (i) = aT (i)κδ (i) . (4-72)
The corresponding estimation error is given by

e (i) = d (i)− y (i) . (4-73)

Squaring the equation above and taking the expected value results in the
MSE:

Jms (i) = E
[
e2 (i)

]
(4-74)

= E
[
d2 (i)

]
− 2pT

kda (i) + aT (i) Rkka (i) , (4-75)

where Rkk = E
[
κδ (i)κδT (i)

]
represents the correlation matrix of the ker-

nelized input, and pkd = E [d (i)κδ (i)] is the cross-correlation vector between
κδ (i) and d (i). In [68, 69] it is shown that Rkk is positive definite. Thus, the
Wiener solution and the minimum MSE are obtained as follows:

ao = R−1
kk pkd (4-76)

Jmin = E
[
d2 (i)

]
− pT

kdR−1
kk pkd, (4-77)

The entries of the correlation matrix Rkk are given by

[Rkk]jl =

E [κ2 (x (i) ,x (δj))] j = l

E [κ (x (i) ,x (δj))κ (x (i) ,x (δl))] j 6= l
(4-78)

Let us define the following products:

‖x (i)− x (δj)‖2 = yT
2 Q2y2 (4-79)

‖x (i)− x (δj)‖2 + ‖x (i)− x (δl)‖2 = yT
3 Q3y3, (4-80)

where
y2 =

[
xT (i) xT (δj)

]T
, (4-81)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 73

y3 =
[

xT (i) xT (δj) xT (δl)
]T
, (4-82)

Q2 =
 I −I
−I I

 , (4-83)

Q3 =

2I −I −I
−I I 0
−I 0 I

 . (4-84)

We know from [68,70] that the moment generating a function of quadratic
form z = yTQy, where y is a zero-mean Gaussian vector with covariance
matrix Ry is given by

E [esz] = det {I− 2sQRy}−
1
2 . (4-85)

The last equation allows us to compute the entries of the correlation
matrix Rkk for the Gaussian kernel. Each element is given by

[Rkk]jl =

rmd = det {I2 − 2Q2R2/ν
2}−

1
2 j = l

rod = det {I3 −Q3R3/ν
2}−

1
2 j 6= l

. (4-86)

4.4.1
Gaussian kernel SM-NKLMS algorithm transient behavior analysis

Let us define the coefficients-error vector defined by

v (i) = a (i)− ao. (4-87)

The second-order moments of the coefficients are related to the MSE
through [54]

Jms (i) = Jmin + tr {RkkCv (i)} , (4-88)
where Cv (i) = E

[
v (i)vT (i)

]
. This means that for studying the MSE behavior

we need a model for Cv (i). In this section, we derive an analytical model that
describes the behavior of Cv (i) for the proposed SM-NKLMS algorithm.

The coefficients update equation for the system is

a (i+ 1) = a (i) + µ (i) e (i)κδ (i) , (4-89)

where
µ (i) =

1− γ
|e(i)| |e (i)| > γ,

0 otherwise.
(4-90)

Subtracting ao from equation (4-89), we obtain the weight error vector
update equation:

v (i+ 1) = v (i) + µ (i) e (i)κδ (i) . (4-91)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 74

The estimation error may now be rewritten as follows:

e (i) =d (i)− κT
δ (i)a (i)

=d (i)− κT
δ (i)v (i)− κT

δ (i)ao. (4-92)

The optimum error is given by

eo (i) = d (i)− κT
δ (i)ao. (4-93)

It follows that
e (i) = eo (i)− κT

δ (i)v (i) . (4-94)
We may represent equation (4-89) by

a (i+ 1) = a (i) + Pup (i)
(

1− γ

|e (i)|

)
e (i)κδ (i) , (4-95)

Subtracting ao from the last equation yields

v (i+ 1) =v (i) + Pup (i)
(

1− γ

|e (i)|

)
e (i)κδ (i)

=v (i) + Pup (i) e (i)κδ (i)− γPup (i) sgn (e (i))κδ (i) . (4-96)

Replacing (4-94) in the equation above we obtain

v (i+ 1) =v (i) + Pup (i)
(
eo (i)− κT

δ (i)v (i)
)
κδ (i)

− γPup (i) sgn (e (i))κδ (i)

=v (i) + Pup (i) eo (i)κδ (i)− Pup (i)κδ (i)κT
δ (i)v (i)

− γPup (i) sgn (e (i))κδ (i) . (4-97)

Post-multiplying equation (4-97) by its transpose and taking the ex-
pected value leads to:

Chapter 4. Data-Selective Kernel Adaptive Algorithms 75

Cv (i+ 1) =Cv (i) + Pup (i)E
[
eo (i)v (i)κT

δ (i)
]

− Pup (i)E
[
v (i)vT (i)κδ (i)κT

δ (i)
]

− Pup (i) γE
[
sgn (e (i))v (i)κT

δ (i)
]

+ Pup (i)E
[
eo (i)κδ (i)vT (i)

]
+ P 2

up (i)E
[
e2
o (i)κδ (i)κT

δ (i)
]

− P 2
up (i)E

[
eo (i)κδ (i)vT (i)κδ (i)κT

δ (i)
]

− 2P 2
up (i) γE

[
eo (i) sgn (e (i))κδ (i)κT

δ (i)
]

− Pup (i)E
[
κδ (i)κT

δ (i)v (i)vT (i)
]

− P 2
up (i)E

[
eo (i)κδ (i)κT

δ (i)v (i)κT
δ (i)

]
+ P 2

up (i)E
[
κδ (i)κT

δ (i)v (i)vT (i)κδ (i)κT
δ (i)

]
+ P 2

up (i) γE
[
sgn (e (i))κδ (i)κT

δ (i)v (i)κT
δ (i)

]
− Pup (i) γE

[
sgn (e (i))κδ (i)vT (i)

]
+ P 2

up (i) γE
[
sgn (e (i))κδ (i)vT (i)κδ (i)κT

δ (i)
]

+ P 2
up (i) γ2E

[
sgn2 (e (i))κδ (i)κT

δ (i)
]
. (4-98)

Assuming that the inputs and the coefficients are statistically indepen-
dent, then the following expected values are reduced to

E
[
κδ (i)κT

δ (i)v (i)vT (i)
]

=RkkCv (i) , (4-99)

E
[
v (i)vT (i)κδ (i)κT

δ (i)
]

=Cv (i) Rkk. (4-100)

Let us also suppose that the optimum error is independent from the
kernelized inputs. This assumption lead us to:

E
[
e2
o (i)κδ (i)κT

δ (i)
]
≈E

[
e2
o (i)

]
E
[
κδ (i)κT

δ (i)
]

≈JminRkk, (4-101)

and

E
[
sgn2 (e (i))κδ (i)κT

δ (i)
]
≈E

[
sgn2 (e (i))

]
E
[
κδ (i)κT

δ (i)
]

≈Rkk. (4-102)

By the orthogonality principle, we obtain:

E
[
eo (i)κδ (i)vT (i)

]
≈E [eo (i)κδ (i)]E

[
vT (i)

]
≈0, (4-103)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 76

Let us also apply the orthogonality principle in the following expected
value:

E
[
eo (i)κδ (i)vT (i)κδ (i)κT

δ (i)
]

= E
[
vT (i) eo (i)κδ (i)κδ (i)κT

δ (i)
]

≈ E
[
vT (i)

]
E [eo (i)κδ (i)]E

[
κδ (i)κT

δ (i)
]

≈ 0. (4-104)

With the results of equations (4-99),(4-100), (4-101), (4-102), (4-103) and
(4-104), equation (4-98) is reduced to:

Cv (i+ 1) = Cv (i)− Pup (i) Cv (i) Rkk − Pup (i) γE
[
sgn (e (i))v (i)κT

δ (i)
]

+P 2
up (i) JminRkk − 2P 2

up (i) γE
[
eo (i) sgn (e (i))κδ (i)κT

δ (i)
]

−Pup (i) RkkCv (i) + P 2
up (i) T (i)

+P 2
up (i) γE

[
sgn (e (i))κδ (i)κT

δ (i)v (i)κT
δ (i)

]
−Pup (i) γE

[
sgn (e (i))κδ (i)vT (i)

]
+P 2

up (i) γE
[
sgn (e (i))κδ (i)vT (i)κδ (i)κT

δ (i)
]

+P 2
up (i) γ2Rkk, (4-105)

where T (i) = E
[
κδ (i)κT

δ (i)v (i)vT (i)κδ (i)κT
δ (i)

]
. The remaining expected

values of equation (4-105) can be computed using Price’s theorem. For the
ninth term, the expected value may be approximate as follows:

E
[
sgn (e (i))κδ (i)vT (i)

]
≈
√

2
πσ2

e

E
[
e (i)κδ (i)vT (i)

]
≈
√

2
πσ2

e

E
[(
eo (i)− κT

δ (i)v (i)
)
κδ (i)vT (i)

]
≈ −

√
2
πσ2

e

E
[
κδ (i)κT

δ (i)v (i)vT (i)
]

≈ −
√

2
πσ2

e

RkkCv (i) . (4-106)

Calculating the third term of equation (4-105), we obtain

E
[
sgn (e (i))v (i)κT

δ (i)
]
≈

√
2
πσ2

e

E
[
e (i)v (i)κT

δ (i)
]

≈ −
√

2
πσ2

e

Cv (i) Rkk. (4-107)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 77

The sixth term of equation (4-105) is given by

E
[
eo (i) sgn (e (i))κδ (i)κT

δ (i)
]
≈
√

2
πσ2

e

E
[
eo (i) e (i)κδ (i)κT

δ (i)
]

≈
√

2
πσ2

e

E
[
e2
o (i)κδ (i)κT

δ (i)
]

−
√

2
πσ2

e

E
[
eo (i)κT

δ (i)v (i)κδ (i)κT
δ (i)

]
≈
√

2
πσ2

e

JminRkk. (4-108)

Finally, the eighth and the tenth terms can be computed by

E
[
sgn (e (i))κδ (i)κT

δ (i)v (i)κT
δ (i)

]
≈
√

2
πσ2

e

E
[
e (i)κδ (i)κT

δ (i)v (i)κT
δ (i)

]
≈ −

√
2
πσ2

e

T (i) . (4-109)

The results obtained in equations (4-106), (4-107), (4-108) and (4-109)
turn equation (4-111) into:

Cv (i+ 1) = Cv (i)− Pup (i) Cv (i) Rkk + Pup (i) γ
√

2
πσ2

e

Cv (i) Rkk

+P 2
up (i) JminRkk − 2P 2

up (i) γ
√

2
πσ2

e

JminRkk

−Pup (i) RkkCv (i) + P 2
up (i) T (i)

−2P 2
up (i) γ

√
2
πσ2

e

T (i) + Pup (i) γ
√

2
πσ2

e

RkkCv (i)

+P 2
up (i) γ2Rkk. (4-110)

Factorizing the common terms of the last equation, we get the following
recursion for Cv (i+ 1):

Cv (i+ 1) =Cv (i) + Pup (i)
(
γ

√
2
πσ2

e

− 1
)

(Cv (i) Rkk + RkkCv)

+ P 2
up (i)

(
1− 2γ

√
2
πσ2

e

)
(JminRkk + T (i)) + P 2

up (i) γ2Rkk.

(4-111)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 78

The authors of [68] proved that the elements of T (i) are given by

[T (i)]jj =
M∑
l=1
l 6=j

2µ2 [Cv (i)]jl + µ3 [Cv (i)]ll + µ4

M∑
p=1

p 6={j,l}

[Cv (i)]lp

+ µ1 [Cv (i)]jj , (4-112)

for the main diagonal elements and

[T (i)]jk =µ2
(
[Cv (i)]jj + [Cv (i)]kk

)
+ 2µ3 [Cv (i)]jk

+
M∑
l=1

l 6={j,k}

2µ4 [Cv (i)]kl + 2µ4 [Cv (i)]jl + µ4 [Cv (i)]ll

+µ5

M∑
p=1

p6={j,k,l}

[Cv (i)]lp

 , (4-113)

for the off-diagonal entries, where µi is defined by

µ1 =det
{
I2 − 4Q2R2/ν

2
}− 1

2 , (4-114)

µ2 =det
{
I3 −Q3′R3/ν

2
}− 1

2 , (4-115)

µ3 =det
{
I3 − 2Q3′R3/ν

2
}− 1

2 , (4-116)

µ4 =det
{
I4 − 2Q4R4/ν

2
}− 1

2 , (4-117)

µ5 =det
{
I5 − 2Q5R5/ν

2
}− 1

2 , (4-118)

and the matrices Qi are defined by

Q3′ =

4I −3I −I
−3I 3I 0
−I 0 I

 , (4-119)

Q4 =

4I −2I −I −I
−2I 2I 0 0
−I 0 I 0
−I 0 0 I

 , (4-120)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 79

Q5 =

4I −I −I −I −I
−I I 0 0 0
−I 0 I 0 0
−I 0 0 I 0
−I 0 0 0 I

. (4-121)

Replacing equations (4-112) and (4-113) into equation (4-111) leads us
to a recursive expression for the entries of the autocorrelation matrix Cv (i):

[Cv (i+ 1)]jj =
(
1 + 2Pup (i) armd + P 2

up (i) bµ1
)

[Cv (i)]jj

+ P 2
upbµ3

M∑
l=1
l 6=j

[Cv (i)]ll

+
(
2P 2

up (i)µ2b+ 2Pup (i) arod
) M∑
l=1
l 6=j

[Cv (i)]jl

+ P 2
up (i)µ2bµ4

M∑
l=1
l 6=j

M∑
p=1

p 6={j,l}

[Cv (i)]lp

+
(
P 2
up (i) bJmin + P 2

up (i) γ2
)
rmd, (4-122)

and for j 6= k

[Cv (i+ 1)]jk =
(
1 + 2Pup (i)αrmd + 2P 2

up (i) βµ3
)

[Cv (i)]jk

+ P 2
up (i) βµ4

M∑
l=1

l 6={j,k}

[Cv (i)]ll +
P 2

up (i) βµ2

+ Pup (i)αrod

([Cv (i)]jj + [Cv (i)]kk
)

+
2P 2

up (i) βµ4 + Pup (i)αrod

 M∑
l=1

l 6={j,k}

[Cv (i)]il

+ [Cv (i)]jl

+ P 2
up (i) βµ5

M∑
l=1

l 6={j,k}

M∑
p=1

p6={j,k,l}

[Cv (i)]lp

+
(
P 2
up (i) βJmin + P 2

up (i) γ2
)
rmd, (4-123)

Chapter 4. Data-Selective Kernel Adaptive Algorithms 80

where

α =γ
√

2
πσ2

e

− 1, (4-124)

β =1− 2γ
√

2
πσ2

e

. (4-125)

4.5
Simulations

In this section we perform several simulation experiments to test the al-
gorithms proposed and compare them with the conventional algorithms. For
this purpose, a time series prediction task was chosen. Two different time series
were selected to carry out the experiments and evaluate the important charac-
teristics of the algorithms proposed. Finally, we also corroborate the statistical
analysis previously developed with simulations in a system identification envi-
ronment

4.5.1
Time Series Prediction

The first time series chosen for the experiments is the Mackey-Glass time
series, which is generated from a first-order non-linear differential equation
described in [71] and given by

dx (t)
dt

= −bx (t) + ax (t− τ)
1 + x(t− τ)n , (4-126)

where a, b, n and τ are real scalars. This equation was used to describe
physiological control systems such as oxygen, glucose, blood cells and blood
pressure in various organs. The time series displays characteristics of periodic
and chaotic dynamics. The lag τ represents the time between the sensing of
the value of the variable under control and the appropriate response. For this
experiment we set b to 0.1, a to 0.2, n to 10 and τ to 30. The time series
was generated with a sampling period of 6 seconds. Figure 4.1 shows the time
series.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 81

2500 2550 2600 2650 2700 2750 2800 2850 2900 2950

0.4

0.6

0.8

1

1.2

1.4

1.6

Time i

x(
i)

Figure 4.1: Mackey-Glass Time Series

The second time series is composed by a laser generated data. This
data was collected in Germany and was recorded from a Far-Infrared-Laser
in a chaotic state. The basic laser setup can be found in [72]. The intensity
data were recorded by a LeCroy oscilloscope. The data are cross-cut through
periodic to chaotic intensity pulsations of the laser as show in Figure 4.2.
Chaotic pulsations more or less follow the theoretical Lorenz model [73] of a
two level system.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 82

1100 1200 1300 1400 1500 1600 1700

50

100

150

200

250

300

Time i

x(
i)

Figure 4.2: Laser Generated Time Series

In the first experiment we analyze the performance of five linear adaptive
filters. We used both time series described before to perform the tests. First we
separate the data into two sets, one for training and the other for testing [13].
A total of 3500 sample inputs were used for training and the prediction was
performed over 100 test samples. The time-window was set to seven and the
prediction horizon to one, so that the last seven inputs of the time series were
used to predict the value one step ahead. Additionally both time series were
corrupted by additive Gaussian noise with zero mean and standard deviation
equal to 0.04. The step-size was set to 0.05 for all algorithms. For the AP
and SM-AP algorithms, K was set to 7, i.e., so both algorithms used the
last seven input samples as a single input for each prediction. The learning
curves obtained for each time series are presented in Figure 4.3 and Figure
4.4, respectively. The fastest convergence speed is achieved by the SM-AP
algorithm. We also see that the final mean square error is around 10−1.7 for
both cases.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 83

0 200 400 600 800 1000 1200 1400

10
−1.7

10
−1.6

10
−1.5

10
−1.4

10
−1.3

10
−1.2

Iteration

M
S

E

LMS
NLMS
SM−NLMS
AP
SM−AP

Figure 4.3: Linear adaptive filters learning curves: Mackey-Glass time series

0 500 1000 1500 2000 2500 3000 3500

10
−1

Iteration

M
S

E

LMS
NLMS
SM−NLMS
AP
SM−AP

Figure 4.4: Linear adaptive filters learning curves: Laser generated time series.

For the next experiment we consider the performance of the algorithms
proposed, the SM-NKLMS and the SM-KAP. We compare the results with the
KLMS algorithm and the KAP algorithm. The Gaussian kernel was chosen
to perform the experiments due its capability to model any input output
mapping. After several tests, the bandwidth of the kernel was set to one for
both algorithms. Once again the step-size was set to 0.05. The error bound

Chapter 4. Data-Selective Kernel Adaptive Algorithms 84

for both set-membership algorithms was set to
√

5σ. Finally, K was set to
seven for the algorithms that reuse data. The results obtained are presented in
Figures 4.5 and 4.6. The kernel-based algorithms achieve a steady-state MSE
lower than 10−2, so it is clear that the algorithms based on kernel functions
outperform their linear counterparts.

0 500 1000 1500
10

−3

10
−2

10
−1

10
0

Iteration

M
S

E

KLMS
SM−NKLMS
KAP
SM−KAP

Figure 4.5: Kernel Algorithms Learning Curves: Mackey-Glass time series.

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

Iteration

M
S

E

KLMS
SM−NKLMS
KAP
SM−KAP

Figure 4.6: Kernel Algorithms Learning Curves: Laser generated time series.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 85

Tables 4.1 and 4.2 summarizes the mean square error obtained by all
the algorithms tested in the Makey-Glass time series and the laser data
respectively, after 3500 iterations. The estimated output for the Mackey-Glass
time series obtained with the SM-NKLMS algorithm is presented in Figure 4.7.
Additionally, the estimated output for the laser generated time series obtained
with SM-KAP algorithm is shown in Figure 4.8.

Table 4.1: Performance comparision on Mackey-Glass time series prediction
Algorithm Test Mean Square Error Standard Deviation

LMS 0.0233800 +/-0.00027135
NLMS 0.0223300 +/-0.00021383

SM-NLMS 0.0210950 +/-0.00035729
AP 0.0207910 +/-0.00178830

SM-AP 0.0201570 +/-0.00101700
KLMS 0.0028808 +/-0.00017820

SM-NKLMS 0.0022169 +/-0.00028659
KAP2 0.0019449 +/-0.00015231

SM-KAP 0.0018752 +/-0.00012415

Table 4.2: Performance comparision on laser generated time series prediction
Algorithm Test Mean Square Error Standard Deviation

LMS 0.0244290 +/-0.00035874
NLMS 0.0237260 +/-0.00101250

SM-NLMS 0.0230950 +/-0.00647190
AP 0.0215460 +/-0.00465890

SM-AP 0.0200020 +/-0.00154490
KLMS 0.0032337 +/-0.00067428

SM-NKLMS 0.0016275 +/-0.00054237
KAP2 0.0014548 +/-0.00030613

SM-KAP 0.0014071 +/-0.00019424

Chapter 4. Data-Selective Kernel Adaptive Algorithms 86

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time Instant i

x(
i)

Desired Output
Estimated Output

Figure 4.7: SM-NKLMS Algorithm Output: Mackey-Glass time series.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Instant i

x(
i)

Desired Output
Estimated Output

Figure 4.8: SM-KAP Algorithm Output: Laser generated time series.

For the next experiment, we analyse the length of the growing network
created by the proposed SM-NKLMS algorithm using the laser generated time
series. We also calculate the size of the growing network created by the KLMS
algorithm with three different criteria, the coherence criterion (CC) [47, 48],
the novelty criterion (NC) [45], and the surprise criterion (SC) [49].The results
are showed in Figure 4.9. The proposed algorithm reduces significantly the size
of the network created by the KLMS algorithm.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 87

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Iteration

N
et

w
or

k
S

iz
e

KLMS
KLMS−NC
KLMS−CC
KLMS−SC
SM−NKLMS

Figure 4.9: Dictionary size vs Iteration.

We also compare the performance of the SM-NKLMS with the perfor-
mance obtained by the KLMS algorithm with different criteria. Figure 4.10
summarizes the results.

0 500 1000 1500
10

−3

10
−2

10
−1

Iteration

M
S

E

KLMS
NC−KLMS
SC−KLMS
CC−KLMS
SM−NKLMS

Figure 4.10: Performance comparision SM-NKLMS vs KLMS.

Table 4.3 compares the performance obtained for each algorithm. The
KLMS algorithm with the surprise criterion obtains a performance sightly

Chapter 4. Data-Selective Kernel Adaptive Algorithms 88

worse than the KLMS. On the other hand, the SM-NKLMS shows a better
convergence speed and also a better performance in terms of MSE. The size of
the network after 2500 iterations for each criteria used is shown in Table 4.4.
The parameters used by the different criteria may be tuned to achieve smaller
network sizes, but the performances obtained degrades a lot.

Table 4.3: MSE obtained with different criteria
Algorithm Test Mean Square Error Standard Deviation

KLMS 0.0028564 +/-0.00048728
NC-KLMS 0.0040351 +/-0.00048059
SC-KLMS 0.0032697 +/-0.00032239
CC-KLMS 0.0041528 +/-0.00052414
SM-NKLMS 0.0024821 +/-0.00056300

Table 4.4: Network Size
Algorithm Network Size

KLMS 2500
KLMS-NC 302
KLMS-CC 507
KLMS-SC 294
SM-NKLMS 278

Another experiment was set up to analyze the performance of the
algorithms at different noise levels. Figure 4.11 shows the results obtained.
In general, the kernel adaptive algorithms present a better robustness against
noise compared to the linear adaptive algorithms.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 89

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

σ

M
S

E

LMS
NLMS
SM−NLMS
AP
SM−AP
KLMS
SM−KNLMS
KAP
SM−KAP

Figure 4.11: Performance of adaptive algorithms at different noise levels.

Finally, in order to see how the error bound affects the performance of
the SM-NKLMS, we run the same simulation at different error bounds. From
Figure 4.12 we see that the greater the value of the bound is, it achieves a
stable behavior. However the MSE obtained with smaller values are better
from those obtained with larger values. As we decrease the value of the error
bound, we obtain noisier results.

0 500 1000 1500

10
−2

10
−1

Iteration

M
S

E

γ = √ 1 σ
n

γ = √ 5 σ
n

γ = √ 15 σ
n

γ = √ 25 σ
n

γ = √ 35 σ
n

γ = √ 45 σ
n

Figure 4.12: Performance of SM-NKLMS at different γ.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 90

4.5.2
Transient behavior of the SM-NKLMS algorithm

The following system identification example is presented to verify the
theory developed in Section 4.4.1. The nonlinear problem studied follows the
recursion

d (i) = d (i− 1)
1 + d (i− 1) + x3 (i− 1) . (4-127)

The desired signal d (i) was corrupted by additive white Gaussian noise with
zero-mean and variance σ2

n = 10−4. The input sequence x (i) is independent and
identically Gaussian distributed with variance σ2

x = 0.1. We also considered a
fixed dictionary of length 20. At each iteration, the dictionary elements were
updated so that the oldest element added is replaced. To compute the learning
curve, a total of 500 simulations were averaged, each one with 3000 iterations.
The bandwidth of the Gaussian kernel was set to 0.2 and 0.4. The results for
two different values of γ are shown in Figures 4.13, 4.14, 4.15 and 4.16.

0 500 1000 1500 2000 2500 3000
−30

−25

−20

−15

−10

−5

0

5

iterations

M
S

E
 (

dB
)

MSE (Experimental)
MSE (Theory)
steady−state MSE (Theory)

Figure 4.13: SM-NKLMS MSE behavior γ =
√

5σn, bandwidth= 0.2.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 91

0 500 1000 1500 2000 2500 3000
−30

−25

−20

−15

−10

−5

0

5

Iterations

M
S

E
 (

dB
)

MSE (Experimental)
MSE (Theory)
steady−state MSE (Theory)

Figure 4.14: SM-NKLMS MSE behavior γ =
√

5σn, bandwidth= 0.4.

0 500 1000 1500 2000 2500 3000
−30

−25

−20

−15

−10

−5

0

5

Iterations

M
S

E
 (

dB
)

MSE (Experimental)
MSE (Theory)
steady−state MSE (Theory)

Figure 4.15: SM-NKLMS MSE behavior γ =
√

9σn, bandwidth= 0.2.

Chapter 4. Data-Selective Kernel Adaptive Algorithms 92

0 500 1000 1500 2000 2500 3000
−30

−25

−20

−15

−10

−5

0

5

10

15

20

iterations

M
S

E
 (

dB
)

MSE (Experimental)
MSE (Theory)
steady−state MSE (Theory)

Figure 4.16: SM-NKLMS MSE behavior γ =
√

9σn, bandwidth= 0.4.

The lower steady-state MSE is obtained with a lower gamma. However,
from the previous experiment we know that if we decrease the value of
the error bound too much, we obtain noisier results. The mathematical
model and expressions developed to describe the MSE of the proposed SM-
NKLMS algorithm produce curves that match those obtained by simulation
as evidenced by examples.

5
Conclusions and future work

In this dissertation, two kinds of data-selective adaptive algorithms have
been derived and investigated, specifically linear algorithms and kernel-based
algorithms. A sparse system identification and a time series prediction tasks
were the application scenarios chosen to evaluate the proposed algorithms. The
simulation results obtained showed that the proposed algorithms outperform
conventional algorithms reported in previous works in terms of MSE and
convergence speed.

In Chapter 3, a framework for data selective algorithms, that exploit
the sparsity of the model by implementing a general penalty function into the
cost function has been derived following a gradient descent approach. Using
the established framework, three different algorithms with adjustable penalties
have been presented. The proposed algorithms have a faster convergence speed
than conventional adaptive algorithms used to exploit the sparsity of a system,
making them an excellent choice for working in sparse environments.

We have also explored systems in the presence of correlated inputs. In
such cases, the more correlated the input is, the slower the convergence speed
and the higher the MSE achieved by the adaptive algorithms. However this
condition has a lower impact in sparsity-aware algorithms than in conventional
adaptive algorithms, constituting an advantage for the proposed algorithms.

In Chapter 4, we have shown that kernel-based adaptive algorithms are
appropriate tools for time series prediction, where linear adaptive algorithms
do not perform well. The proposed SM-NKLMS algorithm and SM-KAP
algorithm, outperform the conventional KLMS and KAP algorithms in both,
convergence speed and steady-state MSE level. The proposed SM-KAP present
the best performance in terms of convergence rate and MSE value.

In Chapters 3 and 4 a statistical analysis to obtain a mathematical
expression for the MSE at steady-state has been carried out for both kind
of algorithms . The non-linear terms introduced by the analysed algorithms
constitute the major difficulty to perform the analysis, requiring the use of
different approximations. For both cases, the mathematical expression of the
MSE matched the simulated result of the MSE, concluding that expressions
found are a good approximation of the MSE value.

Chapter 5. Conclusions and future work 94

All algorithms proposed in this work present a substantial saving of
computational resources. In Chapter 3 we conclude that only around 20%-
25% of the data require an update. In Chapter 4, we found that the proposed
algorithms not only performed less updates but they also limit the size of the
dictionary, which represents a saving of memory resources. Because of all these
facts, the proposed algorithms are ideal for systems with limited resources.

The proposed algorithms in this work can be considered for future work
in other fields of application. In particular, they can be implemented for a
channel equalization scenario and for a noise cancelling application. There are
also other interesting fields where future work can be done. One example is
the tracking analysis of the existing data-selective algorithms. In this research,
we have considered only real data, but there are also many scenarios where
complex data is collected. For these cases, the algorithms can be extended for
considering complex values. Finally, we have restricted the proposed kernel-
based algorithms to the use of a single kernel, however a multi-kernel approach
could be an interesting topic of research.

Bibliography

[1] E. Fogel and Y.F. Huang. On the value of information in system identification-
bounded noise case. Automatica, 18:229–238, March 1982.

[2] S. Gollamudi, S. Nagaraj, and Y. Kapoor, S.and Huang. Set-membership
filtering and a set-membership normalized LMS algorithm with an adaptive
step size. IEEE Signal Processing Letters, 5(5):111–114, May 1998.

[3] R. C. de Lamare and P. Diniz. Set-membership adaptive algorithms based
on time-varying error bounds for CDMA interference suppression. IEEE
Transactions on Vehicular Technology, 58(2):644 – 654, February 2009.

[4] T. Wang, R. C. de Lamare, and P.D. Mitchell. Low-complexity set-
membership channel estimation for cooperative wireless sensor networks. IEEE
Transactions on Vehicular Technology, 60(6):2594 – 2607, July 2011.

[5] R. C. de Lamare and P. Diniz. Blind adaptive interference suppression based
on set-membership constrained constant-modulus algorithms with dynamic
bounds. IEEE Transactions on Signal Processing, 61(5):1288 – 1301, Novem-
ber 2013.

[6] L. Wang and R. C. de Lamare. Set-membership constrained conjugate
gradient adaptive algorithm for beamforming. IET Signal Processing, 6(8):789
– 797, October 2012.

[7] L. Wang and R. C. de Lamare. Low-complexity constrained adaptive reduced-
rank beamforming algorithms. IEEE Transactions on Aerospace and Electronic
Systems, 49(4):2114 – 2128, October 2013.

[8] P. Diniz. Adaptive Filtering: Algorithms and Practical Implementation.
Springer, third edition, 2008.

[9] R. Pokharel, S. Seth, and J. Príncipe. Mixture kernel least mean square. The
2013 International Joint Conference on Neural Networks, 2013.

[10] M. Yukawa. Multikernel adaptive filtering. IEEE Transactions on Signal
Processing, 60(9):4672 – 4682, August 2012.

Bibliography 96

[11] K. Slavakis and S. Theodoridis. Sliding window generalized kernel affine pro-
jection algorithm using projection mappings. EURASIP Journal on Advances
in Signal Processing, 2008.

[12] K. Slavakis, S. Theodoridis, and I. Yamada. Online kernel-based classification
using adaptive projection algorithms. IEEE Transactions on Signal Processing,
56(7):2781 – 2796, 2008.

[13] W. Liu, J. Príncipe, and S. Haykin. Kernel Adaptive Filtering: A Comprehen-
sive Introduction. John Wiley & Sons, 2010.

[14] B. Widrow and S. Stearns. Adaptive Signal Processing. Prentice-Hall, 1985.

[15] J. Nagumo and A. Noda. A learning method for system identification. IEEE
Transactions on Automatic Control, 12(3):282 – 287, 1967.

[16] K. Ozeki and T. Umeda. An adaptive filtering algorithm using an orthogonal
projection to an affine subspace and its properties. Electronics and Commu-
nications in Japan, 67-A(5):126–132, February 1984.

[17] S. Theodoridis. Machine Learning A Bayesian and Optimization Perspective.
Academic press, 2015.

[18] R. C. de Lamare and R. Sampaio-Neto. Adaptive reduced-rank processing
based on joint and iterative interpolation, decimation, and filtering. IEEE
Transactions on Signal Processing, 57(7):2503 – 2514, March 2009.

[19] R. Fa, R. C. de Lamare, and L. Wang. Reduced-rank STAP schemes for
airborne radar based on switched joint interpolation, decimation and filtering
algorithm. IEEE Transactions on Signal Processing, 58(8):4182 – 4194, April
2010.

[20] Z. Yang, R. C. de Lamare, and X. Li. L1-regularized STAP algorithms
with a generalized sidelobe canceler architecture for airborne radar. IEEE
Transactions on Signal Processing, 60(2):674 – 686, February 2012.

[21] Z. Yang, R. C. de Lamare, and X. Li. Sparsity-aware space-time adaptive
processing algorithms with l1-norm regularisation for airborne radar. IET
Signal Processing, 6(5):413 – 423, July 2012.

[22] H. Ruan and R. C. de Lamare. Robust adaptive beamforming using a low-
complexity shrinkage-based mismatch estimation algorithm. IEEE Signal
Processing Letters, 21(1):60 – 64, January 2014.

Bibliography 97

[23] H. Ruan and R. C. de Lamare. Robust adaptive beamforming based on
low-rank and cross-correlation techniques. IEEE Transactions on Signal
Processing, 64(15):3919 – 3932, August 2016.

[24] T. G. Miller, S. Xu, R. C. de Lamare, and H. V. Poor. Distributed spectrum
estimation based on alternating mixed discrete-continuous adaptation. IEEE
Signal Processing Letters, 23(4):551 – 555, April 2016.

[25] D. L. Duttweiler. Proportionate normalized least-mean-squares adaptation in
echo cancelers. IEEE Transactions on Speech and Audio Processing, 8(5):508
– 518, August 2000.

[26] J. Benesty and S. L. Gay. An improved PNLMS algorithm. IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2002.

[27] H. Deng and M. Doroslovacki. Proportionate adaptive algorithms for network
echo cancellation. IEEE Transactions on Signal Processing, 54(5):1794 –
1803, April 2006.

[28] L. Liu, M Fukamoto, and S. Saiki. An improved mu-law proportionate NLMS
algorithm. IEEE International Conference on Acoustics, Speech and Signal
Processing, 2008.

[29] F. de Sousa, O. Tobias, R. Seara, and D. R. Morgan. A PNLMS algorithm
with individual activation factors. IEEE Transactions on Signal Processing,
58(4):2036 – 2047, April 2010.

[30] S. Werner, J. A. Apolinário Jr., P. S. R. Diniz, and T. I. Laakso. A set-
membership approach to normalized proportionate adaptation algorithms.
13th European Signal Processing Conference, 2005.

[31] C. Paleologu, S. Ciochina, and J. Benesty. An efficient proportionate affine
projection algorithm for echo cancellation. IEEE Signal Processing Letters,
17(2):165 – 168, February 2010.

[32] O. Hoshuyama, R. A. Goubran, and A. Sugiyama. A generalized proportionate
variable step-size algorithm for fast changing acoustic environments. IEEE
International Conference on Acoustics, Speech and Signal Processing, 2004.

[33] S. Werner, J. A. Apolinário Jr., and P. S. R. Diniz. Set-membership
proportionate affine projection algorithms. EURASIP Journal on Audio,
Speech and Music Processing, 2007.

Bibliography 98

[34] Y. Chen, Y. Gu, and A. Hero. Sparse LMS for system identification. IEEE
International Conference on Acoustics, Speech and Signal Processing, pages
3125–3128, April 2009.

[35] R. Meng, R. C. de Lamare, and V. H. Nascimento. Sparsity-aware affine pro-
jection adaptive algorithms for system identification. Sensor Signal Processing
for Defence, 2011.

[36] X. Hong, J. Gao, and S. Chen. Zero attracting recursive least squares
algorithms. IEEE Transactions on Vehicular Technology, 2016.

[37] E. M. Eksioglu and A. K. Tanc. RLS algorithm with convex regularization.
IEEE Signal Processing Letters, 18(8):470 – 473, August 2011.

[38] M. Lima, T. Ferreira, W. Martins, and P. Diniz. Sparsity-aware data-selective
adaptive filters. IEEE Transactions on Signal Processing, 62(17):4557–4572,
August 2014.

[39] T. Ferreira, M. Lima, W. Martins, and P. Diniz. Modified sparsity-aware set-
membership affine projection algorithm. IEEE International Conference on
Digital Signal Processing, pages 833–837, July 2015.

[40] R. C. de Lamare and R. Sampaio-Neto. Sparsity-aware adaptive algorithms
based on alternating optimization and shrinkage. IEEE Signal Processing
Letters, 21(2):225–229, January 2014.

[41] B. K. Das, L. A. Azpicueta-Ruiz, M. Chakraborty, and J. Arenas-Garcia. A
comparative study of two popular families of sparsity-aware adaptive filters.
4th International Workshop on Cognitive Information Processing, 2014.

[42] K. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. and Scholkopf. An
introduction to kernel-based learning algorithms. IEEE Transactions on Neural
Networks, 12(2):181 – 201, March 2001.

[43] S. Van Vaerenbergh, J. Via, and I. Santamaria. A sliding-window kernel RLS
algorithm and its application to nonlinear channel identification. IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
2006.

[44] S. Van Vaerenbergh, I. Santamaria, W. Liu, and J. Príncipe. Fixed-budget
kernel recursive least-squares. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2010.

[45] J. Platt. A resource-allocating network for function interpolation. Neural
Computation, 3(3):213–225, 1991.

Bibliography 99

[46] Y. Engel, S. Mannor, and R. Meir. The kernel recursive least-squares
algorithm. IEEE Transactions on Signal Processing, 52(8):2275–2285, August
2004.

[47] J. Pothin and C. Richard. Online learning with kernels. A new approach for
sparsity control based on a coherence criterion. IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), pages 241–245, 2006.

[48] C. Richard, J.C.M Bermudez, and P. Honeine. Online prediction of time series
data with kernels. IEEE Transactions on Signal Processing, 57(3):1058–1067,
February 2009.

[49] W. Liu and J. Príncipe. An information theoretic approach of designing sparse
kernel adaptive filters. IEEE Transactions on Neural Networks, 20(12):1950
– 1961, November 2009.

[50] W. Liu, P. Pokharel, and J. Príncipe. The kernel least-mean-squares algorithm.
IEEE Transactions on Signal Processing, 56(2):543–554, February 2008.

[51] W. Liu and J. Príncipe. Kernel affine projection algorithms. EURASIP Journal
on Advances in Signal Processing, 2008, February 2008.

[52] P. Thomas. A Study of Kernel- Based Adaptive Algorithms for Complex and
Quaternion-Valued Data. PhD thesis, Santa Clara University, October 2013.

[53] B. Schölkopf, R. Herbrich, and J. Smola. A generalized representer theorem.
14th Annual Conference on Computational Learning Theory and 5th European
Conference on Computational Learning Theory, pages 416–426, 2001.

[54] A. Sayed. Adaptive Filters. John Wiley & Sons, 2008.

[55] S. Haykin. Adaptive Filter Theory. Pearson, fifth edition, 2014.

[56] M.H. Hayes. Statistical Digital Signal Processing and Modeling. John Wiley
& Sons, 1996.

[57] M. Lima and P. Diniz. On the steady-state MSE performance of the
set-membership NLMS algorithm. International Symposium on Wireless
Communication Systems (ISWCS), 2010.

[58] G. Barrault, M. H. Costa, J. Bermudez, and A Lenzi. A new analitycal model
for the NLMS algorithm. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2005.

Bibliography 100

[59] M. H. Costa and J. Bermudez. An improved model for the normalized
LMS algorithm with Gaussian inputs and large number of coefficients. IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2002.

[60] J. Minkoff. Comment: on the unnecessary assumption of statistical inde-
pendence between reference signal and filter weights in feedforward adaptive
systems. IEEE Transactions on Signal Processing, 49(5):1109, 2001.

[61] N. R. Yousef and A. Sayed. A unified approach to the steady-state and
tracking analyses of adaptive filters. IEEE Transactions on Signal Processing,
49(2):314 – 324, February 2001.

[62] M. Lima and P. Diniz. Steady-state analysis of the set membership affine
projection algorithm. IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 3802–3805, March 2010.

[63] M. Lima and P. Diniz. Steady-state MSE performance of the set-membership
affine projection algorithm. Circuits, Systems, and Signal Processing,
32(4):1811–1837, August 2013.

[64] R. Price. A useful theorem for nonlinear devices having Gaussian inputs. IRE
Transactions on Information Theory, 4(2):69 – 72, June 1958.

[65] J. Chen, C. Richard, Y. Song, and D. Brie. Transient performance analysis
of zero-attracting LMS. IEEE Signal Processing Letters, 23(12):1786 – 1790,
2016.

[66] R Coelho, V. H. Nascimento, R. Queiroz, J. Romano, and C Cavalcante,
editors. Signals and Images: Advances and Results in Speech, Estimation,
Compression, Recognition, Filtering, and Processing. CRC Press, 2015.

[67] J. Chen, W. Gao, C. Richard, and J. C. Bermudez. Convergence analysis
of kernel LMS algorithm with pre-tuned dictionary. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014.

[68] W. Parreira, J. C. Bermudez, C. Richard, and J Tourneret. Stochastic
behavior analysis of the Gaussian kernel least-mean-square algorithm. IEEE
Transactions on Signal Processing, 60(5):2208 – 2222, January 2012.

[69] W. Parreira, J. C. Bermudez, C. Richard, and J Tourneret. Steady-state
behavior and design of the Gaussian KLMS algorithm. European Signal
Processing Conference (EUSIPCO), April 2011.

[70] J. Omura and T. Kailath. Some useful probability distributions. Technical
Report 7050-6, Stanford University, 1965.

Bibliography 101

[71] M.C. Mackey and L. Glass. Oscillations and chaos in physiological control
systems. Science, 197:287–289, 1977.

[72] U. Hubner, N.B. Abraham, and C.O. Weiss. Dimensions and entropies of
chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Physical
Review A, 40(11):6354–6365, December 1989.

[73] E. Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric
sciences, 20:130–141, 1963.

	Data-Selective Linear and Kernel-Based Adaptive Algorithms
	Resumo
	Summary
	Introduction
	Motivation
	Contributions
	Dissertation Outline
	List of Publications
	Notation

	Adaptive Signal Processing Review
	Machine Learning
	Adaptive Signal Processing Fundamentals
	The Least-Mean-Square (LMS) Algorithm
	The Normalized Least-Mean-Square (NLMS) Algorithm
	The Affine Projection Algorithm

	Sparsity-Aware Adaptive Algorithms
	Sparsity-Aware NLMS
	Sparsity-Aware SM-NLMS

	Kernel Adaptive Filtering (KAF)
	Kernel Least-Mean-Squares (KLMS)
	Kernel Affine Projection (KAP) Algorithm

	Sparsity-Aware Data-Selective Adaptive Algorithms
	Derivation Framework
	Proposed ZA-SM-NLMS-ADP Algorithm
	Proposed RZA-SM-NLMS-ADP Algorithm
	Proposed EZA-SM-NLMS-ADP Algorithm

	Statistical analysis
	Mean Weight Behavior
	Steady-State MSE Analysis
	The steady-state MSE of the ZA-SM-NLMS algorithm

	Simulations
	Learning Performance of Proposed and Existing Algorithms
	Steady State MSE of the ZA-SM-NLMS algorithm

	Data-Selective Kernel Adaptive Algorithms
	Set-Membership Normalized Kernel Least-Mean-Squares
	Nonlinear Regression approach
	Set Membership-Kernel Affine Projection Algorithm
	Statistical Analysis
	Gaussian kernel SM-NKLMS algorithm transient behavior analysis

	Simulations
	Time Series Prediction
	Transient behavior of the SM-NKLMS algorithm

	Conclusions and future work

